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Mitochondrial autophagy (or mitophagy) regulates the mitochondrial network and function
to contribute tomultiple cellular processes. The protective effect of homeostatic mitophagy
in cardiovascular diseases (CVDs) has attracted increasing attention. FUN14 domain
containing 1 (FUNDC1), an identified mitophagy receptor, plays an essential role in CVDs.
Different expression levels of FUNDC1 and its phosphorylated state at different sites
alleviate or exacerbate hypoxia and ischemia/reperfusion injury, cardiac hypertrophy, or
metabolic damage through promotion or inhibition of mitophagy. In addition, FUNDC1 can
be enriched at contact sites between mitochondria and the endoplasmic reticulum (ER),
determining the formation of mitochondria-associated membranes (MAMs) that regulate
cellular calcium (Ca2+) homeostasis and mitochondrial dynamics to prevent heart
dysfunction. Moreover, FUNDC1 has also been involved in inflammatory cardiac
diseases such as septic cardiomyopathy. In this review, we collect and summarize the
evidence on the roles of FUNDC1 exclusively in various CVDs, describing its interactions
with different cellular organelles, its involvement in multiple cellular processes, and its
associated signaling pathways. FUNDC1 may become a promising therapeutic target for
the prevention and management of various CVDs.
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1 INTRODUCTION

Cardiovascular diseases (CVDs), as a constant public health burden, are the leading cause of
morbidity and mortality worldwide. CVD-related mortality has been reduced due to initiative
prevention and pharmaceutical and technological improvements. However, the CVD burden
remains high due to incomplete adherence to guidelines, difficulties adhering to preventative
measures, and the frequency of conditions that increase coronary heart disease risks in patients,
including lipid disorders, high blood pressure, and diabetes (Van Camp, 2014). Therefore, clarifying
the CVDs’ etiology, pathophysiology, and progression underlying mechanisms and potential
therapeutic targets is imperative. The occurrence and progression of CVDs involve multiple
cellular processes, in which mitochondria are essential (Dai et al., 2012; Bravo-San Pedro et al.,
2017; Tian et al., 2019).

Mitochondria are the powerhouse of cardiac cells (they are the heart unit of cells). Mitochondria
are essential during cellular activities such as fatty acid oxidation, oxidative phosphorylation, and
energy metabolism. Moreover, mitochondria are involved in adenosine triphosphate (ATP) transfer
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in the contractile apparatus, Ca2+ homeostasis modulation, redox
status management, and response to cellular and environmental
stress regulation in cardiomyocytes (Pecoraro et al., 2019). CVDs
such as cardiac hypertrophy, heart failure, and ischemic
cardiomyopathy present abnormalities in the mitochondrial
organelle structure and function (mitochondrial damage)
(Pecoraro et al., 2019). Proper mitochondrial autophagy
facilitates the clearance of damaged mitochondria to promote
cardiovascular homeostasis (Campos et al., 2017).

Autophagy is a vital catabolic process with tight regulation
under various stresses. As depicted in Figure 1, a bilayer lipid
membrane–formed vesicle (the autophagosome) engulfs aged or
damaged cellular organelles such as mitochondria, abnormal
proteins, or other cellular components and transfers them
toward lysosomes. Fused with a lysosome, the autophagosome
transforms into an autolysosome. Autolysosomes degrade
engulfed materials and release the products to the cytosol,
where nutrient recycling occurs. The UNC51-like Ser/Thr
kinase (ULK) complex is required during autophagosome
formation to initiate autophagy. Cargo receptors with a cargo-
binding domain bind the selected materials to microtubule-
associated proteins 1A/1B light chain 3 (LC3) via the LC3-
interacting region (LIR) to recruit cargo to autophagosomes
(Lamb et al., 2013). To summarize briefly, isolation
membranes get expanded to form autophagosomes; these get
fused to lysosomes to form autolysosomes, and degradation
inside the autolysosomes results in unbroken autophagy
(i.e., the autophagic flux) (Lamb et al., 2013). An impaired
autophagic flux contributes to multiple CVDs, including
ischemia/reperfusion (I/R) injury. Failing hearts are known to
present a reduced autophagic flux evidenced by the accumulation
of autophagy-related markers (Campos et al., 2017). The infarct
size in a heart is significantly increased by lysosomal-associated

transmembrane protein 4B(LAPTM4B) knockdown-induced
impairment of the autophagic flux, but it is reversed upon
autophagic flux restoration after overexpression (Gu et al., 2020).

Autophagy of mitochondria, a selective form of autophagy
that specifically targets damaged mitochondria, is called
mitophagy; it is a mechanism to remove impaired or
dysfunctional mitochondria and maintain normal
mitochondrial morphology and function in cells. Mitophagy is
needed for cells to function well because abundant impaired or
dysfunctional mitochondria provide an insufficient supply of
energy, overproduce excessive reactive oxygen species (ROS),
and activate apoptosis pathways by releasing cytochrome C to
the cytoplasm (Wang, 2001; Mishra and Chan, 2016; Vásquez-
Trincado et al., 2016; Chan, 2020). Many subcellular organelles,
including the endoplasmic reticulum (ER), mitochondria-
associated membranes (MAMs), lysosomes, and proteins
(FUN14 domain containing 1 [FUNDC1], PTEN-induced
putative kinase protein-1 [PINK1]/Parkin, selective autophagy
adaptor p62/sequestosome 1 [SQSTM1], and LC3) are involved
in mitophagy during CVDs (Tagaya and Arasaki, 2017; Yoo and
Jung, 2018). MAMs are regions of the ER that mediate
communication between the ER and mitochondria and are the
platforms of PINK1/Parkin-dependent mitophagy initiation
(Yang et al., 2020). As a MAM-localized protein, FUNDC1
maintains homeostasis of MAMs and plays an essential role in
receptor-mediated mitophagy.

FUNDC1 was first reported as a novel hypoxia-induced
mitophagy receptor in 2012 (Liu et al., 2012a). It is located on
the outer mitochondrial membrane (OMM) with an N-terminal
LIR (YEVL) exposed to the cytosol that selectively responds to
hypoxia/ischemia stimuli (but not to starvation) (Liu et al., 2012a;
Kuang et al., 2016). Various upstream phosphorylases or
phosphatases change the phosphorylation states at different

FIGURE 1 | Overview of autophagy/mitophagy. The molecular signals released by damaged mitochondria trigger ubiquitin-mediated and receptor-mediated
mitophagy. With the aid of the Unc-51-like kinase 1 (ULK1) complex and class III PI3K (PI3KC3) complex 1, a bilayer lipid membrane enriched in PI3P is formed as part of
the endoplasmic reticulum (ER). Then, it could recruit the PI3P effector proteins WD repeat domain phosphoinositide-interacting proteins (WIPIs) and zinc-finger FYVE
domain-containing protein 1 (DFCP1), which could attract the autophagy-related protein 8 family (ATG8s), including microtubule-associated protein light chain 3
(LC3) proteins. LC3-I is conjugated tomembrane-resident phosphatidylethanolamine (PE) and converted to LC3-II. LC3 has the potential to recognize and engulf labeled
proteins and cellular components due to its interaction with LC3-interacting regions (LIRs) of mitophagy receptors. As autophagosomes engulf, they transfer toward and
fuse with lysosomes, transforming into autolysosomes. In autolysosomes, the engulfment is degraded and released to the cytosol. Finally, the recycle of nutrients is
achieved.
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FUNDC1 sites to affect the binding affinity of its LIR motif to
LC3, thereby promoting or inhibiting mitophagy (Liu et al.,
2012a; Feng et al., 2013; Wu et al., 2014a; Chen et al., 2014;
Zhou et al., 2018a). In addition, studies have demonstrated that
FUNDC1 can tether MAM-specific proteins, facilitate the
formation of MAMs, and affect mitochondrial dynamics
including the level of Ca2+ in the organelle (Wu et al., 2016a;
Wu et al., 2016b; Wu et al., 2017). In this review, we collect and
summarize the evidence for the roles of FUNDC1 (exclusively on
the development of CVDs) describing its interactions with
different cellular organelles, its involvement in multiple
cellular processes, and its associated signaling pathways.

2 FUNDC1-MEDIATED MITOPHAGY IN
CVDS

2.1 Mitophagy in CVDs
Studies have demonstrated at least two major mitophagy
pathways: ubiquitin-mediated and receptor-mediated
mitophagy (Zimmermann and Reichert, 2017). The ubiquitin-
mediated mitophagy pathway is mediated by PINK1/Parkin
(Eiyama and Okamoto, 2015; Bingol and Sheng, 2016; Nguyen
et al., 2016). PINK1 is a molecular sensor of mitochondrial health
that constantly surveys the organelle status. In addition, Parkin is
an amplifier of mitophagy. Once mitochondria lose their
transmembrane potential, PINK1 accumulates at the OMM of
impaired or dysfunctional mitochondria and phosphorylates
ubiquitin and Parkin at S65. pS65-Ub (the phosphorylated
ubiquitin at S65) binds and activates Parkin by destabilizing
Parkin’s autoinhibitory interactions and then recruits Parkin
from the cytoplasm to the OMM (Nguyen et al., 2016). As E3
ubiquitin ligase, the activated phosphorylated Parkin
ubiquitinates various mitochondrial outer-membrane proteins
with less specificity. The elongated PINK1 and Parkin proteins
form ubiquitin chains that act as molecular signals to further
recruit mitophagy receptors, including optineurin (OPTN),
nuclear dot protein 52 (NDP52), Tax1-binding protein 1
(TAX1BP1), neighbor of BRCA1 gene 1 (NBR1), and p62,
which link ubiquitin chains with LC3 (Dikic and Elazar,
2018). Thus, ubiquitinated proteins in impaired mitochondria
can be recognized by cellular mechanisms and get engulfed by
autophagosomes to be transferred to lysosomes for degradation.

The known receptor-mediated mitophagy receptors include
BCL2 interacting protein 3 such as NIX, also known as (BNIP3L),
BCL2 interacting protein 3 (BNIP3), and FUNDC1 in
mammalian systems (Liu et al., 2014; Chen et al., 2016). These
receptors are integral proteins of the OMM, possessing LIRs,
which are the structural basis for LC3 binding to activate
mitophagy (Poole and Macleod, 2021). These receptors can be
modified by dephosphorylation or phosphorylation under
various stresses to affect their affinity for LC3, effectively
regulating mitophagy. For instance, BNIP3L-triggered
mitophagy can be reversed by PRKA/PKA (protein kinase,
AMP-activated)-induced phosphorylation of BNIP3L at
Ser212. Activation of the inhibitory phosphorylation site leads
to the translocation of BNIP3L from the mitochondria to the

cytosol (da Silva Rosa et al., 2021). Phosphorylation of BNIP3 at
Ser17/24 sites or NIX at Ser34/35 sites (Rogov et al., 2017)
promotes its binding to LC3 and facilitates subsequent
mitophagy (Liu et al., 2014). In the case of FUNDC1, post-
transcriptional phosphorylation at Ser17 activates mitophagy,
while phosphorylation at Ser13 inhibits the process (Wang
et al., 2020a). Thus, mitophagy mediated by these two
pathways contributes to the clearance of damaged
mitochondria and might be mutually affected.

Proper mitophagy guarantees homeostasis of mitochondria
in cells and exerts protective effects on the cardiovascular
system, while insufficient or excessive mitophagy may be
detrimental. Atherosclerosis, hypertension, ischemia/
reperfusion injury, myocardial infarction, cardiac
hypertrophy, heart failure, and metabolic cardiomyopathy
consistently exhibit mitophagy-involved pathological
processes. In vivo experiments have shown that knockout of
pivotal mitophagy molecules can affect the phenotype and
severity of diseases. For example, deletion of PINK1 leads to
more severe cardiac hypertrophy and left ventricle dysfunction
in mice than those in wild-type and heterozygous mice (Billia
et al., 2011), while Parkin-knockout mice are vulnerable to
myocardial infarction induced by ligation of the proximal left
anterior descending coronary artery and present a low survival
rate (Kubli et al., 2013). Similarly, the mammalian target of
rapamycin complex 1 (mTORC1) activation in dietary protein-
driven atherosclerotic plaques inhibits mitophagy (its
downstream effect) and results in a buildup of dysfunctional
mitochondria that contribute to a rise in plaque complexity
(Zhang et al., 2020). Likewise, the NIX expression has been
found to be decreased in human atherosclerosis. Silencing the
NIX expression in murine macrophage cells reduced NIX-
mediated mitophagy, enhanced oxidized low-density
lipoprotein (ox-LDL)-induced macrophage pyroptosis, and
led to formation of unstable plaques (Peng et al., 2020).
Therefore, numerous chemicals targeting the modulation of
mitophagy may alleviate or exacerbate different
cardiovascular dysfunctions (Hsu et al., 2015; Ma et al., 2018;
Qiao et al., 2018; Yang et al., 2021).

Cardiomyocytes, cardiac fibroblasts (CFs), endothelial cells
(ECs), vascular smooth muscle cells (VMSCs), macrophages, and
other cell types need to work in an organized manner to keep the
cardiovascular system functioning well and maintain a low
disease risk. Improper mitophagy can alter the functions of
cells and result in the occurrence and progression of diseases.
Inhibited mitophagy aggravates lipid accumulation and leads to
heart dysfunction (Tong et al., 2019). A mitophagy imbalance
renders cardiomyocytes apoptotic under I/R stress (Li et al.,
2019a). PINK1/Parkin-mediated mitophagy is upregulated in
endothelial cells under metabolic stress to protect
mitochondrial integrity and prevent metabolic stress–induced
endothelial injury (Wu et al., 2015). The melatonin-induced
suppression of mitophagy protects microvascular endothelial
cells against I/R injury (Zhou et al., 2017a). In addition,
inhibited mitophagy suppresses activation of cardiac
fibroblasts but promotes apoptosis (Gao et al., 2020a), while
enhanced mitophagy restrains proliferation and apoptosis of
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VMSCs (Swiader et al., 2016; Chen et al., 2020). Thus, mitophagy
in various cell types contributes to cardiac function.

2.2 Structure and Post-transcriptional
Modification of FUNDC1 for Mitophagy
FUNDC1 is a protein with three α-helix transmembrane domains
at the OMM and characteristics similar to those of other
mitophagy receptors. Its LIR motif (Y18-E19-V20-L21 at the
N-terminal region of FUNDC1 in the cytoplasm) has the classic
tetrapeptide W/F/YxxL/I sequence for interaction with LC3,
which links it to the ATG5-dependent core autophagic
machinery (Liu et al., 2012a; Kuang et al., 2016). Mutants of
Y18A, V20A, and L21A or complete deletion of the LIR sequence
display a reduced or even abolished affinity of FUNDC1 for LC3
binding that disrupts mitophagy; other FUNDC1 mutations have
no effects (Liu et al., 2012a; Kuang et al., 2016). Phosphorylation
is the main post-transcriptional modification of FUNDC1 that
regulates mitophagy. Three key residues of FUNDC1, Ser13,
Ser17, and Tyr18, get phosphorylated and modify the binding
affinity of FUNDC1 for LC3 and consequently influence
mitophagy (Lv et al., 2017).

Under normal conditions, as depicted in Figure 2, FUNDC1
phosphorylation at Ser13 (Chen et al., 2014; Zhou et al., 2018a)
and Tyr-18 (Feng et al., 2013; Zhou et al., 2017b) or
dephosphorylation at Ser17 (Wu et al., 2014a) both decrease
the affinity of FUNDC1 for LC3 by altering its stereochemical
properties. The phosphorylation of FUNDC1 at Ser13 and Tyr18

is mediated by casein kinase 2 (CK2) kinases and Src kinase,
respectively (Chen et al., 2014). The affinity of the
dephosphorylated FUNDC1 peptide (at Ser17) for LC3 (at
Lys49) is ∼3-fold weaker than that of the phosphorylated
FUNDC1 peptide (Lv et al., 2017). The direct optic atrophy 1
(OPA1)-FUNDC1 connection and the FUNDC1-calnexin
association block other FUNDC1 interactions, and the
BCL2L1 (BH3 domain)–PGAM5L (a member of the
phosphoglycerate mutase family) complex inhibits FUNDC1
dephosphorylation at Ser13; all these molecular interactions
inhibit FUNDC1 activities (Wu et al., 2014b). Additionally,
the membrane-associated RING-CH protein 5 (MARCH5), a
mitochondrial E3 ligase, mediates FUNDC1 ubiquitylation and
degradation by directly interacting with it at lysine 119. Thus,
FUNDC1 is inactivated in healthy hearts. Moderately inactivated
FUNDC1may interact with the F-box protein FBXL2 to maintain
the mitochondrial integrity or it may form a complex with heat
shock protein 70 (HSC70) to promote the mitochondrial
translocation of unfolded cytosolic proteins and maintain the
cardiac function (Li et al., 2019b; Ren et al., 2020).

Under abnormal conditions like hypoxia, two pathways
regulate FUNDC1 to mediate mitophagy: a kinase-mediated
pathway and an interactional protein-regulated pathway.
Tyr416-phosphorylated Src enhances Tyr18 dephosphorylation
of FUNDC1, increasing its binding ability for LC3 and promoting
mitophagy (Feng et al., 2013; Zhou et al., 2017b). Similarly, CK2
dissociates from FUNDC1 and allows PGAM5 to
dephosphorylate it at Ser13, strengthening its interaction with
LC3 (Chen et al., 2014; Zhou et al., 2018a). ULK1 translocates to
mitochondria and activates FUNDC1 by phosphorylating its
Ser17, and ULK1 deletion inhibits FUNDC1 activation (Wang
et al., 2020a). Under stress, phosphorylated FUNDC1 dissociates
from OPA1 and interacts instead with dynamin-related protein 1
(DRP1) to enhance mitochondrial fission and mitophagy (Wu
et al., 2016b). During mitophagy under hypoxic conditions, the
cytosolic loop of FUNDC1 is exposed (due to an attenuated
FUNDC1/calnexin association) and interacts with DRP1 (Wu
et al., 2016b). Disorders of mitochondrial dynamics, including
imbalanced fission and fusion, are prerequisites for mitophagy.
Hypoxia induces BCL2L1 degradation, increases PGAM5
dissociation, and then enhances dephosphorylation of
FUNDC1 at Ser13 (Ma et al., 2020). Additionally, the
decreased endogenous MARCH5 expression significantly
inhibits FUNDC1 degradation and promotes mitophagy (Chen
et al., 2017). Other regulators of FUNDC1 have been identified:
the Nod-like receptor X1 (NLRX1), in mitochondria, negatively
regulates phosphorylated Tyr18 FUNDC1 levels (Li et al., 2021),
and the LncRNA MEG3 overexpression induces
dephosphorylation of FUNDC1 at Tyr18 by interacting with
the 3′UTR of Rac1 to inhibit its expression (Wang et al.,
2021a). The transcriptional and post-transcriptional controls
of FUNDC1 have also been shown to be important. Under
normoxic conditions, the negative regulatory factor
microRNA-137 is constitutively expressed; it targets the 3′
UTR of the FUNDC1 mRNA suppressing its translation to
attenuate FUNDC1-LC3 associations. Under hypoxic
conditions, the microRNA-137 is downregulated. At the

FIGURE 2 | Overview of the protective role of FUNDC1-mediated
mitophagy in cardiovascular diseases. Physiologically, FUNDC1
phosphorylation at Ser13 and Tyr18 or dephosphorylation at Ser17; OPA1-
FUNDC1 connection, FUNDC1-calnexin association, and the BCL2L1-
PGAM5 complex making FUNDC1 dormant. Under abnormal conditions,
FUNDC1 could be dephosphorylated at Ser13, Tyr18, and or phosphorylated
at Ser17 by various protein kinases such as Src kinase, ULK1, PGAM5, and
others remaining to be identified to increase its affinity with LC3 to promote
mitophagy.
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transcriptional level, mitophagy is enhanced by the peroxisome
proliferator-activated receptor gamma coactivator 1-alpha (PGC-
1a) protein, which induces the FUNDC1 expression by
upregulating the nuclear respiratory factor 1 (NRF1)
expression, a factor that binds FUNDC1 at -186/-176 sites
(Liu et al., 2021a).

In summary, FUNDC1 is crucial to receptor-mediated
mitophagy. Proper mitophagy helps restore cardiac function
after hypoxia, I/R, and other stresses. However, a review of
FUNDC1-mediated mitophagy in CVDs has not been published.

2.3 FUNDC1-Mediated Mitophagy in CVDs
2.3.1 Hypoxia and I/R
Cardiomyocytes need to generate ATP through oxidative
phosphorylation in the respiratory chain of mitochondria,
which is highly dependent on oxygen consumption. When
hypoxia or ischemia occurs, mitochondria are the first
organelles to exhibit extensive fission, loss of membrane
potential, and release of proapoptotic signals that eventually
led to cell death. I/R injury, which is accompanied by the
mitochondrial Ca2+ overload, ROS generation, autophagy
failure, platelet activation, and microthrombosis (Aghaei et al.,
2019; Yang et al., 2019), is a common clinical condition due to
rapid revascularization treatments after acute myocardial
infarction. Revascularization brings oxygen and nutrition to
“suffocated cardiomyocytes,” but it simultaneously promotes
cell death (Li et al., 2019a; Wang et al., 2020b). Mitophagy
plays a protective role in I/R injury. Under ischemia,
mitophagy is thought to be cardioprotective due to its removal
of impaired mitochondria, reduction of mitochondrial ROS
(mROS) and apoptosis, and reduced inflammation (Yang
et al., 2019; Xin and Lu, 2020; Yu et al., 2020). OPA1-induced
mitophagy and FUNDC1-dependent mitophagy could offer
cardioprotection against ischemia (Li et al., 2018; Xin and Lu,
2020), while the knockout of Parkin causes extensive cardiac
injury due to mitochondrial dysfunction and mitophagy
inhibition (Kubli et al., 2013). Most other studies have also
suggested a cardioprotective role for mitophagy during
ischemia. However, mitophagy may exert detrimental effects
during the reperfusion phase. According to a published
hypothesis, fragmented mitochondria and excessive mitophagy
could reduce the necessary ATP supply, leading to cell death
(Anzell et al., 2018; Yang et al., 2019). Thus, proper mitophagy
guarantees the homeostasis of mitochondria to maintain a
normal cellular physiology, but mitophagy dysregulation is
pathogenic and even fatal for cells.

Studies have demonstrated that FUNDC1 plays an essential
role in mitophagy under hypoxia or I/R conditions. Li et al.
reported that the ULK1 signaling pathway mediates FUNDC1
phosphorylation, leading to increased mitophagy levels and
cardiac function protection under ischemia (Li et al., 2018).
Zhou et al. demonstrated that FUNDC1-mediated mitophagy
gets activated to prevent myocardial apoptosis during ischemia,
while upregulation of Ripk3 can phosphorylate Tyr18 in
FUNDC1 during reperfusion to inhibit FUNDC1-dependent
mitophagy and increase necrosis (Zhou et al., 2017b). Zhang
et al. found a dual role for mitophagy in platelets, where

FUNDC1–knocked-out platelets presented reduced but
sustained mitophagy activity and caused more injuries during
the late stages of I/R in the heart (Zhang et al., 2016). The same
researchers also generated a cell-penetrating peptide to block
mitophagy in vivo by intraperitoneal administration to prevent
mitochondrial dysfunctions and platelet inactivation, which
could become a new strategy potentially applicable in the
clinical setting. Zhou et al. studied the association between
mitophagy and microvascular permeability and found that
under I/R stress, the upregulated nuclear receptor subfamily 4
group A member 1 (NR4A1) induces CK2α to phosphorylate the
mitochondrial fission factor (Mff) and FUNDC1, thereby
enhancing mitochondrial fission and inhibiting mitophagy,
resulting in microvascular hyperpermeability, endothelial cell
apoptosis, and damage (Zhou et al., 2018b). Genetic deletion
of CK2α was also proved by Zhou et al. to protect cardiomyocytes
from I/R injury via decreased Ser13 phosphorylation of FUNDC1
to promote mitophagy and to prevent mitochondrial damage and
apoptosis (Zhou et al., 2018a). In addition, some kinases, such as
mammalian STE20-like kinase 1 (Mst1) and polo-like kinase 1
(PLK1), have also been associated with FUNDC1-mediated
mitophagy in vivo and in vitro under I/R stimuli (Yu et al.,
2019; Mao et al., 2021).

Interestingly, mitophagy contributes to functional changes in
different organs. For example, electroacupuncture
preconditioning has a protective effect in patients undergoing
heart valve replacement surgery, and this is caused by inhibition
of mitophagy mediated by the mTORC1-ULK1-FUNDC1
pathway (Xiao et al., 2020). The protective effect of
electroacupuncture pretreatment on cerebral I/R injury also
correlates with p-mTORC1 mitophagy (Mao et al., 2020).
Moreover, the transient receptor potential cation channel
subfamily V member 1 (TRPV1) factor alleviates I/R-induced
acute renal injury (Wei et al., 2020). The TRPV1-mediated
transient Ca2+ influx activates AMP-activated protein kinase
(AMPK) and reduces FUNDC1 transcription. This indicates
that the Ca2+ influx and mitophagy are both regulators during
I/R. In addition, FUNDC1-mediated mitophagy (triggered by the
activated phosphorylation of AMPK) contributes to the
protective effect of the tissue-type plasminogen activator
during cerebral I/R injury (Cai et al., 2021). Mitophagy is also
considered a key mechanism during intestinal I/R injury.
Downregulated NLRX1 promotes phosphorylation of
FUNDC1 in intestinal I/R injury (Li et al., 2021).
Phosphorylated FUNDC1 decouples from the
nitrophenylphosphatase domain and non-neuronal SNAP25-
like protein homologs 1 and 2 (NIPSNAP 1 and 2; mitophagy
signaling proteins on the outer membrane of damaged
mitochondria) and then fails to trigger mitophagy (Li et al.,
2021). Similarly, during acute kidney injury, ischemia
preconditioning activates FUNDC1 mitophagy (through post-
transcriptional phosphorylation at Ser17) to mitigate I/R injury-
mediated renal injury (Wang et al., 2020a). Downregulated
FUNDC-1, the C. elegans ortholog of FUNDC1, protects the
worm against injury in a model of hypoxia-reoxygenation stress.
This protection depends on activation of the transcription factor
associated with stress-1 (ATFS-1), the central transcription factor
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that regulates the mitochondrial unfolded protein response (Lim
et al., 2021). Taken together, most evidence points to FUNDC1-
mediated mitophagy being essential against hypoxia and I/R
injury; FUNDC1 may be a promising therapeutic target.

2.3.2 Cardiac Hypertrophy and Remodeling
Cardiac hypertrophy is a manifestation of enlargement of
individual cardiomyocytes (not an increase in the number of
cells) due to various pathological stresses, such as pressure
overload, infarction, metabolic disturbances, or structural heart
disease, eventually developing into heart failure. Pathological
cardiac hypertrophy involves changes in multiple cellular
processes, including excessive protein synthesis and inhibition
of selective autophagy (Nakamura and Sadoshima, 2018; Zhou
et al., 2020). Studies have demonstrated that activated mitophagy
can mitigate cardiac hypertrophy. Lysocardiolipin acyltransferase
1 (ALCAT1) deletion upregulates PINK1 and mitigates oxidative
stress, insulin resistance, and mitochondrial dysfunction via
activation of PINK1-mediated mitophagy and alleviating
cardiac hypertrophy (Liu et al., 2012b). Macrophage migration
inhibitory factor (MIF) depletion hinders the activation of
Parkin-dependent mitophagy by regulating AMPK-mTOR
signaling pathways to exacerbate the hypertrophy induced by
pressure overload (Xu et al., 2014). In addition, PINK1
autophosphorylation can also recruit Parkin to initiate
mitophagy, exerting a protective effect on angiotensin II (ANG
II)-induced hypertrophy (Xiong et al., 2018).

FUNDC1-dependent mitophagy has also been shown to play a
critical role in cardiac hypertrophy. In a mouse model of cardiac
hypertrophy induced by continuous administration of
isoproterenol (ISO), Liu et al. reported autophagy inhibition as
the LC3II/LC3I ratio decreased, and the FUNDC1 expression was
downregulated. This was confirmed by in vitro experiments using
neonatal rat cardiomyocytes (NRCMs), in which the hypertrophy
could be alleviated by baicalein, a flavonoid extracted from the
root of Scutellaria baicalensis (Liu et al., 2021b). Mechanistically,
baicalein binds directly to FOXO3a (a transcription factor) and
transactivates FUNDC1. In another study by Li et al, FUNDC1-
related mitophagy was associated with cardiac hypertrophy in a
mouse model of transaortic constriction (TAC) and an in vitro
model of NRCMs induced using ANG II (Li et al., 2020). ALDH2
activated by alpha-lipoic acid (α-LA), a well-known antioxidant,
governs the activation of Nrf1-FUNDC1. Nrf1, a member of the
Cap-N-Collar family of regulatory proteins, binds to the 5′
promoter of FUNDC1 to modulate the FUNDC1 expression
directly. Thus, the evidence indicates that FUNDC1-mediated
mitophagy is involved in cardiac hypertrophy and that
interference with the associated signaling pathways could
prevent the progression or deterioration of the disease.

2.3.3 FUNDC1-Mediated Mitophagy in Obesity- or
High-Fat Diet Intake–Induced Heart Dysfunction
Obesity coexists with reduced autophagy and mitophagy,
alongside the inflammation, oxidative stress, lipotoxicity, and
apoptosis, (Lavallard et al., 2012; Guo et al., 2013; Zhang et al.,
2018; Shao et al., 2020) that together may lead to heart
dysfunction. Mitophagy markers such as Parkin and BNIP3

are downregulated following HFD feeding (Zeinvand-Lorestani
et al., 2018; Thomas et al., 2019). However, a study reported that
HFD feeding in mice consistently activates mitophagy, as
evaluated with Mito-Keima (Tong et al., 2019). These
researchers also found that inhibition of mitophagy by
deletion of ATG7 or Parkin in an HFD-induced mouse model
can increase lipid accumulation and worsen heart dysfunction,
while activation of mitophagy by TB1 (Tat-Beclin1) injection
exerts the opposite effect (Tong et al., 2019).

Wu et al. found that impaired mitophagy and compromised
mitochondrial quality control due to FUNDC1 knockout lead to
obesity and insulin resistance in mice via the MAPK/JUN
pathway and the inflammatory response (Wu et al., 2019a). In
addition, Ren et al. found that FUNDC1 and mitophagy were
downregulated in a HFD-induced mouse model and that
FUNDC1-knockout mice were more vulnerable to HFD-
induced cardiac hypertrophy, fibrosis, and insufficiency, via
interaction with FBXL2 in an inositol 1,4,5-trisphosphate
receptor type 3 (IP3R3)-dependent manner (Ren et al., 2020).
Their study also confirmed that loss of FUNDC1-mediated
mitophagy and increased fatty acid synthase acyl-CoA
synthetase long-chain 4 (ACSL4)-mediated ferroptosis led to
cardiac remodeling and contractile anomaly in FUNDC1-
knockout mice under an HFD-induced model (Pei et al.,
2021). However, Fu et al. found that skeletal muscle–specific
FUNDC1-knockout mice present impaired mitochondrial
energetics in the skeletal muscle and exercise performance, but
the mice are markedly resistant to HFD-induced obesity with
high systemic insulin sensitivity and glucose tolerance (Fu et al.,
2018). The mechanism might be that FUNDC1 deficiency
upregulated the expression of fibroblast growth factor
21(FGF21), a peptide hormone that regulates energy
homeostasis. Based on the results of these studies, FUNDC1-
related mitophagy regulates cardiac metabolism under obesity or
HFD stress and may be a potential target to prevent obesity-
associated cardiac injury. However, underlying mechanisms
remain to be clarified.

3 OTHER ROLES OF FUNDC1 AT MAMS
AFFECTING HEART DYSFUNCTION

MAMs are the sites connecting mitochondria and the ER through
protein–protein or protein–lipid complex tethers, at which these
two subcellular organelles exchange contents and execute
fundamental biological processes jointly (Ca2+ and lipid
exchange, inflammation, and oxidative stress) (Wu and Zou,
2019; Gao et al., 2020b; Silva-Palacios et al., 2020). Emerging
evidence has indicated the importance of MAM in CVDs.
FUNDC1 is a MAM-related protein important for MAM
formation, Ca2+ exchange between the ER and mitochondria,
andmitochondrial morphology (Wu et al., 2016b;Wu et al., 2017;
Wu et al., 2019b).

3.1 FUNDC1 and MAM Formation
FUNDC1 has been found enriched at MAMs under stress and to
facilitate ER and mitochondrial tethering by interacting with ER
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proteins such as calnexin and IP3R2 (ER-resided inositol 1,4,5-
trisphosphate type 2 receptor) (Wu et al., 2016b; Wu et al., 2017;
Wu et al., 2019b). Under hypoxia, FUNDC1 accumulates at the
MAM and exhibits a dynamic interaction with the MAM-related
protein calnexin (Wu et al., 2016b). In cardiomyocyte-specific
FUNDC1-knockout mice, the connection between the ER and
mitochondria in cardiomyocytes is disrupted, and the mice
present few MAMs and MAM-related proteins (IP3R2 and
PACS-2 [phosphofurin acidic cluster sorting protein 2]), a
picture consistent with that in the H9C2 cell line (Wu et al.,
2017). In a high glucose-induced in vitro model, the FUNDC1
overexpression promoted MAM formation, and FUNDC1
ablation inhibited it (Wu et al., 2019b). Wang et al. found
similar phenotypes in FUNDC1-deleted endothelial cells (EC)
and EC-specific FUNDC1-knockout mice (Wang et al., 2021b).
Based on the evidence, FUNDC1 is a MAM-related protein that
participates in the formation and function of MAMs.

3.2 FUNDC1 and Calcium Homeostasis
During the cardiac cycle, Ca2+ is rapidly released to the cytosol
from the sarcoplasmic reticulum (SR) and then restored
(Gambardella et al., 2018). Appropriate calcium handling is
vital for excitation–contraction (EC) coupling of
cardiomyocytes, and calcium flux disruption eventually leads
to heart dysfunction. Mitochondria can act as Ca2+ buffers,
and they are also involved in Ca2+ reuptake, but Ca2+ overload
in mitochondria can be harmful and cause heart failure (Brookes
et al., 2004; Gambardella et al., 2018). The FUNDC1-mediated
MAM is an important structure that regulates intracellular
calcium homeostasis. Specific FUNDC1-knockout
cardiomyocytes present decreased cytoplasmic and
mitochondrial Ca2+ and increased ER Ca2+, while FUNDC1-
overexpressing cardiomyocytes display the opposite effects
(which can be abolished by silencing IP3R2) (Wu et al., 2017).
Ablation of FUNDC1 decreases mitochondrial Ca2+ (via MAMs
induced by high glucose) and also inhibits ROS production and
cell apoptosis, preventing cardiac dysfunction in vivo (Wu et al.,
2019b).

3.3 FUNDC1 and Mitochondrial Dynamics
Studies have reported that deletion of FUNDC1 results in
elongated mitochondria in cardiomyocytes (Wu et al., 2016b;
Chen et al., 2016; Wu et al., 2017). Wu et al. observed both fewer
absolute fission events and a decreased ratio of fission to fission
and fusion events in specific FUNDC1-knockout cardiomyocytes
via time-lapse confocal imaging (Wu et al., 2017). They also
found that FUNDC1 loss inhibits the integrity of MAMs, causing
increased mitochondrial and intracellular Ca2+ concentrations
and leading to cardiac dysfunction (Wu et al., 2017). As
mentioned, FUNDC1 coordinates mitochondrial dynamics and
mitophagy at MAMs by interacting with DRP1 and OPA1.
FUNDC1 ablation suppresses the mitochondrial fission 1
protein (Fis1) expression by reducing the binding of the
cAMP response element-binding protein (CREB) in the Fis1
promoter and inhibiting mitochondrial fission in
cardiomyocytes (Wu et al., 2017). In HeLa cells under
hypoxia, FUNDC1 is involved in mitochondrial fission via its

Mff interaction (Wu et al., 2016b). In addition, USP19 (an ER-
resident deubiquitinase) can bind FUNDC1 and deubiquitinate it
at the MAMs leading to DRP1 oligomerization and promotion of
mitochondrial division (Chai et al., 2021).

4 FUNDC1 REGULATES THE PRODUCTION
OF ROS AND APOPTOSIS IN CVDS

Impaired mitochondria with an altered calcium buffering
system generate less ATP and more ROS, eventually leading
to mitochondria-related cell apoptosis. Studies have established
an association between FUNDC1 and ROS generation and
apoptosis (Zhang et al., 2016; Wu et al., 2017; Wu et al.,
2019b; Huang et al., 2020; Jiang et al., 2021). Huang et al.
found that ablation of FUNDC1 enhances the production of
ROS and interleukin 1-β (IL1-β) in macrophages treated with
combined lipopolysaccharide (LPS) and nigericin in vivo and
in vitro through the regulation of mitophagy, while the
overexpression of FUNDC1 (but not of its Y18A/L21A
mutant) can reverse this effect in vitro (Huang et al., 2020).
In the H9C2 model of septic cardiomyopathy, Jiang et al. found
that the ROS generation and apoptosis related to FUNDC1-
mediated mitophagy can be attenuated and inhibited by irisin
(Jiang et al., 2021). Wang et al. observed similar results in the
AC16 human ventricular cardiomyocyte cell line incubated with
LPS (Wang et al., 2021c). Wu et al. also confirmed that simple
FUNDC1 deletion is sufficient to promote cardiomyocyte
apoptosis and heart failure in vivo in cardiomyocyte-specific
FUNDC1-knockout mice (Wu et al., 2017). However, it is
interesting to note that FUNDC1 knockout in Akita mice
inhibits excessive ROS production and improves the
mitochondrial membrane potential in diabetic hearts
compared with the effects in non–FUNDC1-knockout Akita
mice (Wu et al., 2019b).

5 CONCLUSION

FUNDC1 (a novel identified receptor of mitophagy at the MAM)
plays an important role in mitochondrial homeostasis, MAM-
related cellular processes, and mitochondria-mediated apoptosis.
We collected evidence demonstrating that FUNDC1 is closely
involved with various CVDs. Activated FUNDC1-mediated
mitophagy has been proposed to play protective roles in I/R
injury, cardiac hypertrophy, and obesity-induced
cardiomyopathy. FUNDC1-mediated mitophagy may be
stabilized by phosphorylation/dephosphorylation of the three
key residues of FUNDC1: Ser13, Ser17, and Tyr18. Thus, these
sites are promising therapeutic targets to exploit small molecule
drugs that can induce protective mitophagy. This is an enormous
challenge that needs to be further explored.

Abundant impaired mitochondria generate high levels of ROS
and induce apoptosis, two phenomena that are also affected by
FUNDC1. The interaction of FUNDC1 and MAM-located
proteins regulates mitochondrial morphology and calcium
homeostasis in the cytosol and mitochondria, ensuring cardiac
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contractility and normal heart function. Good quality and
detailed studies indicate that FUNDC1 and its associated
cellular pathways may be a promising therapeutic target for
the prevention and management of CVDs. However, the
association between FUNDC1 and mROS in CVDs needs
clarification.

Some important roles of FUNDC1 in CVDs have been
revealed by laboratory experiments, but gaps remain that
hamper our understanding of the complex pathophysiological
processes at play; more studies are needed before turning
laboratory results into effective and safe translational
medicine. Many interventional approaches used in the
laboratory are not currently available in clinical settings.
However, some studies have made excellent attempts at
demonstrating their utility. Cell-permeable functional peptides
composed of the HIV-1 Tat protein transduction domain have
been proven effective to induce FUNDC1-mediated mitophagy
activity in cell tests. Similarly, intraperitoneal injection of well-
designed synthetic cell-penetrating peptides in vivo could lead to
satisfactory manipulation of FUNDC1-mediated mitophagy.
Unfortunately, in contrast to the many kinases involved in
FUNDC1-mediated mitophagy processes tested, no inhibitors

or agonists of those corresponding kinases have been studied in
vivo. More investigations and innovations are needed before
treatments targeting this molecule can be applied in clinical
settings.
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