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Water flows through micro-orifices are important because they occur in various fields, such as biology, medical 
science, chemistry, and engineering. We have reported in previous work that organic matter was generated in 
micro-orifices after water flowed through the orifice, and we proposed that the organic matter was synthesized 
from nonorganic materials, including CO2 and N2 dissolved in water from air, and water via the action of 
hydroxyl radicals produced by the flow through the micro-orifice. In the present study, we examined whether 
organic materials are produced in the water outside of the orifices in addition to that in the orifice. We used 
the decrease in water volume to measure the organic synthesis because water should be consumed during the 
synthesis, and thus the decrease in water volume should reflect the organic synthesis. We let ultrapure water 
containing dissolved air flow through a micro-orifice as a pre-flow, we stopped the flow, and then we measured 
the volume of water enclosed in the mount in which the micro-orifice was set over more than 100 h. The volume 
of water decreased gradually and substantially over time. We used Raman and infrared spectroscopy to analyze 
the residue obtained by evaporating the water present around the orifice. The residue contained organic matter, 
including carotenoids, amides, esters, and sugars, which were similar to those found in the membranes generated 
in the orifice in our previous paper, suggesting that the organic matter was synthesized in a wide region of water 
around the orifice as well as in the orifice. These results may be relevant to the origins of life and biology, and 
may lead to the development of a technology for reducing CO2 in air, as well as applications in many scientific 
and engineering fields.
1. Introduction

Water flows through small orifices (micro-orifice flows) are found in 
science, engineering, and many practical subjects, such as microfluidics 
[1, 2, 3, 4], microfabrication [5], medical microbiology [6], biochem-

ical analysis [7], microfluidic diagnostics [8], and drug delivery [9]. 
Micro-orifice flows have been investigated mainly in the field of fluid 
mechanics [10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 
24]. Recently, however, it has been reported that micro-orifice flows 
present complicated problems that are difficult to solve solely by fluid 
mechanics. For example, water flows through filters increased the elec-

trical conductivity and pH in water with increasing filtration passes 
[25], stable nanostructures in water were created by iterative filtration 
[26], and physicochemical changes in water were obtained by iterative 
contact with hydrophilic polymers [27]. We reported that organic mat-
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ter was generated in the orifice after water flow through micro-orifices 
and proposed that the organic matter was synthesized from nonorganic 
materials such as CO2 and N2 dissolved in water from air, and water 
via the action of hydroxyl radicals produced by the flows through the 
micro-orifices [28].

In the present work, we examined whether organic materials are 
produced in the water outside the orifices in addition to that in the 
orifice. According to our previous paper, water should be consumed 
during the synthesis, and thus when the number of longer hydrogen 
bonds in water decreases and the number of shorter covalent bonds in 
organic matter increases, the water volume must decrease. That is, wa-

ter is constrained by hydrogen bonds and water molecules are spaced 
0.28 nm apart [29], whereas covalent bonds, such as C–H (bond length, 
0.11 nm), C–C (bond length, 0.15 nm), and C–N (bond length, 0.15 nm), 
are shorter [30]. Thus, when the volume of water is decreased and 
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covalent bonds are created, the covalent bonds can be packed more 
efficiently than the hydrogen bonds in a finite volume. Consequently, 
when water reacts after the orifice flow and is incorporated into organic 
matter, such as polymers, the number of hydrogen bonds decreases, 
the number of shorter bonds of organic matter increases (*1), and the 
overall volume decreases. Moreover, when CO2 and N2 dissolved in 
the water are used in the synthesis of organic matter and incorporated 
into it, their contact surface area with water decreases. Owing to the 
hydrophobicity of CO2 and N2, this synthesis decreases the amount of 
surrounding water structured like ice, which is less dense than non-

structured water. Thus, the density of the water increases in total and 
its volume decreases. This change involves the water outside the orifice 
in addition to the water in the orifice. Consequently, the decrease in 
water volume reflects the organic synthesis in water and it provides a 
measure of the organic synthesis. In the present work, we let ultrapure 
water (UPW) containing dissolved air flow through a micro-orifice for 
10 s, we stopped the flow, and then we measured the volume of water 
enclosed in the mount in which the micro-orifice was set over more than 
100 h. In addition, we analyzed the residue obtained by evaporating the 
water around the orifice by Raman and infrared (IR) spectroscopy.

(*1) Bond lengths of CO2 and N2 are comparable to the bond lengths 
of molecules in organic matter [31]. Therefore, incorporating CO2 and 
N2 into organic matter causes negligible volume change.

2. Experimental apparatus and procedure

Fig. 1(a) shows a schematic of the experimental apparatus. A mount 
containing a micro-orifice was placed between the left-hand reservoir 
(reservoir (a)) and the right-hand reservoir (reservoir (b)). Reservoirs 
(a) and (b) were connected with a bypass for equalizing their water 
heads. The mount was connected to both reservoirs with Tygon tubes 
and glass capillaries (a) and (b) (inner diameter of 1.0 mm). The mount 
and glass capillaries were filled with UPW and the reservoir and tubes 
were filled with pure water (PW). UPW and PW were exposed to air 
for at least 3 days before performing the experiments, so that air was 
dissolved in the water. Fig. 1(b) shows the dissolved oxygen (DO) from 
air into the deaerated UPW. We see 3 days is enough to dissolve it. 
Dissolution of CO2 in water is known to take several minutes only [32]. 
We do not know the time it takes for N2 to dissolve in water, but it 
is likely that some N2 must dissolve over 3 days. Scales (a) and (b) 
were installed with the scale increasing from the left-hand side to the 
right-hand side under glass capillaries (a) and (b), respectively, so that 
the water meniscus in the glass capillaries could be measured. An air 
bubble was enclosed in each capillary to create the meniscus for reading 
(Fig. 1(c)). Two mounts were made of quartz glass [28] and the third 
mount was made of brass. The dimensions of each mount are shown in 
Fig. 1(d) and Table 1. Fig. 1(d)-1 shows the small glass mount, Fig. 1(d)-

2 shows the large glass mount, and Fig. 1(d)-3 shows the brass mount. 
A photograph of the small glass mount is shown in Fig. 1(e)-1. The 
orifices were 20, 100, and 400 μm in diameter and 20 μm thick, and 
the material was Ti or Ni. The names of the orifices indicate the orifice 
diameter and material; for example, Ti400 means a Ti orifice 400 μm 
in diameter. The UPW was passed through the orifice as pre-flows at 
velocities between 0.16 and 32 m/s for 10 s (Table 2), and subsequently 
we measured the water volume over more than 100 h without touching 
the flow system or providing flow. The pre-flow velocity did not affect 
the volume change (Fig. 2(c) and Table 2. A photograph of the meniscus 
is shown in Fig. 1(e)-2. We read the position of the meniscus on the scale 
at various times.

3. Experimental results and discussion

3.1. Decrease in water volume

The position of meniscus is described by 𝑎 (initial position of 𝑎0) 
on the left-hand side, upstream of the orifice in the pre-flow, and by 𝑏
2

Table 1

Dimensions of mounts.

Mount 𝐼𝐷 [mm] 𝐿 [mm]

Glass (small) 5 26

Glass (large) 15 109

Brass 2.5 (stainless steel) 48

Table 2

Pre-flow corresponding to Fig. 2(c). * We could not provide the pre-flow be-

cause the orifice was clogged with a membrane quickly generated when the 
orifice was set in the mount.

Orifice Mount Pre-flow

Total volume [mm3] Duration [s] Velocity [m/s]

Ti20 Small glass 50 10 16

Ni20 Small glass 0∗ – 0∗

Ti20 Metal 60 10 19

Ni100 Large glass 50 10 0.63

Ni400 Large glass 200 10 0.16

Ti20 Large glass 1000 10 32

(initial position of 𝑏0) on the right-hand side, downstream of the orifice 
in the pre-flow (Figs. 1(c) and 1(e)-2). Fig. 2(a) shows the difference in 
meniscus, Δ𝑀 = 𝑎0 −𝑎, Δ𝑀 = 𝑏 −𝑏0, or Δ𝑀 = (𝑎0 −𝑎) +(𝑏 −𝑏0), for Ti20 
in the small glass mount. Reading error was ±0.2 mm and is included in 
symbols in the figure. 𝑎0 − 𝑎 was slightly negative and 𝑏 − 𝑏0 continued 
to decrease substantially with elapsed time until 280 h. This means that 
𝑎 moved slightly in the same direction as the pre-flow and 𝑏 moved 
considerably in the reverse direction to the pre-flow. From Fig. 2(a), we 
have

||𝑎0 − 𝑎|| < ||𝑏− 𝑏0|| (1)

The change in water volume, Δ𝑉 , is given by

Δ𝑉 =𝐴
(
𝑏− 𝑎−

(
𝑏0 − 𝑎0

))
=𝐴

((
𝑎0 − 𝑎

)
+
(
𝑏− 𝑏0

))
(2)

where 𝐴 (= 0.785 mm2) is the cross-sectional area of the capillary glass 
tube. (𝑎0 −𝑎) +(𝑏 −𝑏0) is shown in Fig. 2(a) and is close to 𝑏 −𝑏0. Fig. 2(b) 
shows similar data for Ni400 in the large glass mount. In this case, we 
see 𝑎0 − 𝑎 < 0 and 𝑏 − 𝑏0 > 0 and

||𝑎0 − 𝑎|| > ||𝑏− 𝑏0|| (3)

which is contrary to Fig. 2(a). In this experiment, there were two cases, 
||𝑎0 − 𝑎|| < ||𝑏− 𝑏0|| and ||𝑎0 − 𝑎|| > ||𝑏− 𝑏0||. In the total number of exper-

iments (= 21), there were eight experiments where ||𝑎0 − 𝑎|| < ||𝑏− 𝑏0||, 
11 experiments where ||𝑎0 − 𝑎|| > ||𝑏− 𝑏0||, and two experiments where 
||𝑎0 − 𝑎|| ≈ ||𝑏− 𝑏0||. Hence, there was no statistical difference in the move-

ment of 𝑎 and 𝑏. The reaction in the orifices extends over time to the 
water surrounding the orifice after the pre-flow stops. However, it does 
not extend equally upstream and downstream of the orifice, and there 
is a bias (Figs. 2(a) and 2(b)) creating two cases, ||𝑎0 − 𝑎|| < ||𝑏− 𝑏0|| and 
||𝑎0 − 𝑎|| > ||𝑏− 𝑏0||. Fig. 2(c) shows Δ𝑉 for different orifice diameters, ori-

fice materials, and mount sizes. No pre-flow gave Δ𝑉 of around zero, as 
seen for Ti20 with no pre-flow and the small glass mount, and Ti pro-

vided a larger Δ𝑉 than Ni, as seen for Ti20 with the small glass mount 
and Ni20 with the small glass mount. The large glass mount showed 
large Δ𝑉 for Ni100 and Ni400, but small and complicated Δ𝑉 for Ti20. 
The small glass mount provided large Δ𝑉 for Ti20 and Ni20, whereas 
the metal mount gave small Δ𝑉 for Ti20. We expect there is an optimal 
combination of orifice size and mount size, at least for the glass mounts. 
We compared the current Δ𝑉 with the internal volumes of the orifice 
hole. Δ𝑉 was 75 mm3 at 350 h for Ni400 and was about 3 × 104 larger 
than the internal volume of the orifice hole (= 0.0025 mm3) (Fig. 2(c)). 
In addition, Δ𝑉 (= 60 mm3) at 250 h for Ni100 was about 107 larger 
than the inside volume of the orifice hole (= 6.3 ×10−6 mm3). Thus, Δ𝑉
was huge compared with the volume of the orifice hole, suggesting that 
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Fig. 1. Schematic of (a) experimental apparatus, (b) Dissolved oxygen (DO) in the deaerated UPW as a function of elapsed time 𝑡𝑒 , (c) air bubble and meniscus, 
(d)-1 small glass mount (ID: internal diameter), (d)-2 large glass mount, (d)-3 brass mount, (e)-1 photograph of small glass mount, and (e)-2 photograph of meniscus.
the organic synthesis occurred over a wide region outside the orifice 
as well as inside the orifice hole. Namely, we interpreted this result as 
meaning that Δ𝑉 comprised a small amount of water that was used for 
synthesis of the organic matter inside the orifice, and a large amount 
of water that was used for synthesis of the organic matter outside the 
orifice, and we analyzed the components contained in the water out-

side the orifice. We extracted about 2 mL of water from sides a and b in 
the large glass mount for Ni400 after the end of the volume reduction 
3

experiment (Δ𝑉 is shown in Fig. 2(b)), dropped the water on a silicon 
wafer, allowed it to dry, and analyzed the residue by Raman and IR 
spectroscopy.

3.2. Raman and IR spectra

Fig. 3(a) shows the Raman spectrum (XploRA, Horiba, Ltd., Japan) 
for the water (UPW) with no pre-flow. There was one large peak at 
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Fig. 2. Experimental results for (a) differences in meniscus Δ𝑀 for Ti20 with a small glass mount against elapsed time 𝑡𝑒, (b) Δ𝑀 for Ni400 with a large glass mount 
against 𝑡𝑒 , and (c) increase in water volume Δ𝑉 against 𝑡𝑒.
950–1050 cm−1 from the silicon wafer. Fig. 3(b) shows the Raman spec-

trum for the water on side a, the meniscus change for which is shown in 
Fig. 2(b). There were three peaks at 1000, 1150, and 1500 cm−1, which 
are characteristic of carotenoids [28, 33, 34]. Fig. 3(c) shows the Ra-

man spectrum for side b, which is similar to that in Fig. 3(b). There were 
two peaks at 1150 and 1500 cm−1, although the peak at 1000 cm−1 was 
masked by the silicon peak. Nevertheless, the peaks were attributed to 
carotenoids. Fig. 3(d) shows the IR spectrum (FTIR-8400S and AIM-

8800S, Shimadzu Corp., Japan) corresponding to Fig. 3(c). There were 
many peaks from organic matter, such as sugars, amides, esters, C–CH, 
and N–H. The spectrum was similar to that of the organic membrane 
generated in the orifice holes [28, 35], indicating that organic matter 
was synthesized in the water outside orifices as well as in the water in 
the orifice holes.

3.3. Image of membrane in orifices

Fig. 3(e) shows an image of a membrane generated in the Ni400 
orifice, Δ𝑉 for which is given in Fig. 2(c). The orifice contained a non-

uniform membrane that was mechanically weak and vanished several 
months after generation. However, the membranes in the 20 μm orifices 
were strong and lasted for more than 1 year.
4

It has been reported that repeated immersion of a hydrophilic mem-

brane in UPW with manual agitation that caused the liquid to lap 
against the membrane, followed by removal and drying of the mem-

brane, lead to ordering of part of the water molecules in the remaining 
liquid [36]. Based on this paper, our current results may suggest that, 
in general, flows of water over a solid surface cause changes in the 
microscopic properties of water or synthesis of organic materials. Fur-

thermore, the present results may be linked to the origins of life [37, 
38, 39] and the reduction of CO2 in air.

4. Conclusion

We have reported in previous work that organic matter was gen-

erated in micro-orifices after water flowed through the orifice. We 
proposed that the organic matter was synthesized from nonorganic 
materials, including CO2 and N2 dissolved in water from air, and wa-

ter via the action of hydroxyl radicals produced by the flow through 
the micro-orifice. In the present paper, we examined whether organic 
matter is synthesized outside the orifice. We measured the decrease 
in water volume outside the orifice because the volume decrease pro-

vides a measure of the organic synthesis. We let UPW containing dis-

solved air flow through a micro-orifice for 10 s, we stopped the flow, 
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Fig. 3. Raman spectrum for (a) ultra-pure water (UPW) only, (b) water on side a (meniscus change shown in Fig. 2(b)), and (c) water on side b (meniscus change 
shown in Fig. 2(b)). (d) IR spectrum corresponding to Fig. 3(c) and (e) photograph of membrane generated in the Ni400 orifice.
and then we measured the water volume over elapsed time. The vol-

ume of water decreased gradually and substantially. We used Raman 
and IR spectroscopy to analyze the residue obtained by evaporating 
the water around the orifice. The residue contained organic matter, 
such as carotenoids, amides, esters, and sugars, which were similar 
to those found in the membranes generated in the orifice. This sug-

gests that the organic matter was synthesized in the water around 
the orifice as well as in the orifice. These results may be relevant to 
the origins of life, to developing new technologies for CO2 reduction 
in air, and to a wide range of applications in science and engineer-

ing.
5
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