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Background: Histone acetylation modification is one of the most common epigenetic
methods used to regulate chromatin structure, DNA repair, and gene expression. Existing
research has focused on the importance of histone acetylation in regulating
tumorigenicity, tumor progression, and tumor microenvironment (TME) but has not
explored the potential roles and interactions of histone acetylation regulators in TME
cell infiltration, drug sensitivity, and immunotherapy.

Methods: The mRNA expression and genetic alterations of 36 histone acetylation
regulators were analyzed in 1599 hepatocellular carcinoma (HCC) samples. The
unsupervised clustering method was used to identify the histone acetylation patterns.
Then, based on their differentially expressed genes (DEGs), an HAscore model was
constructed to quantify the histone acetylation patterns and related subtypes of individual
samples. Lastly, the relationship between HAscore and transcription background, tumor
clinical features, characteristics of TME, drug response, and efficacy of immunotherapy
were analyzed.

Results: We identified three histone acetylation patterns characterized by high, medium,
and low HAscore. Patients with HCC in the high HAscore group experienced worse
overall survival time, and the cancer-related malignant pathways were more active in the
high HAscore group, comparing to the low HAscore group. The high HAscore group was
characterized by an immunosuppressive subtype because of the high infiltration of
immunosuppressive cells, such as regulatory T cells and myeloid-derived suppressor
cells. Following validation, the HAscore was highly correlated with the sensitivity of anti-
tumor drugs; 116 therapeutic agents were found to be associated with it. The HAscore
was also correlated with the therapeutic efficacy of the PD-L1 and PD-1 blockade, and the
response ratio was significantly higher in the low HAscore group.
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Conclusion: To the best of our knowledge, our study is the first to provide a
comprehensive analysis of 36 histone acetylation regulators in HCC. We found close
correlations between histone acetylation patterns and tumor malignant pathways and
TME. We also analyzed the therapeutic value of the HAscore in targeted therapy and
immunotherapy. This work highlights the interactions and potential clinical utility of histone
acetylation regulators in treatment of HCC and improving patient outcomes.
Keywords: histone acetylation, tumormicroenvironment, hepatocellular carcinoma, drug sensitivity, immunotherapy
INTRODUCTION

Hepatocellular carcinoma (HCC) is the most common primary
liver cancer and ranks as the fifth leading malignancy worldwide
(1). Most patients with HCC have poor outcomes because of
limited early diagnosis and few available treatment options for
advanced-stage HCC (2). Even with active treatment, such as
liver transplantation, resection, percutaneous ablation,
transarterial chemoembolization, HCC is likely to recur and
metastasize, with a 5-year survival rate of less than 20% (3, 4).
In addition, both traditional chemotherapy and molecular-
targeted agents are impeded by tumor heterogeneity, as well as
the intrinsic and acquired drug resistance that can develop in
tumors. These characteristics limit the efficacy of systemic
therapy in HCC patients (5). Therefore, there is an urgent
need to investigate new strategies to improve the clinical
outcomes of patients with HCC. Recently, with deeper
exploration of the relationship between the immune system
and cancer, new therapeutic strategies aimed at mobilizing the
host immune system to eradicate tumor cells would advance the
cancer therapy field and introduce greater efficacy in
curing cancer.

Numerous cancer immunotherapy strategies have rapidly
emerged in recent years. The most notable immune-checkpoint
inhibition (ICI) treatments consist of agents targeting the
inhibitory immune receptors, cytotoxic T-lymphocyte (CTL)-
associated protein 4 (CTLA-4/CD152), programmed death
protein 1 (PD-1/CD279), and programmed death ligand 1
(PD-L1/B7H1/CD274). These agents have become effective
standard therapies in several advanced malignancies, including
melanoma (6–8), Merkel cell carcinoma (9), urological cancers
(10), non-small cell lung cancer (11), mis-match repair-deficient
arcinoma; MDSC, myeloid-derived
ppressor cells; HBV, hepatitis B virus;
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tumors (12), and Hodgkin’s lymphoma. Their response rates
range from 25 to 60% in first- and second-line settings (13).
Recently, ICI treatment has also been approved for HCC, gastric
cancer, triple negative breast cancer, cervical cancer, and head
and neck cancer, with response rates closer to 15% (14).

Nonetheless, the efficacy of ICI treatment is still limited
because of the ability of cancer tumors to develop primary,
adaptive, or acquired resistance to immunotherapy. The
resistance of cancer to immunotherapy depends on various
factors including the tumor microenvironment (TME), the
patient’s genetic background, epigenetics, metabolism, and cell
stemness (15). At the same time, the multiple factors involved in
immunotherapy resistance also provide many more targets that
can be attacked by therapeutic agents. To improve the efficacy of
immunotherapy, ICI can be combined with other treatments to
overcome the immunotherapy resistance.

One such treatment involves histone acetylation. This is one
of the most common epigenetic methods used to regulate
chromatin structure, DNA repair, and gene expression (16).
Histone acetylation is a type of posttranslational modification
in which multiple lysine residues at the N-terminus of histones
are catalyzed by histone acetyltransferases (HATs). This process
is highly dynamic, reversible, and regulated by proteins that can
be divided into three categories: “writer”, “reader”, and “eraser”.
The “writers” refer to enzymes that transfer acetyl groups to
histones, and the “erasers” refer to enzymes that remove acetyl
groups from histones. The “readers” are effector proteins that can
recognize the modified histones (17). Acetylation neutralizes the
positive charge on lysine, weakening the electrostatic association
between the histones and the DNA; this makes the DNA
becomes more accessible to transcription factors (18).

In general, histone acetylation is associated with elevated
transcription whereas histone deacetylation is often associated
with gene repression. Previous reports have demonstrated that
histone acetylation is closely related to tumorigenesis and can
impact certain biological processes of tumor cells, including
proliferation (19), apoptosis (20), metastasis (21), and stemness
(22). Histone deacetylases (HDACs) are critical regulators of
gene expression that enzymatically remove acetyl groups from
histones. As such, they are an example of “erasers.” Numerous
correlative studies have demonstrated aberrant expression of
HDACs (HDAC1, HDAC5, and HDAC7) in human tumors,
which can serve as molecular biomarkers to distinguish between
tumorous and normal tissue (23). HDAC inhibitors (HDACi)
can induce acute hyperacetylation of histones and generate the
re-expression of tumor-suppressor genes to inhibit tumor growth.
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Many HDACi have been proven to have potent anti-tumor
effects in several hematological and solid malignancies (24, 25).
Recently, researchers have found that histone acetylation is
closely related to the TME. Furthermore, numerous studies
have demonstrated that HDACi can reshape the TME via
various mechanisms, enhancing the ability of the immune
system to kill tumor cells. Specifically, these mechanisms
include upregulating the expression of tumor antigens,
enhancing antigen-processing ability, improving the cytolytic
activity of CD8+ T cells, and disrupting the immunosuppressive
function of IL-10 producing regulatory T cells (26–29). For
instance, in preclinical cancer models, HDACi were shown to
enhance the efficacy of immune checkpoint blockade using
anti-PD1/PDL1 or anti-CTLA4, immunostimulant therapies
such as anti-CD40 and anti-CD137, and adoptive T cell
immunotherapy (30–34).

Collectively, the above findings indicate that histone
acetylation plays an important role in the regulation of the
TME, and the molecular agents that target histone acetylation
regulators have the potential to disrupt cancer immunotherapy
resistance. As a result, combining molecular agents that target
histones with immunotherapy could produce additional clinical
benefit to patients. However, due to limitations in technical
methodology, previous analysis has been confined to a small
number of histone acetylation regulators, whereas the antitumor
effect of histone acetylation modification is characterized by
highly integrated interactions of numerous regulators.
Therefore, a comprehensive understanding of how the
regulatory network of multiple histone acetylation regulators
affects the biological behavior of tumor cells and TMEs would
contribute to the development of immunotherapeutic strategies.

In this study, we retrospectively investigated genomic
alterations in 1599 HCC samples from the Cancer Genome
Atlas (TCGA), International Cancer Genome Consortium
(ICGC), and Gene Expression Omnibus (GEO) cohorts. Our
objective was to comprehensively evaluate the patterns of histone
acetylation modification based on 36 histone acetylation
regulators. We found that histone acetylation patterns are
distinct in their activation of malignant cancer-related
pathways and infiltration of multiple immune cells. We also
constructed an HAscore model to quantify the histone
acetylation patterns in individual patients based on the
differentially expressed genes (DEGs) among them. Finally, we
assessed the therapeutic value of the HAscore in targeted HCC
therapy and immunotherapy.
MATERIALS AND METHODS

Collection of HCC Datasets and
Preprocessing
The workflow of the study is shown in Figure S1A. Gene
expression data and clinical features of liver cancer samples
were retrospectively retrieved from publicly available datasets of
the NCBI GEO database (https://www.ncbi.nlm.nih.gov/geo/),
TCGA (https://portal.gdc.cancer.gov/), and ICGC (https://dcc.
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icgc.org/). Specifically, the clinical data we used from the TCGA
database included tumor stage, histological grade, vascular tumor
cell type, viral hepatitis serologies, Child–Pugh scores, alpha-
fetoprotein (AFP), gender, and overall survival (OS) times. In
addition, we obtained genomic mutation data (including somatic
mutation and copy number variation) of TCGA-LIHC from the
UCSC Xena database. In general, nine hepatocellular carcinoma
cohorts—TCGA-LIHC, ICGC-LIRI (Japan), ICGC-LICA
(France), GSE14520, GSE76427, GSE116174, GSE104580,
GSE112790, and GSE121248—for 1599 patients were included
for further analysis.

RNA sequencing data, including fragments per kilobase
million (FPKM) values and count values, were consistently
transformed into transcripts per kilobase million (TPM) values
(35). For microarray data from GEO, the normalized matrix
files were directly downloaded and normalized by the
“normalizeBetweenArrays” method of the R package limma
after gene symbol transformation, so that the intensities or
log-ratios would have similar distributions across a set of
arrays (36). Finally, we used the “ComBat” method of the sva
Package (37) to adjust the batch effect caused by non-
biotechnological bias.

Two immune checkpoint blockade treatment cohorts with
available expression and clinical information were used in our
study. First, we obtained the IMvigor210 cohort (http://research-
pub.gene.com/IMvigor210CoreBiologies), which consists of
advanced urinary tract transitional cell carcinoma treated with
atezolizumab, an anti-PD-L1 antibody (38). Second, we obtained
the David Liu cohort (https://www.nature.com/articles/s41591-
019-0654-5), which consists of metastatic melanoma treated with
nivolumab or pembrolizumab (39). The gene expression profiles
of the pre-therapy biopsy samples were curated and transformed
into the TPM format for further analysis.

We searched and collected the following datasets with
targeted therapy and chemotherapy from the GEO database:
the GSE5851 dataset (advanced metastatic colorectal cancer
treated with cetuximab monotherapy); GSE148623 dataset
(ductal breast cancer treated with ricolinostat, an HDAC6
inhibitor); and GSE22219 dataset (early primary breast cancer
treated with adjuvant cyclophosphamide, methotrexate, and
5-fluorouracil).

Corresponding clinical data were collected from the
appropriate GEO dataset metadata and the supplemental files
of relevant articles. All baseline information on the available data
is summarized in Table S1.

Consensus Clustering Expression Pattern
of 36 Histone Acetylation Regulators
The literature related to histone acetylation modification was
retrieved, and 36 acknowledged histone acetylation genes were
curated and analyzed to identify distinct histone acetylation
modification patterns (Table S2). An unsupervised consensus
clustering algorithm was applied to determine robust clustering
of liver cancer. We used the R package ConsensusClusterplus to
perform the above steps and conducted 1000 repetitions to
ensure the stability of the classification (40).
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Gene Set Variation Analysis (GSVA) and
Functional Annotation
To explain the differences in biological processes between histone
acetylation modification patterns, we realized GSVA enrichment
analysis by using “GSVA” R packages. This method is commonly
used to estimate the variation in pathways and biological process
activity in samples of an expression dataset (41). The gene sets of
“h.all.v7.4.symbols” were downloaded from the MSigDB
database for further GSVA analysis. The 13 most common
oncogenic hallmarks, epithelial-to-mesenchymal transition
(EMT), and cancer stem cell (CSC) signatures were obtained
from the supplementary table prepared by Sanchez-Vega et al.
(Table S3) (38, 42, 43). Differences were considered statistically
significant at P values < 0.05. We used the clusterProfiler R
package to perform functional annotation for histone acetylation
modification-related genes, with a cutoff value of FDR <
0.05 (44).

Estimation of TME Cell Infiltration
We used the single-sample gene-set enrichment analysis
(ssGSEA) algorithm to quantify the relative abundance of each
cell infiltration in the HCC TME. The gene sets defining each
immune cell type were obtained from the study by Charoentong
(Table S4) (45). The enrichment scores calculated by ssGSEA
analysis were used to represent the relative abundance of the
TME infiltrating cells in each sample. The immune-related
features were collected from previously published studies
(Table S3) (46, 47).

Differentially Expressed Genes (DEGs)
Among Histone Acetylation Modification
Phenotypes
To identify histone acetylation modification-related genes, we
classified patients into three distinct histone acetylation
modification patterns based on the expression of the 36
histone acetylation modification regulators. DEGs among
different modified histone acetylation patterns were determined
using limma (36). The significance criteria for determining DEGs
were set as adjusted P values < 0.001 and |FC| > 1.5. The adjusted
P value for multiple testing was calculated using the Benjamini–
Hochberg correction.

Construction of Histone Acetylation Gene
Signatures
To quantify the modified histone acetylation patterns of
individual tumors, we developed a scoring scheme to quantify
the histone acetylation modification level of individual patients
and described it as the HAscore. Specifically, 965 DEGs were first
identified from different HAclusters, and prognostic analysis was
performed for the DEGs using univariate Cox regression model
analysis. Subsequently, 591 genes with significant prognoses were
selected for further analysis. Next, the patients were classified
into several groups for further analysis by adopting an
unsupervised clustering method for analyzing prognosis-related
DEGs. The consensus clustering algorithm was used to define the
number of gene clusters and their stability. We then transformed
Frontiers in Immunology | www.frontiersin.org 4
the expression of these genes into a Z score and conducted
principal component analysis (PCA) to construct modified
acetylation-relevant gene signatures. Both principal
components 1 and 2 (PC1 and PC2, respectively) were selected
to act as signature scores. This method focused on the score of
the set with the largest block of well-correlated (or anti-
correlated) genes, while down-weighting contributions from
genes that did not track with other set members. We then
adopted a formula like that of previous studies to define the
HAscore (48, 49):

HAscore = S(PC1i + PC2i)

where i is the expression of histone acetylation modification
phenotype-related genes

Calculation of the EMT Score
EMT gene signatures were collected from Mak et al. (50),
including 25 epithelial and 52 mesenchymal marker genes.
Similar to this previous study (50, 51), the EMT score for each
sample was evaluated as SN

i
Mi

N − Sn
j
Ej

n , where M and E represent
the expression of the mesenchymal and epithelial genes,
respectively. Likewise, N and n represent the number of
mesenchymal and epithelial genes, respectively.

Correlation Analysis of HAscore and Drug
Sensitivity
The Genomics of Drug Sensitivity in Cancer (GDSC) database is
the largest public resource for information on drug sensitivity in
cancer cells and molecular markers of drug response (52). From
here, we collected the transcription profiles of approximately
1000 cancer cell lines, drug response measurements (as AUC of
the drug-sensitive curve) in cancer cell lines, as well as targets
and pathways of drugs. We performed Spearman correlation
analysis to calculate the correlation between drug sensitivity and
HAscore and considered |Rs| > 0.3 and FDR < 0.05, estimated by
Benjamini and Hochberg adjustment, as significant correlation.

Quantification of the Immune Response
Predictor: TIDE
The tumor immune dysfunction and exclusion (TIDE) algorithm
proposed by Jiang et al. was used to predict immune checkpoint
blockade response by modeling distinct tumor immune evasion
mechanisms, including the induction of T cell dysfunction
in tumors with high infiltration of CTL and the prevention
of T cell infiltration in tumors with low CTL levels by
immunosuppressive cells (53). A higher TIDE score indicates
that tumor cells are more likely to induce immune escape, thus
indicating a lower response rate to ICI treatment. In our study,
we used the all-sample average in each study as the
normalization control and calculated the TIDE score of each
sample using the TIDE tool on the TIDE web application (http://
tide.dfci.harvard.edu/), following the developer’s instructions.

Statistical Analysis
The data were analyzed using R (version 4.0.0) and R
Bioconductor packages. The normality and homogeneity test of
January 2022 | Volume 13 | Article 761046
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variance were tested using the Shapiro–Wilk normality test and
Bartlett homogeneity test, respectively. The Wilcoxon test,
Kruskal–Wallis test, and t-test or one-way ANOVA were used
to compare the differences as nonparametric or parametric
methods. Correlation coefficients were computed using
Spearman’s and distance correlation analyses. A receiver
operating characteristic (ROC) curve was used to verify the
validity of the model. Based on the correlation between
HAscore and patient survival, the Survminer package was used
to determine the best cutoff point of survival information for
each cohort. The surv-cutpoint function was used to dichotomize
the HAscore, and all potential cutting points were repeatedly
tested to find the maximum rank statistic. Then, the patients
were divided into high and low HAscore groups according to the
maximum selected log-rank statistics to lessen the calculated
batch effect. Survival curves for the prognostic analysis were
conducted using the Kaplan–Meier method, and log-rank tests
were used to assess differences between groups. The chi-squared
test or Fisher test was used to analyze the differences in clinical
features between the HAscore groups. A univariate Cox
regression model was used to generate the hazard ratio (HR)
for histone acetylation regulators and histone acetylation-related
genes. To verify whether the HAscore was an independent
prognostic predictor, we incorporated the HAscore and related
clinical parameters into a multivariate Cox regression model
analysis. All statistical analyses were two-sided, and statistical
significance was set at P < 0.05.
RESULTS

Genetic and Transcriptional Alterations
of the 36 Histone Acetylation Regulators
in HCC
After a systematic review of published articles about histone
acetylation, 36 histone acetylation regulatory genes in HCC were
identified and incorporated into our analysis, including 9
“writers”, 12 “erasers”, and 15 “readers”, as shown in
Figure 1A (Table S2). Metascape analyses and KEGG
enrichment of the 36 histone acetylation regulators were
conducted. Significantly enriched biological processes were
mainly related to histone modification and cancer-related
pathways, as summarized in Figures 1B and S1B. To
determine the genetic alterations of histone acetylation
regulators in cancer, we assessed the prevalence of non-silent
somatic mutations in the 36 histone acetylation regulators. In the
HCC cohort of TCGA, 95 of the 364 (26.1%) samples
experienced genetic alterations in histone acetylation
regulators, primarily involving missense mutations and splice-
site mutations (Figure 1C). Among them, the mutation
frequencies of BPTF and SMARCA4 were the highest (3%),
followed by HDAC9, EP300, BAZ2B, PBRM1, CREBBP,
HDAC4, BRD4, and TAF1. In addition, the mutation
co-occurrence across histone acetylation regulators was
examined, and we found that there was a significant mutation
co-occurrence relationship between TAF1 and SMARCA4
Frontiers in Immunology | www.frontiersin.org 5
(Figure S1C). Furthermore, we examined somatic copy
number variations (CNVs) of the 36 regulators and found that
CNV was widespread among them, and CNV gain was the major
alteration (Figure 1D). The location of CNV alteration of m6 A
regulators on chromosomes is shown in Figure S1D. To
ascertain whether these genetic variations influenced the
expression of histone acetylation regulators in HCC patients,
we compared the mRNA expression of these regulators between
normal and HCC samples (Figure 1E). The results revealed that
most genes were upregulated in the HCC samples than in the
normal samples, excluding HDAC9, DPF3, and SMARCA2. The
genes with higher frequency of CNV gain than of CNV loss were
more likely to be upregulated in tumors (such as BPTF, BRD4,
and YEATS4). However, the gene expression patterns of some
regulators in tumor and non-tumor samples were not consistent
with CNV alteration. For example, HDAC1 had a higher
frequency of CNV loss than of CNV gain, but the mRNA
expression of HDAC1 was upregulated in HCC samples. To
investigate the discrepancy between CNV values and mRNA
expression, we divided the HCC cohort into four groups based
on CNV value (HCC samples with CNV gain, CNV loss, non-
significant alteration of CNV, and normal samples). We analyzed
the mRNA alterations in different groups of 10 regulators whose
mRNA expression was not significantly consistent with CNV
pattern (Figure S1E). The results showed that mRNA expression
was higher in the CNV gain group than in the other three groups,
and mRNA expression was lower in the CNV loss group than in
the CNV gain and non-significant CNV groups. The above
analyses indicate that CNV changes play an important role in
regulating the expression of histone acetylation regulators.
Furthermore, based on the expression of these 36 regulators,
we were able to distinguish HCC samples from normal
samples (Figure 1F).

This analysis demonstrated that the genetic landscape and
expression pattern of histone acetylation regulators between
HCC and normal samples are highly heterogeneous, indicating
that the imbalanced expression of histone acetylation regulators
may play a crucial role in the onset and development of HCC.

Identification of Three Clinical Feature-
Related Histone Acetylation Patterns
Based on the 36 Regulators
We obtained clinical data and mRNA expression matrices of
1599 HCC samples from nine datasets—TCGA-LIHC, ICGC-
LIRI (Japan), ICGC-LICA (France), GSE14520, GSE76427,
GSE116174, GSE104580, GSE112790, GSE121248—for further
analysis of the expression patterns among the 36 histone
acetylation regulators. To explore the prognostic value and
expression relationship of histone acetylation regulators, the
mRNA sequencing data from the TCGA-LIHC and ICGC-LIRI
cohorts with prognostic information were integrated into one
meta cohort for univariate Cox regression and Spearman
correlation analyses. The results demonstrated that multiple
regulators (HDAC2, HDAC1, HAT1, HDAC11, YEATS4,
SMARCA4, HDAC5, BRDT, DPF2, HDAC4, KAT7,
SMARCA2, BPTF, BRD4, PBRM1, HDAC3, BRD3, DPF1)
January 2022 | Volume 13 | Article 761046
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were risk factors for HCC, and only SMARCA2 was a protective
factor against HCC (Figure S2A and Table S5). Correlation
analysis revealed a significant relationship among the expression
of the 36 regulators. Most of them were positively correlated with
each other, even though they belonged to different biological
groups (“writer”, “eraser”, or “reader”) and had different or
opposed bio-functions (Figure S2B). The expressions of
HDAC10 and HDCA11 (“erasers”) were negatively correlated
with that of KAT2B (“writer”), and the expression of HDAC11
was negatively correlated with that of DPF3 and SMARC2
(“readers”). These were the only negative correlations between
the expressions of the regulators. The comprehensive landscape
in the expression network of histone acetylation regulators and
their prognostic significance in HCC patients is depicted in
Frontiers in Immunology | www.frontiersin.org 6
Figure 2A (Table S6). These results indicate that there is a
tight cross-talk among the histone acetylation regulators. The
writers, erasers, and readers construct a complex network and
integrally regulate the histone acetylation modifications,
impacting the development of HCC.

To identify the expression pattern of the 36 regulators, the
mRNA expression data of 774 HCC samples from the combined
datasets (TCGA-LIHC, ICGC-LIRI, and ICGC-LICA cohorts)
were classified using ConsensusClusterPlus. Three qualitatively
different histone acetylation patterns were identified using
unsupervised clustering, including 198 cases in pattern A, 204
cases in pattern B, and 372 cases in pattern C. We termed these
patterns HAcluster_A–C (Figure S2C and Table S7). Clustering
of histone acetylation was repeated in the GEO meta cohort
A B

D E

FC

FIGURE 1 | The landscape of genetic alterations of histone acetylation regulators in hepatocellular carcinoma (HCC). (A) Summary of the dynamic reversible process
of histone acetylation modification mediated by regulators (“writers,” “erasers,” and “readers”) and their biological functions. (B) Functional annotations of 36
regulators analyzed by the Metascape enrichment tool. Cluster annotations are shown in the color code. (C) The mutation frequency of 36 histone acetylation
regulators in TCGA-LIHC cohort. Each column represents individual patients. The barplot on top shows TMB, and the numbers on the right display the mutation
frequency of each regulator. The barplot on the right shows the proportion of each variation type. The stacked barplot on the bottom displays the fraction of
conversions in each sample. (D) The copy number variation (CNV) frequency of histone acetylation regulators in TCGA-LIHC was prevalent. The column represents
the alteration frequency. The deletion frequency is a light-green dot; the amplification frequency is a crimson dot. (E) Boxplot shows the expression of the 36 histone
acetylation regulators between tumor and normal tissues in the TCGA-LIHC cohort. Tumor: red; Normal: blue. (*P < 0.05, **P < 0.01, ***P < 0.001). (F) Principal
component analysis of the 36 histone acetylation regulators to distinguish tumors from normal samples in TCGA-LIHC. Tumor: pale blue; normal: yellow.
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(GSE14520, GSE76427, GSE116174, GSE104580, GSE112790,
and GSE121248), and a similar result was obtained (Figure
S2D). Notably, the PCA analysis shows that there was a
significant difference in the transcriptional profile among the
three different histone acetylation patterns, indicating that
unsupervised clustering was successful (Figure 2D). The
Frontiers in Immunology | www.frontiersin.org 7
prognostic analysis revealed that the survival probability of
patients in HAcluster_B was worse than in HAcluster_A and
HAcluster_C based on the combined datasets of TCGA-LIHC
and ICGC-LIRI cohorts that have prognostic information
(Figure 2B). The prognosis predictive ability of the HAcluster
was re-examined using the combined data from the GEO
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FIGURE 2 | Histone acetylation modification pattern and clinical characteristics of each pattern. (A) The interaction among histone acetylation regulators in liver
cancer. The circle size describes the effect of each regulator on the prognosis and scale by P value. Favorable factors are shown with a pink semicircle on the right.
Risk factors are shown with a blue semicircleon the right. Three histone modification types of the 36 histone acetylation regulators are depicted by different colored
semicircle on the left. Readers: Indigo; writers: brown; erasers: gray. The red and blue lines represent positive and negative correlations, respectively (P < 0.0001).
(B) Survival analyses of three histone acetylation modification patterns based on 607 patients from the RNA-seq meta cohort (TCGA-LIHC, ICGC-LIRI). (C) Survival
analyses of three histone acetylation modification patterns based on 421 patients from the GEO meta cohort (GSE14520, GSE76427, GSE116174). (D) Principal
component analysis of the transcriptome profiles between three histone acetylation modification patterns, indicating a prominent difference on the transcriptome
between different HAclusters (based on RNA-seq meta cohort). (E) Unsupervised clustering of the 36 histone acetylation modification regulators in the TCGA-LIHC
cohort. The HAcluster, viral infection, vascular invasion, TNM stage, histology grade, age, and gender were used as sample annotations. Red represents high
expression, and blue represents low expression. Comparison of clinical characteristics proportion analysis between three HAclusters was evaluated by Chi-square
test (*P < 0.05, **P < 0.01).
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database and we obtained similar results (Figure 2C). Most
histone regulators, including writers, erasers and readers were
highly expressed in HAcluster_B, followed by HAcluster_C and
HAcluster_A (Figures 2E and S2E). This indicated that the
patients in HAcluster_B have the most active histone acetylation
modification and the modification turnover is fast. This may be a
risk factor for the prognosis of HCC patients. In addition, the
HAcluster was closely correlated with the clinical features of
HCC. The viral infection events, vascular invasion, high
TNM grade, and high histologic grade were significantly
enriched in HAcluster_B, as examined in the TCGA HCC
cohort (Figure 2E).

Three Histone Acetylation Patterns
Associated With Distinct Tumor Molecular
Backgrounds and Immune Infiltration
To identify the differences in biological behavior among the three
histone acetylation modification patterns, GSVA enrichment
analysis based on KEGG gene sets was performed (Table S8).
Compared to HAcluster_A and HAcluster_C, HAcluster_B was
enriched in carcinogenetic activation and stromal pathways,
cancer pathways, p53/MAPK/MTOR/NOTCH/WNT/ERBB/
TGF_BETA signaling pathways, cell cycle, and apoptosis. On
the other hand, HAcluster_A and HAcluster_C were enriched in
several biometabolism-related pathways (Figures 3A, B and
Table S9). We confirmed this result by conducting GSVA
enrichment analysis based on oncogenic hallmark data
obtained by Sanchez-Vega et al. and Mariathasan et al. (Table
S3) (38, 42); the results showed that HAcluster_B was enriched
in most of the malignant pathways, similar to the above analysis
(Figure 3C). Notably, the activity of angiogenesis, EMT, and
cancer stemness was also high in HAcluster_B (Figure 3C). As
shown in Figure S3A, B, mRNA expression of stem cell
biomarkers in HCC and the EMT score were the highest in
HAcluster_B. These analyses indicate that the histone acetylation
pattern was closely related to cancer’s bio-behavior in HCC, and
the high activity of histone acetylation relators could be a crucial
factor in improving the degree of malignancy.

Previous studies have reported a significant correlation
between TME infiltration of immune cells and modified
histone acetylation (54, 55). Therefore, we comprehensively
investigated the functional role of the regulatory network
composed of histone acetylation regulators in the TME. The
ssGSEA algorithm was used to quantify the relative abundance of
immune cells infiltrating the TME (Table S10). The Spearman
correlation analysis showed a strong correlation between
regulators and TME-infiltrating immune cells (Figure 3D). For
example, the expression of “erasers” HDAC7 and HDAC9 were
positively correlated with most of the TME-infiltrating immune
cells, and there was a positive correlation between activated CD4
T cells and most of the regulators. Additionally, the differences in
TME cell infiltration among thethree histone acetylation patterns
were analyzed (Figure 3E). HAcluster_B was remarkably
differences from HAcluster_A and HAcluster_C. The activated
dendritic cells and plasmacytoid dendritic cells were higher in
HAcluster_B than in HAcluster_A and HAcluster_C, indicating
Frontiers in Immunology | www.frontiersin.org 8
a highly active antigen-presenting function in this group. The
natural killer cells were also high in HAcluster_B. However,
activated CD8 T cells, the most powerful effectors in the
anticancer immune system (56), along with other important
tumor killer cells and gamma delta T cells (57) were both lower
in HAcluster B than that in HAcluster_A and HAcluster_C. It is
known that myeloid-derived suppressor cells (MDSC) (58) and
regulatory T cells are immune suppressive cells (59), while type 2
T helper cells are pro-tumorigenic (60). Both MDSC and type 2 T
helper cells were significantly higher in HAcluster_B, and
regulatory T cells were higher in HAcluster_B; however, this
was not statistically significant. These results indicated that
HAcluster_B is an immunosuppressive subtype, and its high
levels of immunosuppressive cells offset the positive influence of
highly-activated antigen pressing cells, which led to a poor
prognosis for patients in HAcluster_B. To confirm this
hypothesis, we analyzed the activity of immune suppression,
immune cytolytic effect, and antigen processing in the three
histone acetylation patterns based on the related gene signature
data from Bindea et al. and Thorsson et al. (Table S11) (46, 47).
The results demonstrated that the activities of immune
suppression and antigen processing were the highest in
HAcluster_B, and the immune cytolytic activity of HAcluster_B
was the lowest among the three groups, in agreement with
previous analyses (Figure 3F).

Construction of a Digital Model for
Quantifying Histone Acetylation Patterns
of Individual HCC Patients
To gain a comprehensive understanding of the differences in
biological features among the three HAculsters, we identified 591
DEGs that were significantly associated with patient prognosis to
characterize the HAcluster, based on three HAclusters previously
analyzed in the RNA-seq meta cohort (Figure S4A and Table
S12). The GO enrichment of these DEGs showed that their
functions were mainly enriched in histone acetylation, cell cycle,
RNA splicing, DNA replication, and cell adhesion (Figure 4A).
We found that patients could be clustered into three phenotype-
related subtypes based on these DEGs, named geneCluster_A,
geneCluster_B, and geneCluster_C, (Figure S4B, C). Most
DEGs were highly expressed in geneCluster_B, followed
by geneCluster_C and geneCluster_A (Figures 4B and
S4D). Most histone acetylation regulators were highly
expressed in geneCluster_B (Figure S4E). The survival
analyses showed that patient prognosis in geneCluster_B was
the worst, as analyzed in the RNA-seq meta cohort and GEO
meta cohort (Figures 4C and S4F). To depict and quantify the
histone acetylation pattern of individual HCC patients using a
convenient and precise method, we constructed a score model
based on these phenotype-related DEGs. This model was termed
the histone acetylation score (HAscore; see Materials and
Methods). We found that the HAscore was positively
correlated with the mRNA expression of histone acetylation
regulators and phenotype-related DEGs. The HAscore in
HAcluster_B and geneCluster_B was the highest. The HAscore
was moderately high in HAcluster_C and geneCluster_C, and
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the lowest in HAcluster_A and geneCluster_A (Figures 4D, E).
Next, we divided patients into high HAscore and low HAscore
groups using the Survminer package and conducted an overlap
analysis of these three different classifiers based on a histogram of
frequency distribution (analyzed on samples in the RNA-seq
meta cohort with prognostic information). The results showed
that samples in the high HAscore group were all from
geneCluster_B (172 out of 204: 84.3%), while 166 out of 191
(86.9%) samples in HAcluster_B composed the majority of
geneCluster_B. In addition, most of the patients in geneCluster
A and geneCluster_C belonged to HAcluster_A and
HAcluster_C, respectively, and contributed to the main part of
Frontiers in Immunology | www.frontiersin.org 9
the low HAscore group (Figure 4G). The above results suggest
that these three computational methods of classification have a
high degree of coincidence.

Furthermore, we analyzed the prognostic prediction value of
the HAscore in patients with HCC. The results demonstrate that
the patients in the RNA-seq meta cohort and GEO meta cohort
with low HAscores, had a prominent survival benefit (Figures 4F
and S4G). Based on the RNA-seq meta cohort, the AUCs of
the time-dependent ROC curves for the HAscore were 0.708,
0.612, 0.624 and 0.573 at 1-, 2-, 3- and 5- year overall survival,
respectively (Figure 4H). Similar results were obtained from the
GEO cohort (Figure S4H). Next, we performed multivariate Cox
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FIGURE 3 | Biological characteristics of histone acetylation patterns. (A, B) GSVA enrichment analysis demonstrates the activation states of KEGG biological
pathways between distinct HAclusters in RNA-seq meta cohort and the activated group visualized by heatmap. Yellow and blue represent activated and inhibited
pathways, respectively. The HAcluster and project of database were used as sample annotations. (A) HAcluster A vs HAcluster B; (B) HAcluster B vs HAcluster (C)
Differences in oncogenic pathways among the three distinct HAclusters. (D) The correlation between the 36 histone acetylation regulators and TME infiltration cells in
RNA-seq meta cohort. Positive and negative correlations are marked in red and blue, respectively. (E) Boxplot of abundance of TME-infiltrating cells in three
HAclusters, based on the RNA-seq meta cohort. (F) Differences in immune-related functional pathways among the three distinct HAclusters. The statistical
differences among the three HAclusters were tested by the Kruskal–Wallis test. (*P < 0.05; **P < 0.01; ***P < 0.001; ns, non-significant).
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regression analysis using patient clinical characteristics including
age, sex, histologic grade, TNM stage, vascular invasion, and viral
infection. We found that the HAscore was a robust and
independent prognostic biomarker for evaluating outcomes of
patients in the TCGA-LIHC and GSE14520 cohorts (Figure 4I,
HR = 2.547, 95% CI: 1.218-5.325, P = 0.013; Figure S4I, HR =
Frontiers in Immunology | www.frontiersin.org 10
1.647, 95% CI: 1.058-2.563, P = 0.027). In addition, survival
analyses based on the HAscore were also conducted for stomach
adenocarcinoma, bladder urothelial carcinoma, skin cutaneous
melanoma, and head and neck squamous cell carcinoma. The
results show that the survival prognosis of patients with high
HAscores was worse than those of patients with low HAscores
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FIGURE 4 | Construction of the characteristic signature of histone acetylation patterns and its prognostic significance. (A) GO enrichment analysis for histone
acetylation pattern related genes with prognostic significance. The x-axis indicates the gene ratio within each GO term. (B) Unsupervised clustering of 591 histone-
acetylation-related genes in RNA-seq meta cohort. The HAcluster, geneCluster, and cohorts were used as sample annotations. (C) The survival curves of different
geneClusters in the RNA-seq meta cohorts (TCGA-LIHC and ICGC-LIRI) were estimated by the Kaplan–Meier plotter (p = 1.62e-05, Log-rank test). (D) Differences in
the HAscores of the HAclusters in the RNA-seq meta cohorts. (E) Differences in the HAscores of the geneClusters in the RNA-seq meta cohorts. The statistical
differences were tested by the Kruskal–Wallis test. (****P < 0.0001). (F) Survival analyses for low and high HAscore groups in the RNA-seq meta cohort (TCGA-LIHC
and ICGC-LIRI) using Kaplan–Meier curves (P = 4.28e-07, Log-rank test). (G) Alluvial diagram demonstrating the changes in the HAcluster, geneCluster, and
HAscore groups. (H) The predictive value of HAscore in patients from the TCGA-LIHC and ICGC-LIRI RNA-seq meta cohorts (AUC: 0.708, 0.612, 0.624 and 0.573
for 1, 2, 3, 5- year overall survival). (I) Multivariate Cox regression model analysis of the factors including HAscore, patient age, gender, TNM status, histology grade,
vascular invasion, and viral hepatitis serologies in the TCGA-LIHC cohort.
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(Figure S4J). These results indicate that the HAscore was closely
related to prognosis and could be seen as a risk factor for HCC
and several other cancers.

Clinical Features, Transcriptional
Molecular Characteristics, and TME-
Infiltrating Cells Associated With the
HAscore
Our analyses have revealed survival prognostic differences
between the high HAscore and low HAscore groups.
Therefore, we determined to further explore the latent
mechanism behind these results. We analyzed the relationship
between the HAscore and the characteristics of the sample
including clinical characteristics, transcriptional molecular
background, and TME. The GSE14520 dataset and the TCGA-
HCC cohort with adequate clinical information were used to
analyze the correlation between HAscore and clinical
characteristics. As shown in Figures 5A and S5C, the HAscore
was higher in the groups with high AFP expression, vascular
invasion, viral infection, multiple nodules, advanced histologic
grade, TNM staging, and CLIP staging. In the TCGA-LIHC
cohort, samples with high AFP expression, viral infection,
vascular invasion, advanced histologic grade, and TNM staging
were significantly higher in the high HAscore group (Figure 5B
and Figure S5D). In the GES14520 dataset, samples with high
AFP expression, advanced TNM staging, and CLIP staging were
significantly higher in the high HAscore group (Figure S5A, B).
Considering that the above-mentioned clinical characteristics
were all risk factors for HCC prognosis (3, 61, 62), these results
elucidate the fact that patients with a high HAscore had a worse
survival prognosis.

Furthermore, the correlation between HAscore and tumor
molecular background was analyzed. The results show that
nearly all the cancer-related malignant pathways (such as cell
cycle, HIPPO, MYC, PI3K, and MYC), excluding the NRF2
signaling pathway, were significantly positively correlated with
the HAscore (Figure 5C and Table S13). The EMT score was
also higher in the high HAscore group (Figure S5E), indicating
that patients with high HAscores had higher activation of the
malignant pathway, resulting in a worse prognosis. Next,
correlation analysis involving HAscore, tumor-infiltrating
immune cells, and immune function was performed
(Figure 5D). The results demonstrate that the infiltration of
pro-tumorigenesis cells, type 2 T-helper cells (P = 1.5e-13), and
immunosuppressive cells, including MDSCs (P = 6.1e-05) and
regulatory T cells (P = 0.00099), were significantly positively
correlated with the HAscore. The immune cytotoxic cells-
gamma delta T cells that were significantly negatively
correlated with the HAscore (P = 0.02026). The HAscore was
also significantly positively correlated with the activity of
immune suppression (P = 4.536376e-12) and negatively
correlated with immune cytolytic activity (P = 1.827941e-09)
(Figure 5C). Additionally, in the high HAscore group the
enrichment of the number of MDSC, regulatory T-helper cells,
and type 2 T-helper cells was significantly higher, whereas that of
the number of cytolytic gamma delta T cells was significantly
Frontiers in Immunology | www.frontiersin.org 11
lower (Figure 5E). The above results demonstrate that the
HAscore was closely correlated with TME, and the high
HAscore group was considered an immunosuppressive subtype.

The Predictive Ability of the HAscore
Model in the Sensitivity of Anti-Tumor
Drugs
Recently, numerous molecular-targeted agents have been
developed for the treatment of certain cancers and have had
good results. The above analyses reveal that histone acetylation
modification is closely related to the functional pathways of
cancer, such as cell cycle, DNA replication, the p53 pathway, and
the PI3K/mTOR signaling pathway. Thus, the HAscore could
have potential value in predicting the related drug response in
patients. To test this hypothesis, we assessed the association
between the HAscore and the response to drugs in cancer cell
lines using the GDSC database. Using the Spearman correlation
analysis, we identified 42 correlated pairs in which the AUC of
the drug-sensitive curve was significantly positively correlated
with HAscore (Table S14). These drugs included cetuximab, a
monoclonal antibody that inhibits epidermal growth factor
receptor (Rs = 0.522, P < 3.15E-61), the MEK inhibitor
trametinib (Rs = 0.444, P < 3.15E-61), and the HSP90 inhibitor
tanespimycin (Rs = 0.443, P < 3.15E-61). These results suggest
that these drugs could be more sensitive in samples with low
HAscores. In contrast, 74 correlated pairs were identified in
which the AUC of the drug-sensitive curve was significantly
negatively correlated with HAscore. These included the HDAC6
inhibitor ACY-1215 (Rs = -0.521, P < 3.15E-61), Wee1 inhibitor
MK-1775 (Rs = -0.492, P < 3.15E-61), and Bcl-2 inhibitor
sabutoclax (Rs = -0.472, P < 3.15E-61). These results suggest
that these drugs could be more sensitive in samples with high
HAscores (Figure 6A). Additionally, the signaling pathways of
the genes targeted by these drugs were analyzed. Notably, the
drugs that were sensitive in samples with high HAscores mostly
targeted histone acetylation, mitosis, cell cycle, and DNA
replication. This result is consistent with our previous analyses,
which demonstrated that most histone modification regulators
were highly active in the high HAscore group, along with cell
cycle and DNA replication. In addition, we found that the drugs
that were sensitive in samples with low HAscores mostly targeted
the MEK2 and RTK signaling pathways (Figure 6B).

To examine whether the HAscore could predict the drug
response in patients, we analyzed the relationship between drug
response and HAscore based on several datasets that were treated
with related anti-tumor agents. In the GSE5851 dataset, an
analysis of cetuximab monotherapy in patients with advanced
metastatic colorectal cancer reveals that the HAscore of
responders was significantly lower than that of non-responders
(Figure 6C), and the progression-free survival (PFS) of the low
HAscore group was significantly longer than that of the high
HAscore group (Figure 6D). The AUC of drug sensitivity-
dependent ROC curves for the HAscore was 0.691
(Figure 6E). These results are consistent with our finding that
the sensitivity of cetuximab was higher in the low HAscore
group. Furthermore, in the GSE22219 dataset, an analysis of a
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cyclophosphamide, methotrexate, and 5-fluorouracil regimen in
patients with breast cancer shows that the PFS of patients with
high HAscores was significantly longer (Figure 6F), consistent
with our previous analyses, which showed that methotrexate (Rs
= -0.422, P < 3.15E-61) and 5-fluorouracil (Rs = -0.386, P <
3.15E-61) were more sensitive in high HAscore samples. The
Frontiers in Immunology | www.frontiersin.org 12
above results indicate that ACY-1215 (ricolinostat), an HDACi,
was sensitive in the high HAscore sample. The analysis based on
the GSE148623 dataset reveals higher HAscores in responders
and longer PFS in high HAscore patients (Figures 6G, H);
however, this was not statistically significant because of the
small sample size (N = 10). Collectively, these analyses indicate
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FIGURE 5 | Clinical features, molecular characteristics, and TME infiltrating cells of the distinct HAscore groups. (A) Difference in HAscore among distinct clinical features
related subgroups in the GSE14520 cohort. The Wilcoxon test was used to test the statistical differences among clinical features related subgroups. (B) Clinical features for
the high and low HAscore groups in TCGA-LIHC cohort. Chi-squared test or Fisher test was used to test the statistical differences. (C) Correlations between the HAscore
and the known gene signatures in RNA-seq meta cohort using Spearman analysis. Positive correlation is marked with red and negative correlation with blue. The asterisks
represent the statistical P value (*P < 0.05). (D) Correlations between HAscore and TME infiltrating cell abundance in RNA-seq meta cohort using Spearman analysis. The
circle size and x-coordinates describe the correlation coefficient. The color of the circle is scaled by P value. (E) Boxplot of each TME infiltrating cell abundance for high and
low HAscore groups in the RNA-seq meta cohort. The statistical differences among the HAscore groups were tested by the Kruskal–Wallis test. (*P < 0.05; **P < 0.01;
***P < 0.001; ns, non-significant).
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that the HAscore has potential value in predicting drug response
in patients.

The HAscore Model Predicts Response to
Immunotherapy With a PD-L1 or PD-1
Blocker
The emergence of immunotherapies targeting the PD-L1 and
PD-1 pathway blockade provides a positive outlook for patients
with cancer. However, the benefits of ICI therapy are still limited
Frontiers in Immunology | www.frontiersin.org 13
because of innate or acquired immunotherapy resistance. Thus,
many studies have aimed to identify predictors of ICI therapy
for appropriate candidates, such as TIDE, which is widely used
and strongly recommended to evaluate the immune response in
cancer-related studies (63–68). Considering that the HAscore
appears to be closely correlated with the TME, we examined the
power of the HAscore to predict the response of patients to ICI
therapy based on two immunotherapy cohorts. First, we
analyzed the relationship between the HAscore and TIDE
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FIGURE 6 | The relationship between HAscore and drug sensitivity. (A) The Spearman analysis was used to evaluate the correlation between HAscore and AUC of
drug-sensitive curve. The brightness of column indicates the significance of the correlation. The height indicates the values of Rs. (B) Signaling pathways targeted by
drugs that were closely correlated with HAscore. The horizontal axis shows the drug names, and the vertical axis shows the signaling pathway targeted by the drugs. The
bar graph on the right displays the number of drugs in each signaling pathway. The significance of the correlation is shown by the size of the point. (C, G) The difference
of HAscores between distinct clinical outcomes of related anti-tumor drugs, including cetuximab (C) and ricolinostat (G). (D, F, H) Kaplan–Meier curves show the overall
survival time in high HAscore or low HAscore group after the treatment of related anti-tumor drugs, including cetuximab (D), a cyclophosphamide, methotrexate, and 5-
fluorouracil regimen (F), and ricolinostat (H). (E) The predictive value of the HAscore to the sensitivity of cetuximab (AUC = 0.691).
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based on the TCGA-ICGC and GEO cohorts. The results show
that the TIDE scores were significantly higher in the high
HAscore group for both cohorts (P <2.2E-16; P = 1.7E-05;
Figures 7A, B), and the HAscore was positively correlated
with the TIDE score (Rs = 0.31; P < 2.2E-16; Rs = 0.15; P =
2.2E-05) (Figures S6A, B). In addition, the HAscore was
significantly positively correlated with MDSC infiltration (Rs =
0.49; P = 1.37e-47; Rs = 0.67; P = 4.03e-109) and exclusion
immune subtype (Rs = 0.46; P = 1.38e-42; Rs = 0.29; P = 1.05e-
17) calculated by the TIDE method in TCGA-ICGC and GEO
cohorts (Figures S6C, D). This result is consistent with our
previous finding, which demonstrated that the high HAscore
group was an immune suppressive subtype. Further, analysis in
the anti-PD-L1 immunotherapy cohort (Imvigor210) shows that
patients with a low HAscore had prolonged overall survival time
(P = 0.003) (Figure 7C) and better therapeutic outcomes. The
proportion of patients with complete response (CR) or partial
response (PR) to the anti-PD-L1 blocker was 27% in the low
HAscore group versus 13% in the high HAscore group
(Figure 7D, chi-squared P = 0.0133). Figures 7E, F show that
Frontiers in Immunology | www.frontiersin.org 14
the neoantigen burden and mutation burden were high in the
low HAscore group (P = 0.00022; P = 0.012), and the TIDE score
was low in the low HAscore group. This is consistent with the
finding that patients with low TIDE score seemed to gain more
clinical benefit from IBI therapy (Figure S6E). Figure S6F shows
that the AUC of the sensitivity-dependent ROC curve was 0.606
for the HAscore vs. 0.582 for TIDE score (P = 0.608). The study
of the David Liu cohort that was treated with anti-PD-1
immunotherapy yielded similar results. Figure 7G shows that
the OS of patients with low HAscores was significantly longer
than that of patients with high HAscores (P < 0.001).
Additionally, the proportion of patients with CR or PR to the
anti-PD-1 blocker was 43% in the low HAscore group versus
17% in the high HAscore group (Figure 7H, Fisher; P = 0.03947).
The above results indicate that patients with low HAscores could
gain more survival advantage and greater benefit from ICI
treatment. Further, the established modified histone acetylation
score model could improve the selection of drugs for HCC and
the prediction of response to anti-PD-L1 or anti-PD-
1 immunotherapy.
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FIGURE 7 | The relationship between HAscore and immunotherapy. (A, B) The TIDE scores of individual HCC samples in the high HAscore or the low HAscore
groups. (A) shows the result from the RNA-seq meta cohort and (B) shows the result from the GEO meta cohort. (C, G) Kaplan–Meier curves show the overall
survival time in the high HAscore or the low HAscore groups after the treatment of PD-L1 pathway blockgade immunotherapy (C) or PD-1 pathway blockade
immunotherapy (G). (D, H) The proportion of patients with different responses to PD-L1 blockage (D) or PD-1 blockage (H). (E, F) the differences of neoantigen
burden (E) or mutation burden (F) in the high HAscore or the low HAscore group.
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DISCUSSION

Ample evidence exists showing that histone acetylation plays an
essential role in cancer biological processes such as proliferation,
apoptosis, differentiation, EMT, and drug sensitivity (69). Recently,
researchers have found that histone acetylation also has an
indispensable role in shaping the TME, which is an important
factor in determining patient prognosis. However, most studies have
focused on a single histone acetylation regulator. Relatively little is
known about the relationship between the three types of histone
acetylation regulators (“writer,” “eraser,” and “reader”) and their
function in cancer. Considering that the histone acetylation
regulators function as a tight network, it is necessary to analyze
them as a whole in cancer research.

In this study, we analyzed the correlation among 36 histone
acetylation regulators and found that the expression levels of nearly
all of the regulators were positively correlated with each other;
however, the functions of these regulators were different (even
opposite). Based on unsupervised clustering of the 36 regulators,
we divided the patients into three histone acetylation phenotypes
(HAcluster_A, HAcluster_B, and HAcluster_C). Interestingly,
their patterns were distinctly expressed in the 36 regulators.
Nearly all the regulators had the highest expression in
HAcluster_B, the regulators were moderately expressed in
HAcluster_C, and the regulators had the lowest expression in
HAcluster_A. This indicates that the activity and turnover of
histone acetylation was intense in HAcluster_B. Our survival
analysis reveals that the OS of patients in HAcluster_B was the
worst of the three phenotypes. Furthermore, to better characterize
the three histone acetylation phenotypes, we identified
differentially expressed genes among them. Based on these genes,
we constructed an HAscore model to digitally quantify the histone
acetylation phenotype in individual patients. The results show that
the HAscore was the highest in HAcluster_B, and the survival
prognosis of the high HAscore group was the worst.

To explore the mechanism causing the prognostic difference
among patients with different histone acetylation phenotypes, we
first analyzed cancer biological features with the three histone
acetylation patterns and two HAscore groups. We found that
HAcluster_B was characterized by significant activation of the
mTOR, ERBB, NOTH, WNT, TGF-b signaling pathways, cell
cycle, and apoptosis. The HAscore was also significantly positively
correlated with the activation of cell cycle, angiogenesis, EMT, cell
stemness, and cancer-related malignant signaling pathways
(HIPPO, MYC, NOTH, PI3K, TGF-b, RTK/RAS, TP53, and
WNT). The above-mentioned biological functions and signaling
pathways play an important role in promoting tumor
development. For example, HIPPO (70), NOCTH (71), TGF-b
(72) and WNT (73) are crucial signaling pathways that regulate
various cancer-related processes, including cell proliferation,
invasion, metastasis, and immunologic escape. The abnormal
activation of these signaling pathways promotes cancer
malignancy and leads to a poor prognosis (74–77).

Cancer stem cells are a subtype of cells that can self-renew by
division and generate tumor progeny required for sneaking through
and tumorigenesis (78, 79). In addition to their cancer-initiating
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ability, CSCs play a critical role in modulating other processes such
as EMT (80), immunotherapy resistance (81) and drug resistance
(82). These four signaling pathways also play key roles in supporting
CSC activity (83). In HAcluster_B and the high HAscore group,
where the malignant signaling pathways were active; the biomarkers
for HCC stem cells were all highly expressed, indicating the high
activity of CSCs in these two groups. These findings can partially
explain why patients in HAcluster_B or those with high HAscores
had the worse survival prognosis.

ICI therapy is a potentially good application in this setting
because it mobilizes the autoimmune system to kill cancer cells.
Mounting evidence has confirmed that diverse HDACi could alter
the biological processes of immune cells and reshape the immune
microenvironment, enhancing the tumor-killing effect of the
immune system (84–86). In this study, we found that histone
acetylation patterns were closely related to TMEs, and there were
distinct differences in tumor-infiltrating immune cells among the
three histone acetylation patterns. The activated dendritic cells,
plasmacytoid dendritic cells, and antigen processing activity were
significantly higher in HAcluster_B and the high HAscore groups.
The biological processes of antigen processing and presentation
play a critical role in improving the cancer-killing effect of immune
cells (87). Previous studies have pointed out that HDACi, which
improve the level of histone acetylation, could enhance antigen
presentation by cancer cells (26, 85, 88). Interestingly, HAcluster_B
and the high HAscore group had the highest expression of HATs,
which improves histone acetylation levels, and this could be the
reason for the high antigen processing and presentation observed
in these two groups. Future research will have to confirm this
hypothesis. Although antigen processing and presentation are
active in HAcluster_B and the high HAscore groups, the
immune-suppressive cells, MDSCs, and regulatory T cells were
higher in both of them. This indicates that the HAcluster_B and
the high HAscore groups were immune-suppressive subtypes, and
the pro-immunity effect brought by activated antigen processing
and presentation was offset by the immune-suppressive cells.
Further functional enrichment analysis confirmed that
HAcluster_B was highly enriched in immunosuppressive gene
signatures and less enriched in immune cytolytic gene signatures.
In addition, the HAscore was positively correlated with immune
suppression and negatively correlated with cytolytic activity. These
analyses indicate that the immune-suppressive subtype may be a
reason for the poor prognosis of patients in the HAcluster_B group
or with a high HAscore.

Finally, considering the strong relationship between histone
acetylation patterns, cancer-related malignant signaling
pathways, and TME, we examined the potential therapeutic
effects of the HAscore. We found that it was positively
correlated with the sensitivity of drugs targeting histone
acetylation, cell cycle, mitosis, DNA replication, BRD3, and
ROCK2. In contrast, we found that the HAscore was
negatively correlated with the sensitivity of drugs targeting
MEK2, PARP, VEGFR, ABL signaling, and histone
methylation. These results imply that patients with higher
HAscores could benefit more from the positively-correlated
drugs while the negatively correlated drugs would be more
January 2022 | Volume 13 | Article 761046

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Xu et al. Histone Acetylation in TME and Immunotherapy
suitable for patients with lower HAscores. In addition, we found
that the HAscore could also predict the response of patients to
anti-PD-L1 or anti-PD-1 immunotherapy. Compared to the
patients with high HAscores, patients with lower HAscores
were more sensitive to ICI immunotherapy. However, the
benefits of ICI treatment are still limited due to the primary,
adaptive, and/or acquired resistance to cancer immunotherapy
(14). Fortunately, researchers have found that certain molecular-
targeted anti-tumor agents can prevent cancer’s immunotherapy
resistance and combining these anti-tumor agents with ICI
immunotherapy could greatly improve patient prognosis rather
than a single-drug regimen. For example, researchers have found
that the combination of a selective HDAC3 inhibitor with anti-
PD-L1 immunotherapy enhanced tumor regression in a syngenic
murine lymphoma model (86). Additionally, a phase 2 clinical
trial has shown that camrelizumab (a PD-1 monoclonal
antibody) combined with apatinib (a VEGFR-2 tyrosine kinase
inhibitor) shows promising efficacy and acceptable safety in
patients with advanced HCC in both the first-line and second-
line settings (89). This result is significantly better than ICI
therapy using a single immune-checkpoint inhibitor (90, 91).
Our findings provide evidence that the HAscore can be a
predictor for the sensitivity of certain targeted drugs combined
with ICI therapy. This indicates that there are potential new
treatment options for choosing a suitable targeted agent to
improve the outcome of immunotherapy in patients with HCC.
CONCLUSION

In this study, we comprehensively evaluated the histone
acetylation patterns of 1599 HCC cancer samples based on 36
histone acetylation regulators and identified three distinct
histone acetylation patterns. The integrated analysis indicates
that the differences in the activation of cancer-related malignant
pathways and TME could be the main reason for the distinct
prognostic outcomes of the three histone acetylation patterns.
Based on the transcriptional differences among histone
acetylation phenotypes, we constructed an HAscore model to
digitally depict them, and identified the therapeutic utility of the
HAscore in targeted therapy and immunotherapy. In summary,
our study shows that evaluating the histone acetylation patterns
of individual tumors will enhance our understanding of the
characteristics of the TME and help develop personalized,
combined, and immune-targeted therapeutic strategies for
HCC patients. However, there are limitations in this study.
The prognostic value of HAscore model on five-year OS of
HCC patients is unsatisfactory. In future, more efforts should
be paid to improve this model.
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