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Abstract
Population scale sequencing of whole human genomes is becoming economically feasible;

however, data management and analysis remains a formidable challenge for many

research groups. Large sequencing studies, like the 1000 Genomes Project, have improved

our understanding of human demography and the effect of rare genetic variation in disease.

Variant calling on datasets of hundreds or thousands of genomes is time-consuming,

expensive, and not easily reproducible given the myriad components of a variant calling

pipeline. Here, we describe a cloud-based pipeline for joint variant calling in large samples

using the Real Time Genomics population caller. We deployed the population caller on the

Amazon cloud with the DNAnexus platform in order to achieve low-cost variant calling.

Using our pipeline, we were able to identify 68.3 million variants in 2,535 samples from

Phase 3 of the 1000 Genomes Project. By performing the variant calling in a parallel man-

ner, the data was processed within 5 days at a compute cost of $7.33 per sample (a total

cost of $18,590 for completed jobs and $21,805 for all jobs). Analysis of cost dependence

and running time on the data size suggests that, given near linear scalability, cloud comput-

ing can be a cheap and efficient platform for analyzing even larger sequencing studies in

the future.

Introduction
Whole-genome sequencing of population cohorts will be critical for understanding the contri-
bution of rare genetic variation to health and disease and the demographic history of our spe-
cies. With falling costs, it is now possible to sequence genomes of many individuals for
association studies and other genomic analyses. Using low-coverage whole-genome sequencing
of many individuals from diverse human populations, the 1000 Genomes Project has charac-
terized common variation and a considerable proportion of the rare variation present in
human genomes [1, 2]. Variant calling on large genomic datasets is expensive in terms of

PLOSONE | DOI:10.1371/journal.pone.0129277 June 25, 2015 1 / 10

a11111

OPEN ACCESS

Citation: Shringarpure SS, Carroll A, De La Vega
FM, Bustamante CD (2015) Inexpensive and Highly
Reproducible Cloud-Based Variant Calling of 2,535
Human Genomes. PLoS ONE 10(6): e0129277.
doi:10.1371/journal.pone.0129277

Academic Editor: Lars Kaderali, Technische
Universität Dresden, Medical Faculty, GERMANY

Received: January 15, 2015

Accepted: May 6, 2015

Published: June 25, 2015

Copyright: © 2015 Shringarpure et al. This is an
open access article distributed under the terms of the
Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: All relevant data were
obtained from http://aws.amazon.com/1000genomes/
and are available for download on that site.

Funding: This work was funded in part by NIH grant
U01HG005715. Compute and storage was donated
by DNAnexus. Real Time Genomics, Inc. provided
support in the form of salaries for author FDV, but did
not have any additional role in the study design, data
collection and analysis, decision to publish, or
preparation of the manuscript. The specific roles of
this author are articulated in the “author contributions”
section.

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0129277&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0129277&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0129277&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://aws.amazon.com/1000genomes/


computation time and storage and rarely reproducible, given the myriad components of infor-
matics pipelines. Furthermore, while population-based calling has many advantages for
improved genotype quality and variant detection, many investigators opt for “single sample
calling” for convenience and cost. Using cloud computing, such large computation-intensive
tasks can be performed efficiently and reproducibly.

The primary advantage of cloud computing is that it enables the user to request computing
and storage resources on-demand without having to own and maintain a computer or cluster
of computers required for large data analysis tasks. As a result, pipelines that are run in the
cloud can be easily scaled to analyze massive datasets. Another advantage of cloud-based data
analysis pipelines is they enable users to effectively utilize any available parallelism in the analy-
sis by requesting many computers simultaneously.

A number of cloud-based pipelines are available for analyses of sequencing data: StormSeq
[3] and CloudBurst [4] for read mapping; Crossbow [5] and Mercury [6] for mapping and vari-
ant calling etc. A significant limitation of these pipelines is that they can only identify variants
within a single sample. While this approach has high power for detecting variants in high-cov-
erage sequencing, it performs worse than multisample calling when applied to low-coverage
sequencing data [1]. Huang et al. [7] have deployed the multisample SNPTools pipeline to the
Amazon cloud and demonstrated its use for the same variant calling task we report. We com-
pare the two approaches in more detail in the Discussion section.

We have developed a scalable cloud-based pipeline for joint variant calling in large samples.
It uses the multisample caller from Real Time Genomics [8] deployed to the Amazon cloud via
the DNAnexus platform. Our method has three main advantages:

1. Our pipeline is based in the Amazon cloud and is, thus, not constrained by local compute or
storage limitations. Using the Amazon cloud, it can be easily scaled to bigger datasets.

2. It can be parallelized over data split by chromosomes and populations (Methods). Users can
change the amount of parallelism according to computation time and cost constraints.

3. Management of Amazon cloud computing resources is handled by DNAnexus to make the
pipeline user-friendly.

Fig 1 shows a representation of the pipeline. To maximize parallelism, variant calling was
performed separately for each chromosome and population in 572 parallel jobs. For a given
chromosome and population, alignment files (BAMs) were transferred from 1000 Genomes
Amazon cloud storage to DNAnexus Amazon cloud storage. We uploaded the RTG population
caller to DNAnexus and allocated Amazon Elastic Compute Cloud (EC2) computing instances
capable of running the software. On these instances, the downloaded BAMs were processed
using the RTG population caller. The output VCF files were stored in the DNAnexus storage
and later downloaded to local storage. A detailed description of the components of the pipeline
can be found in the Methods section.

We used our pipeline to identify variants in 2,535 individuals from Phase 3 of the 1000
Genomes Project. We found 68.3 million variants across the samples in 5 days at a total cost of
$18,590, equivalent to a per-sample cost of $7.33. We analyzed the computational performance
and cost of our pipeline with respect to the size of the alignment data and showed that it offers
a feasible means of jointly calling variants in even larger samples at a reasonable cost and run-
ning time. It is important to note that the samples from the 1000 Genomes Project we use here
were sequenced to low-coverage and the key intent was variant discovery using a multi-sample
framework. Additional modifications of the pipeline are likely required for clinical use where
the key intent is maximizing the quality of individual genotype calls and ensuring reproducibil-
ity of the clinical genomics workflow (often in a CLIA/CAP setting).

Cloud-Based Variant Calling for 2,535 Genomes
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Results
We used our pipeline to identify variants in 2,535 samples from Phase 3 of the 1000 Genomes
Project. Below, we describe the variant calls and the computational details of the variant
calling.

Variant callset
We found 61,995,965 SNPs and 6,263,878 indels, a total of 68.3 million variants, across the
2,535 samples. Using monomorphic sites from the Omni array, we evaluated the false positive
rate for our variant calling to be 2.5%, consistent with expectations for the 1000 Genomes Proj-
ect. We found that the transition-transversion ratio for the SNPs we discovered was 2.09, as
expected from whole-genome sequencing. In comparison, variant calling on the same dataset
with the SNPTools pipeline [7] found 72.96 million variants with a slightly lower transition-
transversion ratio of 1.98, suggesting a higher number of false positives. Our variant calls were
integrated with many other callsets using different variant calling pipelines on the same align-
ments (including one produced using SNPTools) to produce an integrated callset for Phase 3
of the 1000 Genomes Project. A comprehensive comparison of our callset with other variant
callsets on the same data will form part of the 1000 Genomes manuscript.

We evaluated the sensitivity of our callset by comparing to three reference sets:

1. Omni-POLY: Polymorphic sites on the Omni 2.5M genotyping array used by the 1000
Genomes Project.

2. HapMap3-POLY: Polymorphic sites from HapMap Phase 3.

3. 1000 Genomes Phase 1: Variant sites discovered from 1,092 samples in Phase 1 of the 1000
Genomes Project.

Fig 1. Variant calling pipeline.Diagram of variant calling pipeline. Blue indicates storage and orange indicates computing.

doi:10.1371/journal.pone.0129277.g001
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Table 1 shows the results of the sensitivity analysis. We can see that our callset has high sensi-
tivity for the Omni-POLY and HapMap3-POLY reference sets. Our callset has relatively low
sensitivity for the 1000 Genomes Phase 1 reference set. Further analysis reveals that a majority
of the missed variants are singletons from the Phase 1 callset. This behavior is consistent with
previous observations of high sensitivity for low frequency variation but reduced sensitivity for
singletons and very rare variation when using multisample calling on low-coverage data [9].

Running time and cost
The total computation time for 572 jobs was about 205 days. With parallel execution, these
jobs completed in 5 days, representing a 41x speedup. The largest number of concurrent jobs
was 223 while the median number of concurrent jobs was 152. The longest job required 22.6
hours of compute time while the median job compute time was 6.3 hours. Fig 2 shows the run-
ning time of all jobs plotted as intervals. We submitted jobs in batches (rather than all at once),

Table 1. Sensitivity of our callset for standard variant sets.

Reference dataset Sensitivity (%)

Omni-POLY 94.1

HapMap3-POLY 95.8

1000 Genomes Phase 1 76.5

doi:10.1371/journal.pone.0129277.t001

Fig 2. Job timeline. Timeline of jobs run on Amazon EC2. Each job is denoted by a single line segment with
start and end times identified by black dots. The very short jobs following “2013-08-10” indicate some jobs
that were terminated due to user error in job parameter specifications.

doi:10.1371/journal.pone.0129277.g002
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resulting in the phases of active jobs and gaps between phases. While the EC2 framework
allows highly parallel execution, job wait times have been previously seen to increase with sub-
mission of thousands of simultaneous jobs requiring large-memory machines [7, 10].

The total cost of all jobs (including failed jobs) was $21,805 while the cost of only successful
jobs was $18,590. Based on these costs, we estimate the cost of variant calling per sample to be
about $7.33 per sample.

Fig 3 shows how computation time and costs vary with the amount of alignment data. We
can see that both computation time and price increase linearly with data size.

Discussion
Recent studies have sequenced exomes/genomes of hundreds or thousands of individuals. Var-
iant calling on large datasets is challenging due to storage and computing requirements and is
rarely reproducible since pipelines are rarely kept intact. Huang et al. [7] estimate that variant
calling for 2500 genomes would require 1–2 months of exclusive computing time on a high
performance computing cluster (HPCC) with 1000 nodes and 16 TB memory. Few researchers
own, or have access to, computing clusters that can facilitate such tasks. Computing clusters
are a shared resource at most institutions. Tying up resources for time-consuming variant call-
ing tasks may not be desirable for other cluster users. Furthermore, maintaining computing
clusters is expensive. De Alfonso et al. [11] estimate the cost of a 1024-core HPCC to be up to
$900,000 per year. An on-demand computing/storage model may thus be attractive to
researchers. Cloud computing services provide on-demand computing and storage at low
costs. Since workflows can be stored indefinitely in the cloud, an added benefit is the reproduc-
ibility of analyses.

We have developed a cloud-based pipeline for variant calling in large samples. It is not con-
strained by local storage or compute limitations. Using cloud services, we can make the pipe-
line highly parallel for suitable tasks. With low-cost EC2 instances, we were able to perform

Fig 3. Scalability analysis. (a) Computation time and (b) cost, plotted as a function of alignment size. Each point corresponds to values for one
chromosome.

doi:10.1371/journal.pone.0129277.g003
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variant calling on 2,535 low-coverage human genomes at $7.33 per sample. A direct estimate of
the cost of performing the same variant calling analysis on a HPCC is difficult to obtain. Using
estimates of HPCC cost [11] and running time [7], we estimate the cost of variant calling on
HPCC to be $18,470-$23,610 (see Methods for details). While the cost difference between the
cloud-based solution and the HPCC solution may not be significant, the cloud-based pipeline
produces results in 5 days compared to 1 month (at least) for the HPCC analysis.

An important consideration for cloud computing applications is the trade-off between run-
ning time and cost. An example of this tradeoff can be seen in the deployment of the SNPTools
pipeline [7] on the Amazon cloud. Huang et al. [7] report their performance on the same vari-
ant calling task that we describe. Table 2 shows a summary of the similarities and differences
between the two approaches. The SNPTools pipeline allows users to optimize their setup of
EC2 instances and reduce total cost with longer running time. Our pipeline allows users to del-
egate setup and management of EC2 instances to DNAnexus at higher cost and lower running
time (see Methods for details about EC2 instance types).

For the low-coverage data of the 1000 Genomes Project, the alignment files for 2,535
genomes had a total size of 70 TB. 30X coverage genomes for the same set of individuals would
produce alignment files with a total size of about 300 TB. Transferring and processing a dataset
of this size would be time-consuming and computation-intensive. However, there are now
solutions available for high-speed transfer of large files, such as GeneTorrent [12] and gridFTP
[13]. From Fig 3, we estimate that, for such a dataset, our cloud-based pipeline would need 21
days, assuming a 41x speedup as observed earlier (a computation time of 2.4 years). It would
cost $70,000 (� $28 per sample) to perform variant calling on this dataset. Such a variant call-
ing task would require 4–8 months of HPCC time on a 1000-node cluster [7] and would there-
fore be infeasible. On the cloud, it is possible with reasonable cost and running time.

Another advantage of cloud-based analysis is the falling cost of computing and storage. To
understand how the cost of analysis would evolve with time, we recalculated the cost of our
analysis at the current prices for comparable EC2 instances assuming that the run-time would
be identical. In practice, this estimate will be conservative since the faster processor and solid
state drives should allow faster completion. At current prices, our analysis would have cost
$6.19 per sample ($15698.73 total), representing a 15% reduction when compared to our cost
of $7.33 per sample ($18,590 total).

Recently, cloud-based pipelines have been used to analyze thousands of samples efficiently.
Reid et al. [6] describe the Mercury pipeline for variant calling and annotation. They use the
Atlas2 variant caller [14] and DNAnexus to analyze over 10,000 genomes and exomes. The var-
iant calling tasks they describe (singlesample calling) are different from ours (multisample call-
ing) in memory and computing requirements. But their study demonstrates that cloud-based
variant calling can be applied to large numbers of genomes.

Table 2. Comparing the SNPTools pipeline to our pipeline for the 1000 Genomes Phase 3 variant call-
ing task.

Criterion Our pipeline SNPTools pipeline

Variant caller RTG Population caller SNPTools

Type of EC2 instances spot/reserved/on-demand spot instances

EC2 instance manager DNAnexus Self-managed and optimized

Cost $18,590 $13,400

Running Time 5 days 11 days

doi:10.1371/journal.pone.0129277.t002
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An important feature of cloud-based pipelines is the ease of reproducibility. With large
amounts of sequencing data being generated and analyzed rapidly, reproducibility is an impor-
tant requirement for variant calling. Since cloud-based analyses must necessarily be run on
multiple computers, which may or may not have the necessary software programs installed
already, analysis pipelines often include copies of not only workflows but also software and vir-
tual machines. For instance, our variant calling pipeline on DNAnexus archives the script used,
a copy of the version of the RTG caller used and even versions of auxiliary software such as the
java environment required for the analysis. This allows analyses to be re-run easily using the
same versions of software programs to verify results.

Cloud-based systems may not be the optimal solution for certain scenarios, depending on
desired scalability, cost constraints, need for always-available resources. etc. Studies of the total
cost of ownership, response time, resource usage, etc. [10, 15–17] provide a comprehensive
comparison of cloud-based systems and HPCC frameworks. A challenge in the use of cloud-
based systems is the setup of computing instances and storage for analysis tasks. Services like
DNAnexus and Galaxy Cloudman [18] provide accessible interfaces to set up and manage
cloud resources. This is helpful to new users who may not be familiar with efficient cloud com-
puting resource management. A drawback of this approach is a limited ability to fine-tune opti-
mization of resources. Genomic data security and privacy are concerns that are being
addressed by the community through development of compliance standards for service provid-
ers. Another challenge for the use of cloud-based analysis pipelines is the requirement for data
transfer to the cloud for storage and analysis. Network speeds can be a bottleneck if users need
to upload large amounts of data to the cloud for analysis. As sequencing projects grow, local
storage will become difficult and cloud storage will become a primary storage mechanism. This
will remove the need for time-consuming data transfer and make cloud-based analyses popular
in the future.

Methods
For our analysis of low-coverage sequence data from the 1000 Genomes Project, we used the
multisample population caller from Real Time Genomics, since multisample calling has been
shown to improve rates of variant discovery in low-coverage data [1]. Deploying pipelines to
the Amazon cloud can be difficult for new users, especially if the goal is to maximize parallel-
ism at minimal cost. To avoid these difficulties and deploy the Real Time Genomics variant cal-
ler on the Amazon cloud, we used the DNAnexus service. We describe all these components
below in more detail.

Real Time Genomics population caller
The Real Time Genomics (RTG) population caller uses a Bayesian framework to iteratively
update site-specific priors until convergence based on the calls of the complete sample at each
step. This framework is useful for low-coverage data, such as the 1000 Genomes data, since var-
iants may be missed in some individuals due to insufficient read support. Fig 4 shows a flow-
chart describing the algorithm used by the RTG population caller. Cleary et al. [8] describe the
method and underlying algorithms in more detail. For our analysis, we used RTG Core version
3.1.2.

Amazon cloud
Amazon Simple Storage Service (S3) provides cheap storage in the cloud. Data stored in the
Amazon cloud can also be downloaded quickly using many simultaneous network connec-
tions. Even though sequencing data from the 1000 Genomes Project has low sequencing depth

Cloud-Based Variant Calling for 2,535 Genomes
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(8–10x), the large number of samples has resulted in alignment files with a total size of*70
TB. These alignments are hosted on Amazon S3 for convenient access (URL: http://s3.
amazonaws.com/1000genomes/). We used the http retrieval mode of samtools [19] to
download BAMs for our analysis.

For computing, we used the Amazon Elastic Compute Cloud (EC2) system. This gives users
access to a variety of machines with different processing and memory capabilities. For variant
calling, wem2.4xlarge instances (64-bit 8 CPU machines with 68.4 GB memory).

DNAnexus
The Amazon EC2 system allows users to either reserve computing instances (reserved
instances), request computing resources on demand (on-demand instances) or bid for spare
computing instances (spot instances) at variable cost. Reserved instances are always available
but are expensive. On-demand instances provide uninterrupted service but may not always be
available. Bidding for spot instances allows users to reduce costs. However, these instances are
recommended only for time-flexible and fault-tolerant tasks. To avoid the problem of manag-
ing these instance types while optimizing cost and running time, we used the DNAnexus ser-
vice, which automates the management of EC2 instances and provides a convenient interface
with the Amazon cloud system. We were thus able to use EC2 instances at low cost without

Fig 4. RTG population caller workflow. Diagram showing the workflow of the RTG population caller.

doi:10.1371/journal.pone.0129277.g004
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having to manage their allocation or availability. Data transfer can be a bottleneck in large vari-
ant calling tasks. Using the Amazon EC2 computing system with the alignment data stored in
Amazon S3 allowed us to perform fast parallelized data transfer.

Splitting data for parallelism
For parallelism, we performed variant calling separately on each chromosome. The RTG popu-
lation caller implicitly assumes Hardy-Weinberg equilibrium information during the estima-
tion of the site-specific priors in the sample. Population substructure can lead to artifacts such
as reduced heterozygosity in Hardy-Weinberg calculations. We therefore separated variant
calling across populations as well. For the 26 populations of 1000 Genomes Phase 3, this cre-
ated 572 independent jobs (26 populations × 22 chromosomes).

Cost estimate for HPCC analysis
De Alfonso et al. [11] estimate the cost of a 1024-core HPCC to be $160,000 (assuming 0%
usage)-$900,000 (assuming 100% usage) per year. Huang et al. [7] estimate the variant calling
task to require 1–2 months at 100% usage on a HPCC of this size. Therefore, the period of vari-
ant calling would have a cluster cost of $75,000-$150,000. However, for such a cluster, this cost
can be amortized over the entire year. Assuming the HPCC to be at 100% usage during variant
calling (as per [7]) and 0% usage otherwise, the amortized cost of variant calling will be
$18,470 if it requires a 1 month period and $23,610 if it requires 2 months.

Software
The source code for our DNAnexus application is available for download in the Supporting
Information. Due to licensing restrictions, we are unable to include the RTG variant calling
code in the released code. Interested researchers can email info@realtimegenomics.com for free
academic licenses.

Supporting Information
S1 File. Source code for our pipeline.
(TAR)
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