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Abstract

Successful social communication requires accurate perception and maintenance of invariant (face identity) and variant
(facial expression) aspects of faces. While numerous studies investigated how face identity and expression information is
extracted from faces during perception, less is known about the temporal aspects of the face information during perception
and working memory (WM) maintenance. To investigate how face identity and expression information evolve over time, I
recorded electroencephalography (EEG) while participants were performing a face WM task where they remembered a face
image and reported either the identity or the expression of the face image after a short delay. Using multivariate
event-related potential (ERP) decoding analyses, I found that the two types of information exhibited dissociable temporal
dynamics: Although face identity was decoded better than facial expression during perception, facial expression was
decoded better than face identity during WM maintenance. Follow-up analyses suggested that this temporal dissociation
was driven by differential maintenance mechanisms: Face identity information was maintained in a more “activity-silent”
manner compared to facial expression information, presumably because invariant face information does not need to be
actively tracked in the task. Together, these results provide important insights into the temporal evolution of face
information during perception and WM maintenance.
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Introduction
Human faces contain multidimensional information that is crit-
ical for social interaction. Faces contain changeable information
that varies depending on attentional and emotional states (e.g.,
gaze direction and facial expression). They contain invariant
information that is preserved despite variable states (e.g., face
identity). While a classic model for face perception proposes
independent and parallel processing of variant and invariant
aspects of face information (Bruce and Young 1986), more recent
models propose that the two types of information are processed
interactively (Haxby et al. 2000; Ganel and Goshen-Gottstein
2002; Atkinson et al. 2005). Studies also found that the face pro-
cessing is more dynamic such that the processing of face identity

and facial expression is influenced by various factors such as the
task demand and individuals’ experiences (Yankouskaya et al.
2014).

While much research on face processing has focused on how
we perceive faces, it is also important to understand how the
perceived faces are maintained in working memory. For example,
it is necessary to know whether the person that we are talking
to now is the same person that we were talking to prior to
a brief interruption, and a rapid memory for expressions may
be important for monitoring how someone’s emotions change
over the course of a conversation. Neuroimaging studies have
identified neuroanatomical networks that are involved in work-
ing memory for face information (Druzgal and D’Esposito 2003;
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Neta and Whalen 2011), but little is known about the millisecond-
level temporal dynamics with which face information evolve over
time from perception to working memory.

The present study investigated the time course of invari-
ant (i.e., face identity) and variant (i.e., facial expression) face
information during perception and working memory. Traditional
univariate ERP methods have been widely used to study face
processing with high temporal precision (Itier 2004; Kappenman
and Luck 2011), but these methods do not reveal which identity
or which expression is being perceived or remembered. Instead,
the present study used a multivariate ERP decoding approach
(Grootswagers et al. 2017) that has been used to track the time
course of specific visual information in perception and working
memory (Bae and Luck 2018, 2019a). Prior research has used
an EEG/magnetoencephalography (MEG) decoding approach to
assess the temporal dynamics of face processing (Nemrodov
et al. 2016, 2018; Dobs et al. 2019; Smith and Smith 2019) but
these studies were mostly on the perception period and focused
on determining the earliest time points where face information
becomes available.

The present study used a face working memory task in which
participants were required to perceive the identity (4 different
identities) and emotional expression (fear, happy, neutral, anger)
of a given face image during a 500-ms stimulus presentation and
maintain this information across a 1000-ms delay period (Fig. 1a).
Participants were then tested unpredictably on either the iden-
tity or the expression. Because the to-be-reported dimension was
not known until the end of the trial (Fig. 1b), participants had to
extract both types of information on every trial. The EEG was
recorded while participants performed the task, and a multi-
variate decoding analysis was conducted to track specific face
identity and facial expression information during the perception
and working memory maintenance1.

The decoding analyses revealed a temporal dissociation
between face identity and facial expression: Although the decod-
ing of face identity was stronger than facial expression during the
perception period, the decoding of facial expression was stronger
than face identity during working memory maintenance period.
Subsequent analysis suggested that the weaker face identity
decoding during working memory maintenance does not mean
that the face identity information was not stored in working
memory. Instead, it suggested that face identity information
might be stored in a more “activity-silent” manner (Stokes 2015;
Wolff et al. 2017). These results demonstrate dissociable temporal
dynamics of face identity and facial expression information
during perception and working memory maintenance, providing
new insights onto the model of face processing (Bruce and Young
1986; Haxby et al. 2000).

Materials and Methods
Participants

A total of 22 college students (14 female, 8 male) between the ages
of 18 and 30 with normal or corrected-to-normal visual acuity
participated for monetary compensation ($12/h). The sample size
was determined prior to the data collection based on previous
EEG decoding studies (Foster et al. 2016; Nemrodov et al. 2016;
Bae and Luck 2018, 2019a). The study was approved by the UC

1 The present study defines working memory “maintenance” period as
time points at which the perceived face information has to be main-
tained in working memory because the face image is no longer available.

Davis Institutional Review Board and the Arizona State Univer-
sity Institutional Review Board.

Stimuli & Apparatus

A total of 16 face images from the NimStim facial expressions
data set (Tottenham et al. 2009) (4 identities: 27 M, 36 M, 06F, and
07F; 4 expressions: fear, happy, neutral, and anger) were used.
These 16 face images were chosen based on the similarities in
skin color and hairstyle, and to match the number of male and
female faces. The task was generated in Matlab (The Mathworks,
Inc.) using PsychToolbox (Brainard 1997; Pelli 1997) and was pre-
sented on an LCD monitor (Dell U2412M) with a gray background
(31.2 cd/m2) at a viewing distance of 100 cm. A black fixation
dot was continuously present in the center of the display, and
participants were instructed to maintain fixation on this dot
except during the response period.

Experimental Design

Procedure of the task is illustrated in Figure 1a. Each trial started
with a 1000-ms presentation of the central fixation dot followed
by a 500-ms presentation of a face image (5.1◦ × 3.7◦). Identity
and facial expression were randomly selected from the 16 face
images. During the stimulus presentation period, participants
were asked to remember both face identity and facial expression
of the face image. After another 1000-ms memory interval, par-
ticipants were presented with a new face image for the next trial
(89% of the trials). This new face image was always in different
face identity and facial expression from the previous-trial face
image. For the remaining 11% of the trials, participants were pro-
vided with a 2 × 2 array of 4 face images (each image, 3.3◦ × 2.3◦)
for memory test (Fig. 1b). During the test, participants reported
either face identity (50% of the test) or facial expression (50% of
the test) but not both. Which face dimension should be reported
was indicated by “Identity” or “Expression” presented in the mid-
dle of the display. To prevent the repetition of memory item being
presented in the test display, task-irrelevant face dimension was
always different from the memory item. For example, when face
identity 1 expressing happy was a memory item for an identity
test, images in the test display were 4 different face identities
expressing one of the remaining 3 facial expressions (e.g., fear).
Likewise, when face identity 1 expressing happy was a memory
item for a facial expression test, images in the test display were
4 different facial expressions with one of the remaining face
identities (e.g., face identity 2). The test images remained on the
screen until participants pressed one of 4 buttons (corresponding
to the 2 × 2 location of the test images) on a gamepad for a
report. A white screen with the central fixation dot followed
for 1000 ms and a new face image was presented for the next
trial. Note that face memory was tested for 11% of the trials for
the sake of efficiency. However, participants had to remember
both face identity and facial expression every trial because when
and which face dimension would be tested on a given trial were
unknown.

Each participant completed a total of 720 trials plus 16
practice trials. Among the 720 main experiment trials, face
memory was tested 80 times (5 trials for each of the 16 face
images, in random order). I excluded trials right after the test
trials from the EEG analysis because memory reports could
influence EEG signals associated with the perception of the
subsequent face image. Excluding the posttest trials produced
640 trials (40 trials for each of the 16 face images, in random
order) for the main decoding analysis. Participants took a short
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Figure 1. Task procedure, behavioral performance, and ERP topography. a. On each trial, participants saw a face image and remembered both the face identity (ID) and

facial expression. Images shown here are not scaled to actual size. This was typically followed after a delay by the next trial. However, on a random subset of the trials,

memory was tested for the face ID or facial expression from that trial. b. Two types of test trials. For the face ID test trials (indicated by “Identity” in the middle of

the display), 4 face images with different face IDs but the same facial expression (except for the facial expression of the original memory item) were presented, and

participants reported which of the 4 face images was the same ID as the memory item. For facial expression test trials (indicated by “Expression” in the middle of

the display), 4 face images with different facial expressions of the same face ID (except for the face ID of the original memory item) were presented and participants

reported which of the 4 face images was the same facial expression as the memory item. I show examples of the NimStim face images due to the restriction placed on

the stimulus set (Tottenham et al., 2009). c. Behavioral performance for the ID and Expression tests (n = 22). The difference between them was not statistically significant.

Error bars indicate ±1 SEM. d,e. Topography of ERP activity for each of 4 face IDs (d, collapsed across facial expressions) or facial expressions (e, collapsed across face

IDs), averaged across the participants and time points during the perception (0–500 ms) and the working memory interval (500–1500 ms).

break after every 80 trials. The experiment lasted about an
hour.

EEG Recording & Preprocessing
The continuous EEG was recorded using a Brain Products
actiCHamp recording system (Brain Products GmbH). Recordings
were obtained from a broad set of 59 scalp sites (FP1/2,
AFz/3/4/7/8, Fz/1/2/3/4/5/6/7/8, FCz/1/2/3/4/5/6, Cz/1/2/3/4/5/6,
T7/8, CPz/1/2/3/4/5/6, TP7/8, Pz/1/2/3/4/5/6/7/9/10, POz/3/4/7/8,
Oz/1/2). Electrodes on the left and right mastoids were recorded
and served as reference sites. The horizontal electrooculogram
(EOG) was recorded from electrodes placed lateral to the external
canthi and was used to detect horizontal eye movements. The
vertical EOG was recorded from an electrode placed below the
right eye and was used to detect eyeblinks and vertical eye move-
ments. Electrode impedances were maintained below 50 KΩ. All

signals were recorded single-ended and then referenced offline.
The EEG was filtered online with a cascaded integrator-comb
antialiasing filter (half-power cutoff at 130 Hz) and digitized at
500 Hz. A photosensor was used to measure the temporal delay
between the onset of the stimulus on the computer monitor and
the event code recording in the EEG data set. On average, there
was a 26-ms delay of the stimulus onset from the event code.
This delay was compensated by shifting the event code in the
data set backward by 26 ms.

Signal processing and analysis was performed in Matlab using
EEGLAB Toolbox (Delorme and Makeig 2004) and ERPLAB Toolbox
(Lopez-Calderon and Luck 2014). The scalp EEG was referenced
offline to the average of the left and right mastoids. A bipolar hor-
izontal EOG derivation was computed as the difference between
the two horizontal EOG electrodes, and a vertical EOG derivation
was computed as the difference between Fp2 and the electrode
below the right eye. All the signals were band-pass filtered
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(non-causal Butterworth impulse response function, half-
amplitude cutoffs at 0.1 and 80 Hz, 12 dB/oct roll-off) and
resampled at 250 Hz. Portions of EEG containing large muscle
artifacts or extreme voltage offsets (identified by visual inspec-
tion) were removed. Independent component analysis (ICA) was
then performed on the scalp EEG for each subject to identify
and remove components that were associated with blinks (Jung
et al. 2000) and eye movements (Drisdelle et al. 2017). The ICA-
corrected EEG data were segmented for each trial from −500 to
+1500 ms relative to the onset of the stimulus.

EEG Decoding Analysis

I attempted to decode both face identity and facial expression
based on the scalp distribution of the phase-locked ERP volt-
ages (Grootswagers et al. 2017). The decoding procedure for face
identity and facial expression was identical except for the way
the data were organized. For the sake of brevity, I describe the
procedure for face identity decoding here. To decode face identity,
the trials were organized in terms of face identity (collapsed
across facial expressions). This created 160 trials for each face
identity (i.e., 40 trials per face identity × 4 facial expressions).
The raw EEG for each trial was low-pass filtered at 6 Hz using
the EEGLAB eegfilt() routine. This was determined a priori based
on previous studies (Bae and Luck 2018, 2019a, 2019b) to ensure
that the decoding is not influenced by alpha-band activity (8–
12 Hz), which is a major source of trial-to-trial variability (see
Supplementary Material for additional decoding analysis with
more modest low-pass filtering and decoding analyses with ERPs
from different frequency bands). This process produced a 4-
dimensional data matrix for each participant, with dimensions
of time (500 time points; one data point for every 4 ms for
the duration of 2000 ms), face identity (4 identities), trials (160
individual trials for each face identity), and electrode site (the 59
scalp sites).

I used the combination of a support vector machine (SVM) and
error-correcting output codes (ECOC) (Dietterich and Bakiri 1995)
to classify the face identity on the basis of the spatial distribution
of the ERP signal over the 59 scalp electrodes. The ECOC model
was implemented through the Matlab fitcecoc() function. The
data were decoded independently for each of the 500 time points
(every 4 ms) from −500 ms to +1496 ms (relative to the stimulus
onset). However, the statistical analysis for decoding accuracy
focused on temporally contiguous clusters of time points (rather
than focusing on each time point) and the continuous nature of
EEG data was taken into account for the statistical testing (see
below for statistical analysis of decoding accuracy).

I used a 3-fold cross-validation with an averaging procedure
(Grootswagers et al. 2017). 3-fold was chosen to maximize the
number of trials within a group so that signal-to-noise ratio
can be maximized by averaging (Isik et al. 2014). The data for
a given face identity were divided into 3 equal sized groups of
trials (3 groups of 53 trials for each of the 4 face identities).
One random trial for each of the 4 face identities was excluded
because 160 is not evenly divisible by 3. The trials for a given
face identity in each group were averaged together, producing a
scalp distribution of ERP signals for a time point being analyzed (a
matrix of 3 groups × 4 face identities × 59 electrodes). Two groups
of datasets were submitted to the ECOC model with known face
identity labels to train the 4 SVMs. Each SVM learned to perform
a binary classification that separated one of the 4 face identities
from the other 3 face identities (i.e., one-vs-rest coding design).
The remaining group of datasets were used for testing which
was done with the Matlab predict() function. The output of this

function provides one predicted face identity for each of the 4
face identities in the testing dataset. Decoding accuracy was then
computed by comparing the true face identity labels of the test
data set with the predicted labels for the data set. This procedure
was repeated 3 times, once with each group of data serving as
the testing dataset. To minimize idiosyncrasies associated with
the assignment of trials to groups and to increase reliability of
the decoding, I iterated the entire procedure 10 times with new
random assignments of trials to the 3 groups (see Supplementary
Material for the effect of the iteration procedure). The number of
iteration used here was determined a priori on the basis of pre-
vious studies (Bae and Luck 2018, 2019b, 2019a). After completing
all the iterations of the cross-validation procedure, decoding
accuracy was collapsed across the 4 face identities, across the 3
cross-validations, and across the 10 iterations, producing average
decoding accuracy for a given time point based on 120 decoding
attempts. After this procedure was applied to each time point,
the averaged decoding accuracy values were smoothed across
time points to minimize noise using a 5-point moving window
(equivalent to a time window of ±8 ms).

The procedure for the decoding of facial expression was
identical to the decoding of face identity except that the data
were organized in terms of facial expression (collapsed across
face identity).

Because the main goal of the present study was investigating
the temporal dynamics of face identity and facial expression rep-
resentations, the analysis focused on the independent decoding
of the two face dimensions. However, I report the decoding of
the combination of face identity and facial expression in the
Supplementary Material.

Statistical Analysis of Decoding Accuracy

If the scalp distribution of ERPs contains information about
face identity, then the decoding accuracy should be higher than
chance level (1/4). To compare decoding accuracy to chance at
each time point while controlling for multiple comparisons, I
took a nonparametric cluster-based permutation approach (Bae
and Luck 2019c) that is analogous to the cluster-based mass
univariate analysis commonly used in EEG research (Maris and
Oostenveld 2007; Groppe et al. 2011). This method is appropriate
here because decoding accuracy may not be normally distributed.
In addition, it provides an intelligent correction for multiple
comparisons and takes noise autocorrelation in the EEG data set
into account.

To perform cluster-based permutation test, I first tested
whether the decoding accuracy at each time point after the onset
of the stimulus was greater than chance (1/4) using one-sample
t-tests. One-tailed tests are appropriate here because the SVM
approach could not produce meaningful below-chance decoding.
After the independent t-test for each time point, I found clusters
of contiguous time points for which the single-point t-tests
were significant (P < 0.05), and the t scores within each cluster
were then summed together to produce a cluster-level t mass.
Each cluster-level t mass was then compared against a null
distribution for the cluster-level t mass that was determined
via permutation analysis.

To perform the permutation analysis, I randomly permuted
the true labels for the test data prior to computing decoding
accuracy rather than permuting the labels for the data and
then going through the training–testing procedure (Bae and Luck
2019c). This enabled faster reconstruction of the null distribution.
By permuting the true label for the test data set, the decoding
accuracy is necessarily at the chance level. Crucially, I used the
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same permuted label for each time point in a given EEG epoch,
to account for temporal autocorrelation in the data during the
construction of the empirical null distribution. After computing
decoding accuracy with permuted labels, the decoding accuracy
was smoothed with a 5-point running average filter (the same
procedure applied to the actual decoding accuracy). I then found
clusters of contiguous time points using the method described
above. If there were no significant clusters of time points, then
the cluster mass was set to zero for that permutation trial. If there
were more than one cluster of significant time points, I took the
mass of the largest cluster.

I repeated the whole permutation process 1000 times with
randomly permuted true face identity label and constructed the
empirical null distribution of the cluster-level t mass, resulting
in the resolution of P = 10−3. I then computed the P value cor-
responding to each cluster in the actual data set by examining
where each observed t mass fell within the null distribution.
The P value for a given cluster was set based on the nearest
percentiles of the null distribution. If the obtained cluster-level
t mass was larger than the maximum of permuted cluster-level
t mass, then I reported P < 0.001. I rejected the null hypothesis
and concluded that the decoding was above chance for any
observed cluster-level t mass that was in the top 95% of the null
distribution (alpha = 0.05).

To statistically compare decoding accuracies between face
identity and facial expression, I used the same cluster-based
permutation approach, but with two differences. First, I used
two-tailed t-tests rather than one-tailed t-tests because one face
dimension could be decoded better or worse than the other
dimension. Second, the null distribution of the cluster-level t
mass was constructed by randomly swapping labels for the two
conditions across participants 1000 times. I computed the P value
corresponding to each cluster in the actual data set by examining
where each observed t mass fell within the null distribution, and
rejected the null hypothesis if the observed t mass fell within
the top or bottom 2.5% of values from the null distribution (two-
tailed, alpha = 0.05).

Temporal Generalization

To test the temporal evolution of brain activation patterns for a
given stimulus class, I conducted cross-time decoding analysis
in which a classifier was trained on one time point and tested
on all the time points (Grootswagers et al. 2017). To conduct
this analysis, data within a 100-ms time window (e.g., [−500,
−400] ms, [−400, −300] ms and so on.) were averaged prior to
the training and testing. The time-averaging process produced
20 data points for the entire epoch for a given trial ([−500, 1500]
ms). Decoding was done with the all the possible combination of
training and testing time points (20 × 20). All other aspects of the
decoding analysis were identical to the main decoding analysis.

Cross-Dimension Decoding Analyses

The main decoding analysis for a given face dimension was done
independently of the other face dimension. Although the other
face dimension (e.g., facial expression for face identity decoding)
was randomly assigned for the training and testing data set, it
is possible that trials for a stimulus image were present in the
training and testing data set, influencing the decoding. To rule
out this possibility and to test the independency in a more strin-
gent way, I conducted cross-dimension decoding analyses, sim-
ilar to leave-one-exemplar-out cross validation (Grootswagers
et al. 2017) and independent exemplar cross validation (Carlson

et al. 2014). To decode face identity, I trained the face identity
classifier using trials with 3 out of 4 facial expressions (e.g., fear,
neutral, and anger) and tested the classifier for the trials with
the remaining facial expression (e.g., happy). Likewise, to decode
facial expression, I trained the facial expression classifier using
trials with 3 out of 4 face identities (e.g., identities 1–3) and tested
the classifier for the trials with the remaining face identity (e.g.,
identity 4). Because a decoding-irrelevant face dimension was
not repeated between the training and testing data sets, above
chance decoding from this analysis provides stronger support for
the independency between the two face dimensions (e.g., face
identity information plays no role in facial expression decoding).
This cross-dimension decoding analysis was repeated 4 times
until each of the 4 levels of decoding-irrelevant face dimension
served as test data set (4-fold-cross validation). Because the data
for training and testing were controlled rather than randomly
assigned as in the main decoding analysis, iterations with ran-
dom assignment could not be applied. Consequently, decoding
results were less reliable than the main decoding analysis. All
other aspects of the cross-dimension decoding procedure were
identical to the main decoding procedure, including statistical
testing.

Decoding of the Previous-Trial Face Information

To test whether the previous-trial face information was present
during the perception of the current-trial face image, I attempted
to decode face identity and facial expression presented in the
previous trial based on ERP signals for the current trial. To that
end, I organized the data with respect to the previous-trial face
information (collapsing across the face information for the cur-
rent trial). In the previous-trial facial expression decoding anal-
ysis, for example, a given trial was labeled as happy if that trial
was preceded by a happy face in the previous trial irrespective
of true facial expression for that trial. Likewise, in the previous-
trial face identity decoding analysis, a given trial was labeled as
identity 1 if that trial was preceded by identity 1 in the previous
trial irrespective of true face identity for that trial. The first trial
was necessarily excluded because previous trial was undefined
for the first trial. Note that the face image in the next trial was
always in different face identity and facial expression from the
previous-trial face image. Thus, the above chance decoding from
this analysis cannot be attributed to the stimulus repetition. All
other aspects of decoding procedure were identical to the main
decoding analysis procedure.

Code and Data Availability

Both the data and the Matlab analysis scripts are available upon
request from G.B.

Results
Behavioral Performance

Figure 1c summarizes behavioral performance. The mean
accuracy was above chance (= 0.25) for both face identity and
facial expression, indicating that participants were actively
engaged in the task. Behavioral performance did not differ
significantly between face identity and facial expression
(t(21) = 0.733, P = 0.472, two-tailed). The corresponding Bayes
factor (Rouder et al. 2009) (using the default JZS scaling factor
of 0.707) showed that the data were 3.23 times more likely
to arise from the null hypothesis. These results confirm that
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participant’s memory for face identity and facial expression was
approximately equally accurate.

Scalp Distributions

The decoding analysis relies on differences in the single-
participant scalp distributions of ERP signals for the different
face identities and facial expressions. Figure 1d,e shows the
grand average scalp maps for each face identity and facial
expressions for the duration of perception (averaged across the
initial 500 ms from the stimulus onset) and working memory
maintenance (averaged across the 1000 ms delay interval).
During the perceptual period, the ERP maps show a positive
voltage over posterior-occipital scalp sites and a negative voltage
over central-frontal scalp sites for both face identity and facial
expression. However, during working memory maintenance, the
maps show a more positive voltage over centroparietal scalp
sites than frontal electrode sites. Although these averaged scalp
maps do not show the actual scalp patterns used for decoding
(because the decoding analyses were done independently at
each time point and separately for each participant), the overall
differences in the spatial patterns of ERPs for perception and
working memory maintenance period demonstrate that the
neural representation of face information is not stable over time.
This will be more systematically investigated in the temporal
generalization analysis.

Decoding Face Identity and Facial Expression

To track how face-related information is represented during per-
ception and working memory, I applied SVM-based multivariate
decoding analysis to the spatial pattern of ERP signals and inde-
pendently decoded the face identity and the facial expression
every 4 ms from −500 ms to 1500 ms relative to the stimulus
onset. The decoding accuracy was statistically tested at each
time point, using a cluster-based permutation analysis to cor-
rect for multiple comparisons (Bae and Luck 2019c). As shown
in Figure 2a (colored horizontal lines), decoding accuracy for
both face identity and facial expression was significantly above
chance (1/4) for most of the time points during the percep-
tion and working memory periods (Face Identity: 2 clusters,
P < 0.001, P < 0.001; Facial Expression: 1 cluster, P < 0.001). These
results replicate previous findings (Nemrodov et al. 2016; Smith
and Smith 2019), demonstrating that the spatial pattern of ERP
activity contains face-specific information during the perceptual
period and extends this finding into the working memory main-
tenance period.

To confirm that each of the individual face identities and
facial expressions was decodable during both perception and
working memory maintenance, I performed a confusion matrix
analysis by collapsing predicted stimulus labels across all the
time points separately during the perception (0–500 ms) and
working memory maintenance (500–1500) periods (Fig. 2b).
Each of the individual face identities and facial expressions
was decodable during both periods, demonstrating that the
decoding was not driven by a single distinctive identity or
expression. These matrices also confirm that individual facial
expressions produced distinctly different neural patterns during
both perception and working memory, whereas the neural
patterns for individual face identities were much more decodable
during perception than during working memory maintenance.

Although ICA was used to correct EEG artifacts associated
with eye movements prior to the decoding analysis, it is possi-
ble that some residual artifacts might have contributed to the

above-chance decoding (Quax et al. 2019). To assess this possibil-
ity, I conducted an additional decoding analysis using only the
horizontal and vertical EOG channels with radial basis functions
(Suykens and Vandewalle 1999). If eye movements were respon-
sible for the decoding, then the signals from these sites should
have yielded high decoding accuracy. However, decoding from
these sites was much poorer than the main decoding analysis
and was not significant for almost all the time points (see Sup-
plementary Material). In addition, I conducted another decoding
analysis without trials with extensive eye-movement related
artifacts and found the same pattern of the results as in the main
analyses (see Supplementary Material). Lastly, to rule out the
possibility that the decoding was mainly driven by the different
patterns in spatial attention for different types of the stimulus, I
conducted the same analysis using the power of alpha-band (8–
12 Hz) EEG activity which has known to reflect the shift of spatial
attention (Rihs et al. 2007; Foster et al. 2016) and found poor
decoding accuracy for both face identity and facial expression for
almost all the time points (see Supplementary Material). These
results demonstrate that the above-chance decoding in the main
analysis was not simply driven by eye-movement artifacts or by
differences in spatial attention.

The finding that face identities and facial expressions pro-
duced distinctive neural patterns during perception and working
memory maintenance does not rule out the hypothesis that
integrated representations of the two face dimensions exist in
the neural signals. Indeed, the specific combinations of the two
face dimensions were also decodable based on the spatial pattern
of ERP signals both during perception and working memory
maintenance periods (see Supplementary Material). This result
demonstrates that spatial pattern of ERP signals contains infor-
mation about the two independent face dimensions as well as
the specific combination of the two face dimensions. In the
following analyses, I focus more on the independency of the two
face dimensions.

Independency of Face Identity and Facial Expression

The main decoding analysis demonstrates that the scalp
distribution of ERP signals contains at least partially independent
information about face identity and facial expression during
both perception and working memory maintenance. As a more
stringent test of independence, I performed a cross-dimension
decoding analysis where a given face feature was decoded
while controlling the other feature dimension (Carlson et al.
2014; Grootswagers et al. 2017; Bae and Luck 2018). For identity
decoding, the decoder was trained with the data from 3 of the
expressions and then tested with the data from the fourth
expression. For expression decoding, the decoder was trained
with the data from 3 of the identities and then tested with the
data from the fourth identity. This requires that the decoder can
generalize across expressions when decoding identity and can
generalize across identities when decoding expression. This
cross-dimension analysis also controls information that is not
necessarily related to the dimension of interest. For example, a
given facial expression might be decodable due to some potential
interaction between the facial expression and other visual
features such as hair-style and/or skin tone. This is less likely
in the cross-dimension analysis because different face identities
were used to train and test the facial expression classifier (see
Methods).

Although the results from this analysis were noisier due to
the lack of iterative random subsampling procedure (see Supple-
mentary Material), the pattern of results from this analysis was

https://academic.oup.com/cercorcomms/article-lookup/doi/10.1093/texcom/tgaa093#supplementary-data
https://academic.oup.com/cercorcomms/article-lookup/doi/10.1093/texcom/tgaa093#supplementary-data
https://academic.oup.com/cercorcomms/article-lookup/doi/10.1093/texcom/tgaa093#supplementary-data
https://academic.oup.com/cercorcomms/article-lookup/doi/10.1093/texcom/tgaa093#supplementary-data
https://academic.oup.com/cercorcomms/article-lookup/doi/10.1093/texcom/tgaa093#supplementary-data
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Figure 2. Decoding accuracy and confusion matrices. a Time course of mean decoding accuracy for face ID and facial expression (n = 22). Time zero indicates the onset of

the stimulus face. Chance-level performance (0.25 = 1/4) is indicated by the abscissa. The colored horizontal lines indicate clusters of time points in which the decoding

was significantly different from chance after correction for multiple comparisons. The gray areas indicate clusters of time points in which the decoding was significantly

different between face ID and facial expression after correction for multiple comparisons. The light shading indicates ±1 SEM. b Confusion matrices for face ID decoding

and facial expression decoding for perception (0–500 ms) and working memory (500–1500 ms) periods. Each cell shows the probability that a given ID or expression was

classified as a given ID or expression. Cells on the diagonal represent correct classifications.

consistent with the main recoding analysis. Decoding accuracy
for face identity was significantly above chance during the per-
ception period (one cluster, P < 0.001) but no significant clusters
were observed except for the early working memory mainte-
nance period (one cluster, P = 0.025) (Fig. 3a). In contrast, decoding
accuracy for facial expression was above chance for the most
of time points during perception (2 clusters, P = 0.027, P < 0.001)
and working memory maintenance (4 clusters, P = 0.011, P = 0.007,
P = 0.011, P = 0.014) (Fig. 3b). These results provide stronger evi-
dence for at least partial independence of face identity and facial
expression representations.

Temporal Generalization of Face Information

The scalp patterns of ERP activities for face identity and facial
expression were dramatically different between perception
and working memory maintenance period, suggesting that the
pattern of neural activity for faces dynamically evolve over time
(Fig. 1d,e). To test this more systematically, I conducted cross-
time decoding analysis (Grootswagers et al. 2017). The logic
behind this analysis is that if the pattern of neural signals at one
time point persists at different time points, then the classifier
trained on one time point should be generalizable to different
time points. For the sake of efficiency, the data were averaged
within a 100-ms time window prior to the decoding. As can
be seen from Figure 4a and b, the decoding was stronger when
the classifier was trained and tested on the same time window

for both face identity and expression (upper diagonal) and it
dropped off away from the diagonal. However, the decoding was
still above chance level for nearby time windows, indicating
that the neural pattern persists to at least within small time
windows (∼100 ms). However, the decoding became chance level
as the time for training and testing increased, suggesting that
the persistent neural activity is limited and that the pattern of
neural signals dynamically evolve over time (Wolff et al. 2017).

Dissociable Temporal Dynamics Between Face Identity and
Facial Expression

The face ID decoding was performed collapsed across expres-
sions, and the facial expression decoding was performed col-
lapsed across identities. The above-chance decoding accuracy
for each dimension suggests at least some independency in the
representation of identity and expression. This independency
was also evident in the time course of decodability (Fig. 2a). The
decoding of the face identity rose above chance rapidly after the
onset of the stimulus and then fell, but remained significantly
above chance for some of the time points during the working
memory maintenance (see orange lines in Fig. 2a). In contrast,
the decoding of facial expression rose more slowly and then
fell more slowly, remaining above chance for the most of the
time points during the working memory maintenance (see blue
lines in Fig. 2a). Indeed, a cluster-based permutation analysis
(see Methods) showed that decoding accuracy was significantly
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Figure 3. Mean decoding accuracy from cross-dimension decoding analysis for (a) face ID and (b) facial expression (n = 22). Time zero indicates the onset of a face

stimulus. Chance-level performance (0.25 = 1/4) is indicated by the abscissa. The black lines indicate clusters of time points in which the decoding was significantly

different from chance after correction for multiple comparisons. The gray shading indicates ±1 SEM.

greater for face identity than for facial expression during the
perception period (2 clusters, P < 0.001, P < 0.001, two-tailed), but
decoding accuracy was significantly greater for facial expression
than for face identity during the working memory maintenance
period (3 clusters, P < 0.001, P < 0.001, P < 0.001, two-tailed).

The same pattern of results was obtained in the follow-up
analyses. In the cross-dimension decoding (Fig. 3), facial expres-
sion decoding was above chance for the most of the time points
during working memory maintenance, whereas face identity
decoding was not. A cluster-based permutation analysis showed
a significant cluster of time points at which face identity decod-
ing was greater than facial expression decoding during the per-
ception period (1 cluster, 76–140 ms, P < 0.001, two-tailed) and
small but significant clusters of time points at which facial
expression decoding was greater than face identity decoding
during later perception period (1 cluster, 396–420 ms, P < 0.001,
two-tailed) and at the end of working memory maintenance
period (1 cluster, 1436–1452 ms, P < 0.001, two-tailed).

This was also evident in the cross-time decoding (Fig. 4c).
Facial expression decoding was more reliable than face identity
decoding during the working memory maintenance period when
the decoder was trained and tested on the same time win-
dows. Comparing decoding accuracy between face identity and
facial expression in this analysis showed a significant time win-
dows for better face-identity decoding during perception period
(100–300 ms, P = 0.007, two-tailed permutation analysis) and a
time window for better facial-expression decoding during work-
ing memory maintenance period (800–900 ms, P = 0.023, two-
tailed permutation analysis).

The results from the 3 analyses consistently showed disso-
ciable temporal dynamics of face identity and facial expression.
However, it is possible that these results were driven by the 6-
Hz low-pass filtering used in the EEG processing prior to the
decoding analyses. To rule out this possibility, I conducted addi-
tional decoding analysis using a more modest low-pass filtering
(∼35 Hz) and found the same pattern of results, including the
temporal dissociation of face identity and facial expression (see
Supplementary Material).

It is intriguing that the information about face identity in the
ERP signal declined more rapidly than information about facial
expression during working memory. Behavioral analysis showed
that the decreased face decoding did not lead to poorer work-
ing memory performance for face identity (Fig. 1c). Although
these behavioral data do not show that the information about
face identity was continuously maintained in working memory,
they suggest that the information was accurately maintained

somehow in the brain. How was the face identity information
maintained during working memory maintenance? One possi-
bility is that the face identity information might be stored in an
“activity-silent” manner (Wolff et al. 2017) so that the mainte-
nance of face identity information did not produce decodable
neural signals. Although this possibility cannot be directly tested
in the context of the present study, I attempted to find evidence
for an activity-silent representation of face identity information
by asking whether the face identity representation would be
reactivated when the next trial begins. This hypothesis is based
on previous research showing that orientation representations
fade away during working memory maintenance but are then
reactivated when the next stimulus appears, indicating that
an activity-silent representation must have been present (Bae
and Luck 2019b). If face identity information is maintained in
an activity-silent manner (consistent with the weaker decod-
ing accuracy for face identity information during the working
memory period), then it is possible that this information may be
reactivated when the next stimulus appears. However, because
the facial expression representations remain decodable through
the delay period, there would be no need to reactivate them when
the next stimulus appears. This leads to the prediction that the
identity of a given face will become decodable again following
the appearance of the next face.

To decode previous-trial face information, I reorganized the
data on the basis of the face identity and expression labels from
the previous trial (as opposed to the current trial) and attempted
to decode the face identity and facial expression. The decoding
accuracy for the previous-trial face identity was at chance level
before the onset of the current trial stimulus but rose above
chance level shortly after the onset of the current-trial stimu-
lus (2 clusters, P = 0.021, P =.002, one-tailed), suggesting that the
previous-trial face identity was reactivated by the current trial
stimulus (Fig. 5a). This reactivation of face identity information
was not driven by the participants perceiving the same face
image in a subsequent trial because stimulus repetition between
the consecutive trials was not allowed in the experiment (see
Methods). Although it is possible that the chance level decoding
during the pre-stimulus baseline period might be due to the base-
line correction procedure, the increase of decodability suggests
that more information about the previous-trial face identity was
available after the onset of the current-trial stimulus. I also con-
ducted the corresponding analysis for facial expression. Results
showed that the decoding of the previous-trial facial expression
was not significantly greater than chance during the entire time
period (Fig. 5b). To further support these results, I conducted a

https://academic.oup.com/cercorcomms/article-lookup/doi/10.1093/texcom/tgaa093#supplementary-data
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Figure 4. Temporal generalization of decoding for (a) the face ID and (b) the facial expression. The data were averaged for every 100-ms time window prior to the decoding

analysis. The color scale represents decoding accuracy (chance = 0.25). c. Time course of mean decoding accuracy for face ID and facial expression when training and

testing were done on the same time window (i.e., upper diagonal of panel (a) and (b)) in the time-averaged decoding. The gray areas indicate time windows in which the

decoding was significantly different between face ID and facial expression after correction for multiple comparisons. The light shading indicates ±1 SEM.

signal-to-noise ratio analysis using the method developed in a
previous study (Bae et al. 2020) and found that the signal-to-noise
ratio for the previous-trial face identity tended to be greater than
the signal-to-noise ratio for the previous-trial facial expression
(see Supplementary Material). Although these results provide
indirect evidence for activity-silent maintenance of face identity
information, they are at least consistent with the hypothesis
that different mechanisms were involved in the working memory
maintenance of face identity information and facial expression
information.

Discussion

While it is critical to accurately perceive faces for successful
social communications, it is also critical to protect the perceived
face information from potential interruptions (e.g., occlusions
and eye-movements) while the information is maintained
in working memory. Although numerous prior studies have
shown that face information is efficiently extracted during
perception (Crouzet 2010; Martin et al. 2018), it remains unknown
how the perceived face information unfolds overtime beyond

https://academic.oup.com/cercorcomms/article-lookup/doi/10.1093/texcom/tgaa093#supplementary-data
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Figure 5. Mean accuracy for (a) the decoding of the previous-trial face ID and (b) the previous-trial facial expression (n = 22). The black lines indicate clusters of time

points in which the decoding was significantly different from chance after correction for multiple comparisons. The gray shading indicates ±1 SEM.

perception period. The present study investigated the time
course of both invariant and changeable aspects of face
information, and yielded strong evidence of differential temporal
dynamics for face identity and expression during perception
and working memory maintenance. Although face identity was
more rapidly and accurately decodable than facial expression
during perception, facial expression was more decodable during
working memory maintenance. These results indicate that
identity and expression information are processed at least
partially independently.

One intriguing finding in the present study was the rapid
decrease of face identity information during the working mem-
ory period. The finding of comparable behavioral performance
for identity and expression suggests that the face identity infor-
mation was not simply lost in working memory. Instead, the
present results suggest that face identity information was main-
tained via activity-silent representations (without electrophys-
iological activity) (Stokes 2015; Wolff et al. 2017). Although the
weaker decoding accuracy for face identity during the work-
ing memory period could simply indicate that storage of this
dimension is not easily detectable from the scalp, other evidence
also supported the hypothesis of activity-silent storage. Specifi-
cally, although the face identity decoding faded during the delay
period, it became decodable again after the onset of the next
stimulus. In other words, the face identity apparently shifted
into an active, decodable state form when the next stimulus
appeared. By contrast, the facial expression remained decodable
during the working memory period and was not reactivated
when the next stimulus was presented. These different patterns
suggest that dissociable mechanisms were used to maintain face
identity information and facial expression information. How-
ever, the decoding of face identity was significantly greater than
chance for some proportion of time points during the late work-
ing memory delay (Fig. 2a) and the size of the significant cluster
for the difference between the two types of face information was
relatively small compared to the size of the working memory
maintenance period. Thus, one cannot conclude that face iden-
tity information was completely absent in active working mem-
ory. Instead, the result suggests that face identity information
was maintained in an activity-silent manner on some proportion
of trials.

The reactivation of the previous-trial face information also
demonstrates that the information in the activity-silent state
can be reactivated even if the information is irrelevant to the
current-goal of the task (Barbosa et al. 2020). Interestingly, this
is not consistent with past studies showing that the reactivation
occurs only for a stimulus that might become relevant for future
behavior (Rose et al. 2016; Wolff et al. 2017). Investigating the

exact cause of this discrepancy is beyond the scope of the present
study, but the differences in the task paradigm between the
present study and the previous studies suggest that the reacti-
vation observed in the present study might be based on different
reactivation mechanisms. Specifically, the previous studies used
a retro-cueing paradigm to have participant shift their focus of
attention from one working memory representation to another,
and found that the initially irrelevant information was reacti-
vated when it becomes relevant. This is clearly different from
the task used in the present study in which participants do not
need to shift their attention from one representation to another
and no explicit demand for the switching was imposed. It would
be interesting for future research to investigate whether the
reactivation observed in the previous study is driven by the same
reactivation mechanisms observed in the present study via a
retro-cueing paradigm.

However, the present results are consistent with the previous
orientation working memory study that showed the reactivation
of the orientation information in the previous trial during per-
ception of the current-trial orientation (Bae and Luck 2019b). This
naturally raises the question of why the face information in the
previous trial was reactivated. One possible answer would be that
the visual system may integrate information over different time
points to achieve perceptual stability (Fischer and Whitney 2014).
Indeed, a recent study demonstrated that the face representation
in the current trial was biased by the face perceived in the
previous trial (Liberman et al. 2014), indicating that the previous-
trial face information was present during the perception of a
new face. Although the present study does not provide behavioral
evidence for the serial dependence effect due to the way the face
memory was tested, it suggests that the reactivation of previous-
trial face information is a potential mechanism for the face serial
dependence effect.

However, it is not clear why it is the face identity information,
not the facial expression information, that was maintained in
an activity-silent manner. One possibility is that the signal-to-
noise ratio was lower for the face identity information compared
to the facial expression information during the working memory
maintenance period. Alternatively, it is also possible that cate-
gorical information of face identity was sufficient to perform the
task due to the invariant nature of the face identity information,
whereas more precise information about facial expression was
necessary because it is changeable face information. In case of
our daily conversation, it is not necessary to actively hold the
identity information in working memory and monitor potential
changes in the identity information during the conversation
because other’s face identity does not change over the period of
the conversation. However, it would be critical to hold the exact
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facial expression information in mind to notice possible changes
in facial expression because the change of facial expression
provides important information about other’s ongoing emotional
state. It would be an important future research to test whether
the more passive maintenance of face identity is an inherent
property of face memory or whether this pattern might vary
depending on task demands. For example, investigating whether
the prioritization of one face dimension over the other leads
to differential pattern of reactivation would be important for
understanding how attention influences the maintenance of
information in working memory (Smith and Smith 2019).

Lastly, one potential limitation of the present study is that the
exact source of the decodability is not known. This is a general
issue of EEG decoding studies because the source of the signal
is generally unknown due to the low spatial resolution of EEG
signal and because a decoding algorithm finds any differences
that separate one class from the others in a given data. For
example, participants in the present study might have used
verbal labels to remember the face information and the decoder
might have picked up neural signals associated with the verbal
labels. Although it is not clear how such strategies would produce
the timing pattern observed in the present study, the present
study cannot completely rule out the possibility of the labeling
strategies. Thus, future research should investigate the exact
source of the neural signals associated with perception and
working memory maintenance of face information.

Supplementary Material
Supplementary material can be found at Cerebral Cortex Commu-
nications online.
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