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A B S T R A C T

Today, renewable energy systems like photovoltaic system are widely used in various applica-
tions. Among the different types of microgrids, hybrid microgrids are the most used type,
therefore, inverters should be used to exchange power between DC and AC sides. According to the
existing economic issues, extracting the maximum possible power from these systems are an
important issue. This paper presents a new neuro-fuzzy controller for achieving maximum power
point tracking (MPPT) in a grid-connected PV system under partially shaded conditions. This
controller uses the Gravity Search Algorithm (GSA) to track the global maximum power point
(GMPP) of the presented grid-connected PV system. The method controls the grid-connected
inverter at the desired voltage to achieve maximum power after receiving its required specifi-
cations from the system. The Matlab/Simulink software is used to evaluate the performance of the
proposed method. The results show that the proposed method can track the maximum power
point under uniform and partial shading conditions with high speed and accuracy. Specifically,
the proposed algorithm improves the tracking speed and increases the power output compared to
traditional methods. The neuro-fuzzy controller’s adaptive capabilities allow it to respond effi-
ciently to dynamic changes in shading, ensuring stable and optimal power output. These ad-
vantages make the proposed method a significant improvement over existing MPPT techniques.

1. Introduction

The increasing use of distributed generations (DGS) and renewable energy around the world for various reasons such as economic
and environmental reasons have attracted the attention of many researchers to this type of energies [1,2]. Ditribution network is
transformed from a passive network to an active network by addition of DGs, therefore the management of these resources is necessary
to increase reliability and power quality and also, reduce losses and costs [3,4]. The output power of Photovoltaic (PV) system, which is
one of the main renewable energy systems, is depended on various factors such as temperature and sun’s irradiations [5]. To extract
the maximum power from photovoltaic (PV) systems, a Maximum Power Point Tracking (MPPT) controller is integrated. This
controller optimizes the power output by continuously adjusting the system to operate at its peak efficiency [6,7].

* Corresponding author.
E-mail addresses: s.danyali@ilam.ac.ir (S. Danyali), mohammad.babaifard@gmail.com (M. Babaeifard), mohammadaminshirkhani77@gmail.

com, ma.shirkhani@ilam.ac.ir (M. Shirkhani), amirreza.azizi9615@gmail.com, amirreza.azizi@shahed.ac.ir (A. Azizi), j.tavoosi@ilam.ac.ir
(J. Tavoosi), zohreh.dadvand@gmail.com (Z. Dadvand).

Contents lists available at ScienceDirect

Heliyon

journal homepage: www.cell.com/heliyon

https://doi.org/10.1016/j.heliyon.2024.e36747
Received 26 May 2024; Received in revised form 31 July 2024; Accepted 21 August 2024

mailto:s.danyali@ilam.ac.ir
mailto:mohammad.babaifard@gmail.com
mailto:mohammadaminshirkhani77@gmail.com
mailto:mohammadaminshirkhani77@gmail.com
mailto:ma.shirkhani@ilam.ac.ir
mailto:amirreza.azizi9615@gmail.com
mailto:amirreza.azizi@shahed.ac.ir
mailto:j.tavoosi@ilam.ac.ir
mailto:zohreh.dadvand@gmail.com
www.sciencedirect.com/science/journal/24058440
https://www.cell.com/heliyon
https://doi.org/10.1016/j.heliyon.2024.e36747
https://doi.org/10.1016/j.heliyon.2024.e36747
https://doi.org/10.1016/j.heliyon.2024.e36747
http://creativecommons.org/licenses/by-nc-nd/4.0/


Heliyon 10 (2024) e36747

2

Several methods have been proposed to improve the efficiency of MPPT. For instance, a fuzzy logic-based MPPT utilizing the
Incremental Conductance (INC) method was introduced to improve static and dynamic responses and increase the output DC power in
PV systems [8,9]. This method demonstrated improved performance but faced challenges with variable step size optimization. To
address this, a control scheme combining the Golden Section Search (GSS) algorithm with both P&O and INC algorithms was proposed
to enhance MPPT convergence and reduce oscillations [10,11]. This combination showed better stability but added computational
complexity. In order to improve the static and dynamic responses and increase the output DC power in PV systems, compared to
traditional methods, a new fuzzy logic-based MPPT was proposed in Ref. [12]. A new control scheme was introduced in Ref. [13] by
combining the Golden Section Search (GSS) algorithm with both P&O and INC algorithms to enhance MPP convergence and reduce
oscillations. The presented method improves MPPT convergence speed under fluctuations by receiving and analyzing input and output
data from the DC-AC inverter. However, it still faces challenges such as precise optimization. In Ref. [14], an optimized fuzzy logic
MPPT technique was proposed based on combining the Particle Swarm Optimization (PSO) and Genetic Algorithm (GA). Given the
combination of several algorithms, this method involves complex computation. In Ref. [15], two AI-based control schemes were
proposed to improve MPPT performance in variable weather conditions. This study investigates two scenarios: in the first scenario,
PSO, GA, and a fuzzy logic-based controller perform the calculations, and in the second scenario, an improved genetic algorithm (IGA)
performs the calculations. Two different MPPT algorithms, Quadratic Maximum (QM) and Steep Descent (SD), were evaluated in two
different scenarios with a PV system consisting of four amorphous silicon panels in Ref. [16]. More recently, novel algorithms like
Quadratic Maximum (QM) and Steep Descent (SD) have been evaluated for their effectiveness in various scenarios, particularly in PV
systems with amorphous silicon panels [17–19]. These algorithms showed promise in specific applications but needed further
refinement for broader applicability. An approach using resistive fluctuations to track global maximum power point (GMPP) under
partially shaded conditions was introduced, demonstrating effectiveness in diverse PSC scenarios. However, the complexity of resistive
fluctuation measurement limited its practical implementation [20,21]. In Ref. [22], a new approach for tracking the GMPP in partially
shaded conditions is presented. The assessment of resistive fluctuations along with GMPP across diverse PSC scenarios is conducted
using both static and dynamic loads. In Ref. [23], an MPPT technique that combines the Simple Accelerated Particle Swarm Opti-
mization (SAPSO) algorithm and the classical Hill Climbing (HC) algorithm is presented for a PV system under partial shade condi-
tions. Due to the combination of two algorithms, this method involves complex computation. To increase the speed and accuracy of
MPPT and enhance its matching with GMPP for PV systems, an intelligent technique using power voltage (P-V) curves is presented in
Ref. [24]. This method tracks the GMPP by combining the real power and the estimated power in different PV parts. To solve common
challenges in other evolutionary algorithms, such as longer convergence times, a high number of search particles, and stable state
oscillations, a whale optimization with differential evolution (WODE) algorithm is proposed in Ref. [25] for MPPT in partially shaded
conditions. Inspired by the amberjack hunting behavior, this algorithm facilitates rapid and oscillation-free tracking of the optimal
global peak in multiple stages.
In [26], to improve the performance of the MPPT in a partial shaded condition and address the challenges of GMPP, a fuzzy sliding

mode control (FSMC) scheme with fuzzy proportional integral (FPI) control is proposed. This study technique accurately tracks the
reference voltage andmaximum power in partially shaded conditions and also, ensuring the system stability. The proper functioning of
the sensors has a great impact on the efficiency of this method. In Ref. [27], by using an adaptive fuzzy logic controller (AFLC), the
accuracy and tracking speed of MPPT are improved under both partial and overall shading conditions. The proposed method utilizes
the Grey Wolf Optimization (GWO) algorithm in four shading scenarios to determine the duty ratio and evaluate the performance of
AFLC. The adaptability to dynamic changes during sudden environmental variations is considered as a weakness in AFLC. To solve the
non-linear challenges in MPPT adjustment, an algorithm based on artificial neural network (ANN) with a variable step size is presented
in Ref. [28]. This technique has a complex computation and require a large number of input data. In Ref. [29], probability estimation
algorithm for tracking GMPP is presented, which enhances the tracking speed for GMPP by sampling data obtained in partial shading
conditions using an intelligent probability estimation algorithm process. Finally, by utilizing the P&O algorithm, it improves the
accuracy of the results, although this algorithm has a complex computation. Various types of fuzzy logic controller are used recently to
achieve a high efficiency MPPT algorithm in PSCs. An asymmetrical interval type-2 fuzzy logic control (IT-2 AFLC) algorithm based
GMPPT is presented in Ref. [30] under PSCs.
In this paper, a new neuro-fuzzy based MPPT agorithm is presented which track the global maximum power point in PV system in

the partially shaded conditions. By using parallel bidirectional DC-AC inverter in the simulated systems, voltage control is performed at
different voltage levels. Then, a neuro-fuzzy control is implemented on a grid-connected DC-AC inverter, which can achieve power
control for various generaton and consumption values. This caontrol method can track the global maximum power point of the PV
system under partially shaded conditions with Gravity Search Algorithm (GSA) and deliver the maximum received power from PV
system to the AC grid.
The rest of the paper are organized as follows: overview structure of the grid-connected PV system and MPPTs methods are

introdued in section 2 and 3, respectively. Section 4 presented the proposed neuro-fuzzy controller and also, the simulation results is
fully presented in section 5. Finally, the conclusion is given in section 6.

2. MPPT methods

High cost and low conversion efficiency, making necessary to use MPPTs algorithm in PV systems even in partially shading con-
ditions (PSCs) which is a phenomenon that happens when the light exposure unevenly on the PV panels. Considering that based on
different environmental conditions, PV cells and modules generate different power, there are several MPPT algorithms that can track
the maximum power point under different conditions. MPPT algorithms can be classified into classical, optimization and intelligent
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MPPT.
Classical MPPT algorithms are include Incremental Conductance (IC), Perturband Observe (P&O), Fractional Short Circuit Current

(FSCC), Constant Voltage (CV), Adaptive Reference Voltage (ARV), Ripple Correlation Control (RCC), Hill Climbing (HC), DC- link
capacitor droop control based MPPT, online-MPP searchalgorithm, look uptable method and Fractional Open-Circuit Voltage (FOCV)
(see Fig. 1). These algorithms have a simple structure but they don’t consider the partial shadow effect. Figs. 2 and 3 shows the
flowchart of two popular algorithms, the IC and P&OMPPT algorithms, respectively. The P&OMPPT algorithm operates on PV voltage
or DC/DC converter’s duty ratio for track the MPPT [31–33].
As shown in Fig. 3, the IC algorithm use PV voltage and current to locate PV MPPT. By comparing ∂I⁄∂V with I/V, the status of

MPPTPV is determined as follows:

∂I
∂V=0 at MPPT (1)

∂I
∂V < −

I
V
at the right hand of MPP (2)

∂I
∂V > −

I
V
at the left hand of MPP (3)

Optimization-based MPPT algorithms, like classical MPPT algorithm are include several methods such as grey wolf optimization
(GWO) and particle swarm optimization (PSO). In these methods, MPP is tracked in a dynamic condition. Fig. 4 shows the flowchart of
the PSO-based MPPT method. Given that this method deals with the basis of the search method, it can easily track the MPP.
Intelligent-based MPPT algorithms which is used in this paper, usually used in dynamic wheather conditions and has high tracking

efficiency and speed. fuzzy logic control (FLC) is among these methods which, no system knowledgement is required for imple-
mentation of FLC-basedMPPT. Artificial neural network (ANN) and sliding mode control (SMC) can bemention for another intelligent-
based MPPT algorithms. In traditional techniques, to design a controller for tracking the MPP, the PV system should be modeled in
mathematical form, which is very difficult in partially shaded conditions [13,34,35]. In intelligent-based algorithms, there is no need
to mathematical modeiling of the system, therefore, using these algorithms get increased recently. In FLC, in addition to doesn’t
require to mathematical model of the PV system, the controller settings can be adjusted by the operator.
By comparision between voltage error and reference voltage, FLCs continuosely change the dytu ratio in converters to achieve

maximum voltage (Vmpp). In this comparision, reference voltage is the Vmpp and voltage error is obtained by comparision the PV
instantaneous voltage with the reference voltage. Usually, the inputs of the FLC-based MPPT are E (error) and ΔE (change in error)
which given in following equations:

E(n)=
ΔP
ΔV

=
VPV(n) ∗ IPV(n) − VPV(n − 1) ∗ IPV(n − 1)

VPV(n) − VPV(n − 1)
(4)

ΔE(n)=E(n) − E(n − 1) (5)

Fig. 4 shows the control scheme of the FLC. The voltage error is given to the FLC as an input andΔδ, which is change in load angle is
the output of the system. Appropriate selection of membership functions as well as rule base table of fuzzy system can improve its
efficiency. Also, the use of FLC-based methods such as Adaptive Neuro-Fuzzy Inference Systems (ANFIS) can help increase the tracking
speed and improve the efficiency of the system [36–38]. Fig. 5 shows the simple structure of the ANFIS for tracking the MPP.

3. System component modeling

Structure of the simulated system in this paper is shown in Fig. 6. In this system, DG unit (PV system) is connected to the AC grid via
a DC-DC boost coverter and a DC-AC inverter. AC microgrids can supply the single-phase loads which created unbalanced voltage in
the AC side, resulting power fluctuations in DC side and increase its Instability, but the DC-AC buck-boost converter prevent from
transfer these fluctuations to DC side [39–41]. To regulate the output voltage and current of the module to achieve the PV MPP (Vglobal

max ,

Pglobalmax ), a boost controller circuit is needed as shown in Fig. 7. In this converter, the output voltage of the PV module is always adjusted
in MPP. Fig. 6 shows the paper’s used inverter in the simulated system. Also, as showon in Fig. 7, by using voltage controller unit which
used several inputs, PWM signal is generated in such a way that MPPT is achieved. The control form of signal generation using PI

Fig. 1. Block diagram of a grid-connected solar PV system MPPT controller.
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controller is shown in Fig. 8. The schematic of this method by adding the GSA MPPT algorithm used in this paper is shown in Fig. 9.
To achieve Vglobal

max in the output of the PV module, the PI controller which is shown in Fig. 8, is always regulated the duty ratio. This
controller circuit is shown in Fig. 9.
Fig. 10 shows the PWM control signal block of the converter switches. In the proposed interface converter, the voltage and current

at the connection point of the converter and grid are sampled continuously. The sampled voltage and current then enter the frame
conversion device. The reference values are synchronized, and the instantaneous real and reactive powers are calculated. Subse-
quently, the line-to-line reference voltage and the reference current in the synchronous reference frame device are determined. Next,
the reference voltage and reference current are compared with the voltage and current at the point of common coupling, and the
resulting error values are fed into the voltage and current controllers. After comparing the output of the controllers with the tooth wave
and generating a zero pulse, the switching circuit, based on the pulse width modulationmethod, switches continuously to minimize the
voltage and current error values, ensuring that the voltage and current at the junction of the converter align closely with the reference
values.

4. Neuro-fuzzy based MPPT controller for partially shaded condition using Gravity Search Algorithm

In PSCs, each part of PV modules has its own MPP based on its temperatures and irradiations, so for a PV module with three
different shading part, Fig. 12 shows the three separate MPP. As shown in this figure, in the partially shaded condition, the PV module
has three local maximum power point, which only one of them is the global maximum power point (GMPPT). So, the proposed al-
gorithm must always track the GMPPT. In this paper, a Gravity Search Algorithm (GSA) is proposed to track the GMPP in PSCs. Fig. 11
shows the proposed algorithm flowchart.
First, in the GSA, for each part of the PV modules under a certain temperature and solar radiation, the local MPP is determind. Then

by use this local MPP, the proposed algorithm determind the global point of maximum power. With this approach, the GMPP of a PV

Fig. 2. P&O algorithm flowchart.

S. Danyali et al.



Heliyon 10 (2024) e36747

5

module (Vglobal
max ,Pglobalmax ) can be determind quickly and with high accuracy.

In the presented MPPT algorithm, the objective funcion for optimization of each PV module is as follows:

PPV =VPV × IPV =
Tcell
q/nk

× Ln
(
Iph − IPV + IS

IS

)

IPV − rSI2PV (6)

If the PV modules are considered in parallel (VPV1 = VPV2 = VPV3 = VPV total), then the total PV power is obtained as follows:

PPV total =PPV1 + PPV2 + PPV3 (7)

PPV total =VPV total × IPV1 + VPV total × IPV2 + VPV total × IPV3 (8)

By inserting (4) in (6), the following eauation is obtained:

PPV,total =
Tcell1
q/nk

× Ln
(
Iph1 − IPV1 + IS1

IS1

)

IPV1 − rS1I2PV1+
Tcell2
q/nk

× Ln
(
Iph2 − IPV2 + IS2

IS2

)

IPV2 − rS2I2PV2 +
Tcell3
q/nk

× Ln
(
Iph3 − IPV3 + IS3

IS3

)

IPV3

− rS3I2PV3
(9)

Fig. 13 shows the structure of used neural network. According to takagi-suggeno, if in this model, x and y are the inputs of the
ANFIS labeled A and B, and also, and f is the output, following equations can be written:

if x is A1 and y is B1 then f1 = p1x+ q1x+ r1 (10)

if x is A2 and y is B2 then f2 = p2x+ q2x+ r2 (11)

Fig. 3. IC algorithm flowchart.

S. Danyali et al.
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where p1, p2, q1, q2, r1 and r2 are linear parameters. This neural network has three layers which, first layer membership function (μ) is
calculated as follows:

O1,i = μAi(x), i = 1,2 (12)

O1,i = μBi(x), i = 3,4 (13)

Also, for each rules the weight cofficient (wi) are calculated as follows in second layer nodes:

O2,i =wi = μAi(x) × μBi(y) (14)

In layer 3, which is a non-adaptive layer, the weight cofficient of each node is calculating as follows according to the weighted sum

Fig. 4. PSO-based MPPT algorithm flowchart.

Fig. 5. FLC-based MPPT controler block diagram.

S. Danyali et al.
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Fig. 6. The structure of used DC/AC inverter.

Fig. 7. A boost converter structure.

Fig. 8. The internal circuit of the controller of the boost converter.

Fig. 9. Schematic of the circuit to track the maximum power point.

S. Danyali et al.
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rule:

O3,i = ẃi =
wi

∑
iwi

(15)

The fourth layer is defined as follows:

O4,i = ẃi × (pix+ qiy+ ri) (16)

Also, layer 5 has a single non-adaptive node which calcylates the output according to the followin equation:

Fig. 10. PWM control signal block diagram.

Fig. 11. Proposed GSA flowchart.

S. Danyali et al.
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O5,i =
∑

i
ẃifi =

∑

i
wifi

∑

i
wi

(17)

Fig. 12. MPP in three shading conditions.

Fig. 13. The desired neural network structure.

Fig. 14. Tracking the MPPT point and its corresponding voltage in uniform radiation and temperature state.

S. Danyali et al.
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5. Simulation results

In this section, to analyze and validate the proposed method, the simulation of the proposed algorithm is performed to control the
output active power in a grid-connected PV system and tracking the point of receiving the maximum power in partially shaded
conditions. At first, the performance of the proposed method has been investigated under uniform temperature and radiation
conditions.
According to Fig. 14, the temperature and irradiation are same and uniformly for all three parts of the solar panel at any moment. In

this regard, for validating the proposed algorithm, the radiation and temperature received by the solar panel are reduced from 1000
W/m2 and 40 ◦C to 200 W/m2 and 20 ◦C, and in continue, these two parameters will be reduced again to 700 W/m2 and 30 ◦C
respectively. As seen from this figure, with the change of radiation and temperature every second, the output power of the DC and AC
sections follows the maximum reference power point with high accuracy and fast speed. Fig. 15 shows the changes in the output
voltage and current of the photovoltaic system at the point of common coupling (PCC). According to this figure, the proposed method
has a proper and optimal performance in maintaining the DC link voltage in PCC.
In the following, the performance of the proposed method has been investigated under partially shade conditions. In the simulated

system, a PVmodule with three shading conditions is investigated. Figs. 16 and 17 shows the irradiance and temperature of these three
shaded conditions, respectively. As shown in these two figures, the simulated system has a three different stage of irradiance and
temperatures.
As can be seen in Fig. 18, with the changes of partial shaded conditions, the proposed algorithm quickly and with high accuracy

follows the output voltage and power of the solar panel towards the maximum voltage and power point. In this regard, the proposed
GSA algorithm immediately determines the voltage value, which can obtain the maximum power from the solar panel. Then, by
control the inverter with the neuro-fuzzy controller, the maximum power obtained in the DC side is transfer to the AC side.
Figs. 19–24shows the changes in the output voltage and current of the photovoltaic system at the point of common coupling (PCC)

in partially shaded condition. According to theses figures, the proposed method has a proper and optimal performance in maintaining
the DC link voltage in PCC.
Fig. 25 shows the power changes of each part of the photovoltaic system with radiation and temperature changes in each part. As

can be seen in this figure, due to the different input radiation and temperature in each section, the output power of all three sections is
always different, but their sum is equal to the maximum tracking power.
In Fig. 26, the speed and accuracy of the proposed method in the maximum power point tracking are compared with traditional PID

controller in the partially shaded condition. As can be seen from the figure, the PID controller tracks and follows the maximum power
point when the radiation and temperature change with a much greater delay and much less accuracy than the neuro-fuzzy controller.
Also, Fig. 27 shows a closer look from Fig. 26.
Table 1, shows the coparision between the proposed method in this paper and other methods. As its clear from this table, the

proposed method has higher accuracy and lower convergence time compared to other mentioned methods, so it has a better operation.

Fig. 15. Changes in voltage, current and power output of the photovoltaic system in the AC side.

S. Danyali et al.
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6. Conclusion

In this paper, to control the active power of the grid-connected PV system, a new neuro-fuzzy MPPT method is presented. The
introduced grid-connected inverter uses this neuro-fuzzy controller on the grid side, which is responsible for active power control.
Also, this controller has an internal loop that keeps the DC link voltage at a constant value and avoids distortions on it. This feature
prevents the distortion and minimizing the fluctuations on the output AC voltage of the inverter. This controller prevents the mutual

Fig. 16. Changes in irradiation in three different states.

Fig. 17. Changes in temperature in three different states.

Fig. 18. Power changes in DC and AC sides for three different sections of the solar panel.

S. Danyali et al.
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Fig. 19. Changes in the output voltage of the solar panel in the AC section in three different conditions.

Fig. 20. Zoom of Fig. 18.

Fig. 21. Changes in the output current of the solar panel in the AC section in three different conditions.

S. Danyali et al.
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effect of electrical parts on each other as much as possible, which minimizes the damage caused by disturbances of electrical parts on
each other. In the simulation section, the optimal performance of this controller in tracking the maximum power point in different
conditions of radiation and temperature, including partially shaded conditions, was discussed and investigated. The results of the

Fig. 22. The output current of the solar panel in the AC section in the first state.

Fig. 23. The output current of the solar panel in the AC section in the second state.

Fig. 24. The output current of the solar panel in the AC section in the third state.

S. Danyali et al.
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simulation show the efficiency and capability of the proposed method in controlling the active power in a grid-connected photovoltaic
system. For future work, researchers can discuss and study the existing conditions for reactive power considering that much attention
has been paid to inverter voltage and current control in this paper [42–44].

Fig. 25. Changes in the output power of each ice from the photovoltaic system in partially shaded conditions.

Fig. 26. Comparison of neuro-fuzzy controller and traditional PID in tracking the maximum power point.

Fig. 27. Zoom of Fig. 26.

S. Danyali et al.
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