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INTRODUCTION 
 

Melatonin (MT) is an endogenous indoleamine 

hormone secreted and synthesized mainly by the pineal 

gland in mammals. MT exists in the body fluid, which 

regulates the circadian rhythm, behavior, immune 

response, and reproductive function [1]. As an 

antioxidant, MT provides opportunities for the treat-

ment of various diseases, including the Alzheimer's 

disease, cancers, immune disorders, diabetes, and viral 

infections [2–4]. 

 

The main function of MT is to scavenge endogenous 
free radicals, which can resist oxidation and prevent 

cellular damages. Studies have shown that MT can 

regulate the reproductive activities of photoperiod 

animals [5], biological rhythms of oocytes and ovaries, 

and fertilization rates. Animal studies have shown that 

MT can improve age-related decline in fertility and 

attenuate ovarian damages caused by oxidative stress 

[6]. The purpose of this review is to introduce the 

regulatory effects of MT on the ovarian physiological 

functions, and to illustrate the research progress of MT 

in the treatment of ovary-related diseases. 

 

MT synthesis and distribution 
 

MT, with the chemical name of 5-methoxy-N-

acetyltryptamine, is mainly synthesized by the pineal 

gland in mammals. MT can also be secreted in the retina, 
digestive tract, and ovary [7–9]. The pineal gland cells 

use tryptophan in the blood as raw materials to produce 

serotonin (5-HT) through the hydroxylation and 

decarboxylation of tryptophan hydroxylase (THP) and 
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aromatic amino acid decarboxylase (AADC), and further 

synthesize MT through the acetylation and methylation 

of N-acetyltransferase (NAT) and oxindole-oxy-

methyltransferase (HIOMT) (Figure 1) [10]. 

 

HIOMT has recently been referred to as the acetyl 

complex amine-O-methyltransferase (ASMT) in the 

human genetic database [10]. The 5-HT can be 

extracted from the mammal ovaries, with high 

expression levels of NAT and ASMT [10]. Therefore, it 

has been believed that the ovaries can directly 

synthesize MT. MT in the ovary can be derived from 

the systemic blood circulation, or synthesized by the 

granular cells, including the cumulus granulosa cells 

and oocytes [11]. MT can also diffuse and easily cross 

the morphological and physiological barriers (such as 

the placenta and blood-brain barrier), and then enter the 

cells and affect the functions of various tissues [12]. 

 

The synthesis and secretion of MT is regulated by the 

endogenous circadian clock in the suprachiasmatic 

nucleus. The levels of MT synthesis and secretion are 

high at night, while relatively low levels would be 

observed during the day, with roughly sinusoidal 

rhythm. The MT secretion presents a circadian rhythm 

of low during day and high at night, which is the basis 

for the physiological function of basis circadian 

rhythm [13]. 

In the process of MT biosynthesis, norepinephrine 

secreted by the nerve endings of the superior cervical 

ganglion stimulates the pineal cells through b-

adrenergic receptors, thereby accelerating the synthesis 

of the second messenger cyclic AMP and inducing the 

NAT activity [14]. This pathway is actually activated at 

night because the nerve activity of the upper cervical 

ganglia would be inhibited by the stimulation of light 

[14]. Therefore, darkness represents the only condition 

for the synthesis of MT. 

 

In human beings, the MT secretion reaches its highest 

level between the ages of 3 and 5 years old, which 

begins to decrease from the beginning of puberty [11, 

14]. The secretion of MT is rather stable before the age 

of 35–40 years. In older age, the level of MT would be 

significantly diseased [15]. However, there are 

significant differences in the MT rhythm amplitude 

between individuals, and whether these differences 

would affect the body health has not yet been 

confirmed. The concentration of MT in the follicular 

fluid (FF) of females undergoing in vitro fertilization is 

significantly higher than in the peripheral blood [15], 

with circadian rhythm and seasonal changes (that is, the 

MT level in FF at night is higher than during day; and 

the MT concentrations in FF in autumn and winter with 

short sunshine are significantly higher than in the 

seasons with long sunshine such as spring and autumn) 

 

 
 

Figure 1. Synthesis of melatonin (MT) in human whole body [10]. Abbreviations: NAT, serotonin-N-acetyl transferase; and HOMT, 

hydroxyindole-O-methyltransferase. 
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[15, 16]. During the follicles development, the MT 

concentrations in larger follicles are significantly higher 

than in small follicles, and the MT concentrations in 

pre-ovulation follicles are higher than that in serum, 

suggesting that MT plays an important role in the 

follicles development and ovulation [15, 16]. 

 

MT and ovarian functions 
 

MT receptors in ovaries 
 

The MT receptors could be divided into the membrane 

and nuclear receptors, respectively [17]. The latter is 

mainly related to the RZR/ROR superfamily of nuclear 

receptors. There are three subtypes of membrane 

receptors, i.e., the MT1, MT2 and MT3 receptors [17]. 

However, only the MT1 and MT2 receptor subtypes 

exist in humans and other mammals, which are encoded 

by the MTNR1A gene of q35·1 on chromosome 4 and 

the MTNR1B gene of q21-q22 on chromosome 11, 

respectively [18]. Based on the molecular structure, the 

MT1 receptor is composed of 350 amino acids, while 

the MT2 receptor is composed of 363 amino acids. 

These two receptors share 60% sequence homology, 

both belonging to the 7-transmembrane G protein-

coupled receptor family, with similar binding site 

structure for MT [19]. 

 

MT binds to the MT1 and MT2 receptors, which 

mediates a variety of physiological effects through 

various signal transduction pathways, including the 

adenylate cyclase (AC) - cAMP, mitogen-activated 

protein kinase (MAPK) - extracellular signal-regulated 

kinase (ERK), phosphatidylinositol 3 - kinase (PI-3-K) 

/ Akt (protein kinase B), ERK-1/2 and c-Jun n-terminal 

Kinase (JNK)-1/2, and Akt signaling pathways [20, 

21]. In different tissues and organs, MT interacts with 

the same receptor subtype, activating differential 

second messengers. The binding of MT to MT1 

receptor would down-regulate the intracellular PKA 

activity and reduce the CREB phosphorylation, thereby 

inhibiting the cAMP signal transduction cascade and 

regulating the cell activities [22]. The activated MT1 

receptor could also induce a transient increase in the 

concentrations of cytosolic calcium ions and inositol 

phosphate. In addition, studies have found that in the 

mouse ovaries, MT can up-regulate the intracellular 

AMPK signaling pathway through the MT1 receptor-

mediated pathways [23, 24]. The signals mediated by 

MT2 receptors are related to multiple pathways 

(including the activation of MT2 receptors to promote 

the production of phosphoinositol, as well as the 

inhibition of adenylate cyclase and guanylate cyclase), 

thereby regulating the downstream pathways to exert 

effects [23, 24]. MT participates in the regulation of 

biological rhythms through a receptor-dependent 

mechanism, and promotes the coordination of tissues 

and organs [23, 24]. MT receptors exist in the human 

brain, cardiovascular system, liver, breast, and 

myometrium [17]. The mRNAs of the MT1 and MT2 

receptors can be detected in human granulosa cells and 

luteal cells (Figure 2) [25, 26]. 

 

MT can act on the hypothalamus-pituitary-ovarian axis 

(HPO) by regulating the hypothalamic gonadotropins, 

which can also directly bind to the ovarian granulosa 

cells to exert effects on HPO [26, 27]. MT inhibits the 

expressions of gonadotropin-releasing hormone (GnRH)  

 

 
 

Figure 2. Melatonin (MT) receptors and their pathways. Abbreviations: MT, melatonin; R, melatonin receptor; AC, Adenylyl Cyclase; 
ATP, adenosine triphosphate; cAMP, cyclic adenosine monophosphate; PKA, protein kinase A; CREB, responsive element binding protein; 
PLC, phospholipase C; PIP2, phosphatidylinositol 4,5-bisphosphate; DAG, diacylglycerol; CG, guanylyl Cyclase; GTP, guanosine triphosphate; 
and GMP, guanosine monophosphate [31]. 
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and GnRH receptors by up-regulating the LH receptor 

mRNAs [28]. GnRH, in turn, controls the secretions of 

the gonadotropin luteinizing hormone (LH) and follicle 

stimulating hormone (FSH), which regulates the 

reproductive function at the gonadal level and 

participates in maintaining the level of the corpus 

luteum during pregnancy [28, 29]. The wide 

distribution of MT receptors is the basis for its 

extensive biological effects. In addition, some of the 

biological effects of MT are receptor-independent, such 

as acting (as antioxidants) to prevent the oxidative 

stress damages [30]. 

 

MT and antioxidation 
 

In the ovary, oocytes and somatic cells produce the 

reactive oxygen species (ROS) and reactive nitrogen 

(RNS) in the follicular micro-environment. Active 

substances highly react with complex cellular molecules 

(such as the proteins, lipids, and DNA) and change their 

functions. This process would cause molecular 

damages, called oxidative stress. Mitochondria have 

been considered to be the main source of intracellular 

ROS and an important target for ROS supply [32]. The 

ROS generated by the mitochondrial respiratory chain 

would injure many substances, including the proteins, 

lipids and mitochondrial DNA (mtDNA) [32]. 

Cumulative damages due to excessive ROS to mtDNA 

may cause DNA strand breaks and lead to somatic 

mtDNA mutations. Somatic mtDNA mutations may 

cause damages to the activity of the respiratory chain 

complex, further aggravating the increased ROS 

production and mtDNA mutations [32, 33]. 

 

Oxidative stress causes the mitochondrial dysfunction 

and increases the uptake of Ca2+ by mitochondria. High 

concentrations of Ca2+ can inhibit the synthesis of ATP 

by mitochondria. The lack of ATP would affect cell 

growth and even lead to apoptosis [34]. In addition, 

oxidative stress can also activate the cellular apoptosis 

induced by caspase-3 [35]. Oxidative stress can damage 

the oocytes, granulosa cells and mesenchymal cells in 

the ovary, thereby accelerating the ovarian function 

failure, possibly leading to malformations and changes 

in the embryonic development [36, 37]. These changes 

would increase the cell apoptosis in pregnancy, 

significantly increasing the incidence of female fertility. 

 

MT could scavenge the endogenous free radicals, which 

can resist the oxidation and prevent the cell damages. 

MT reduces the oxidative stress through various ways. 

It can eliminate the endogenous ROS and RNS, 

including the superoxide anions (O2
·−), hydroxyl 

radicals, singlet oxygen (1O2), hydrogen peroxide 

(H2O2), hypochlorous acid (HOCl), nitric oxide (NO·), 

and peroxynitrite anion (ONOO−) [38–40]. In addition, 

MT can eliminate the metabolites formed during the 

interaction with oxidation products [41]. When 

melatonin directly neutralizes the free radicals (through 

the electronic donation), its derivatives are as effective 

as melatonin in reducing oxidative stress [42]. 

Melatonin and its metabolites, such as AMK, can 

directly scavenge the free radicals and toxic 

metabolites, and then form an antioxidant cascade, 

which plays a strong role in scavenging free radicals, 

directly down-regulating the intracellular ROS level, 

maintaining the intracellular redox balance, thus 

maintaining the internal environment homeostasis [43]. 

MT captures ROS through the 5-methoxy group on the 

indole ring, providing electrons to convert it into non-

oxidized substances, and changing itself into a low-

toxic intermediate product N1-acetyl-N2-formyl-5-

methoxy canine Uracamide, which has stronger 

antioxidant properties than MT (removing a variety of 

ROS) [44]. MT is amphiphilic, which can enter into 

various organs and cells, thereby reducing the oxidative 

and nitrosative damages in the lipid and liquid 

environments. Therefore, compared with other classic 

antioxidants, MT could more effectively protect the 

oxidative damages [45]. 

 

MT is not only a direct free radical scavenger, but also 

an indirect antioxidant, which can promote the 

expression and activity of antioxidant enzymes [i.e., 

the superoxide dismutase (SOD), and the glutathione 

peroxidase (GPX)], inhibiting the expression of the 

oxidative enzyme nitric oxide synthase (NOS) [41]. 

SIRT3-a histone deacetylases are mainly located in the 

mitochondrial matrix, which plays an important role in 

protecting these organelles from oxidative stress [46]. 

MT can also enhance the activity of SIRT3, activate 

the FoxO3a to undergo nuclear translocation, increase 

the binding of FoxO3a to CAT and SOD2 promoters, 

and lead to the transactivation of antioxidant genes, 

thereby limiting the production of ROS in mito-

chondria and inhibiting the mitochondrial oxidative 

damages [47]. In addition, MT reduces the expression 

levels of the apoptotic genes (such as the Bax, p53 and 

caspase-3), and increases the expression of the anti-

apoptotic factor Bcl-2, thereby reducing the cellular 

apoptosis (Figure 3.) [7, 48]. 

 

Mitochondria are dynamic and plastic organelles that 

produce ATP through oxidative phosphorylation, which 

is key to connecting the oxidative stress and energy 

metabolism. MT can maintain the mitochondrial 

functions through the following ways: (1) by inhibiting 

the opening of mitochondrial permeability transition 

pore (mtPTP), stimulating the expression and activity of 
SOD1 and Mn-SOD (SOD2) in the mitochondrial 

matrix, regulating the mitochondrion electron flux, and 

reducing the mitochondrial electron leakage; (2) by 
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increasing the activity of uncoupling proteins (UCPs), 

reducing the ATP production, and inhibiting the ROS 

production; and (3) by promoting the mitochondrial 

biosynthesis, and protecting the mitochondrial morpho-

logy and function [49]. 

 

Studies have shown that MT has antioxidant properties 

on the HPG axis [50–52]. MT can reduce the oxidative 

damages in the follicles, and increase the production of 

progesterone during the luteal phase and the maturation 

of oocytes [53]. Circulating MT can be absorbed by the 

ovaries, but the ovarian follicles have the ability to 

synthesize and secrete MT themselves [53]. Therefore, 

MT has an important paracrine effects in the female 

reproductive system [11, 53]. Evidence has shown that 

MT can scavenge the toxic free radicals, and induce the 

synthesis and activity of antioxidant enzymes, thus 

preventing the induction of mitochondrial apoptosis, 

and participating in the protection of granulosa cells and 

oocytes [7, 11, 53]. 

 

Effects of MT on follicles and oocytes 
 

The growth and development of follicles are rather 

complicated, which needs to go through the stages of 

primordial follicle, primary follicle, preantral follicle, 

antral follicle, and mature follicle. During the follicle 

development, oxides such as ROS and RNS would be 

produced. These oxides can regulate the molecular and 

biochemical pathways in the process of follicle 

formation [7, 11, 53], thus damaging the oocytes and 

leading to the follicular atresia. MT in human follicular 

fluid can attenuate oxidative stress, as well as protect 

oocytes and granulosa cells [37, 54]. The ROS produced 

by the follicles during maturation and ovulation will be 

eliminated by MT, while the MT is significantly 

reduced in the follicular fluid of elderly women [55]. 

When MT is used to treat infertility, it would increase 

the concentrations of MT in the woman follicles, thus 

reducing the oxidative damage sin the follicles, and 

improving the fertilization rate and pregnancy rate [56]. 

 

MT seems to have different functions at different stages 

of follicular development [56]. Some reports have 

shown that MT is related to the follicle stimulating 

hormone, which can promote the growth of goat 

preantral follicles and increase the production of P and 

androstenedione (A), in the mouse preantral follicles 

[21, 57]. Some studies have also described the role of 

MT in antral follicles, such as regulating the production 

of sex steroids, the expression of LH mRNA, the 

production of Bcl2 and Caspase3, and the activity of 

 

 
 

Figure 3. Antioxidant mechanism of MT in cells [7, 53]. Abbreviations: MT, melatonin; ROS, reactive oxygen species; mtPTP, 

mitochondrial permeability transition pore; SOD, superoxide dismutase; Mn-SOD, Mn-superoxide dismutase; UCPs, uncoupling protein 
gene; HO-1, heme oygenase-1; Nrf-2, nuclear factor erythroid-2-related factor-2; GPx, utathione peroxidase; and NOS, nitric oxide synthase. 
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insulin-like growth factors and transforming the growth 

factor β [58, 59]. The increase in the concentration of 

FF MT in the growing human follicles has been 

considered to be an important factor in avoiding 

follicular atresia, because the FF MT can reduce the 

apoptosis of key cells, making the follicles fully 

developed before ovulation and providing the mature 

eggs for ovulation [59]. 

 

MT increases the synthesis of glutathione in human 

endothelial cells, and prevents the induction of 

mitochondrial endogenous apoptosis pathways by 

inducing the Bcl-2 expression and reducing the caspase-

3 activity [11]. Therefore, MT protects cells from 

oxidative stress due to radical damages. The 

administration of exogenous MT can significantly 

reduce the oxidative damages in the follicle and the 

oxidative damages of essential molecules, thereby 

increasing the fertilization rate and pregnancy rate [11, 

14]. MT regulates the responses of follicles to LH by 

increasing the mRNA expression levels of LH receptors 

in human granulosa cells [60]. In addition, MT-induced 

progesterone production would be produced by 

inhibiting CYP1 1A. CYP1 1A is a specific gene for 

progesterone synthesis, which increases its secretion 

through negative feedback, which is necessary for 

follicular maturation and ovulation during the dominant 

follicular phase [61]. 

 

In the process of mammalian reproduction, the 

maturation of oocytes is a necessary prerequisite for 

successful fertilization and embryo development [62]. 

As a powerful antioxidant, MT is beneficial to oocyte 

maturation and embryo development [62]. Clinically, 

oral administration of MT can reduce the level of 

oxidative stress marker 8-OHdG in the oocytes of 

infertile women, and increase the fertilization rate under 

IVF-ET treatment [56]. Studies have shown that the 

antioxidant function of melatonin helps to reduce the 

rigidity of plasma membrane, which can promote the 

maturation of human oocytes and early embryonic 

development by enhancing the reticulin mediated 

endocytosis (CME) [63]. MT can improve the 

phenotype of oocyte defects caused by maternal obesity 

through the SIRT3-SOD2-dependent mechanism, 

prevent the spindle/chromosome abnormalities in 

oocytes, and improve the development ability of early 

embryos [64]. A randomized trial has been conducted to 

study the application of melatonin in the assisted 

reproductive technology (ART), which has shown that 

MT can significantly improve the clinical pregnancy 

rate of art cycle, and increase the number of mature 

oocytes and the number of high-quality embryos [65]. 
The maturation of oocytes requires the participation of 

progesterone (P), which can bind to the membrane 

receptors of oocytes and induce the initiation of 

maturation-promoting factors in the cytoplasm of 

oocytes [66]. Under the action of the oocyte maturation 

promoting factor, the oocyte will undergo 

morphological changes, including the blastocyst rupture 

in the pre-deceleration division, which is a key step in 

the oocyte maturation [66]. Studies have shown that MT 

can accelerate the P action and stimulate the maturation-

inducing hormone (MIH), thereby stimulating the 

initiation of oocyte maturation-promoting factors and 

the rupture of blastocysts [58, 67, 68]. Melatonin can 

significantly reduce the ROS levels in oocytes, improve 

the oxidative stress state of oocytes, reduce the  

early apoptosis of oocytes, repair the integrity of 

mitochondria, improve the spindle assembly and 

chromosome arrangement, and promote the meiotic 

maturation [69]. The MT therapy may become a 

beneficial treatment method to improve the ovarian 

function, oocyte quality and embryo development in 

infertile women, especially for those who cannot get 

pregnant due to poor oocyte quality or are about to 

come to the end of reproductive life (Figure 4) [70]. 

 

Other studies have shown that the combination of MT 

and inositol has a positive effect on oocytes [71]. In a 

randomized controlled trial, MT combined with inositol 

and vitamin D treatment can improve the quality of 

blastocysts and oocytes in women undergoing 

intracytoplasmic sperm injection (ICSI), and the study 

group has achieved the clinical pregnancy of 42% (vs 

24% for the control group) [72]. A clinical trial has 

studied the effect of inositol plus folic acid and MT on 

the oocyte quality and pregnancy outcome in vitro 
fertilization (IVF) cycles compared with inositol plus 

folic acid. The study has shown that the average number 

of mature oocytes in the MT combination treatment 

group is significantly increased, and the clinical 

pregnancy rate and implantation rate in the combination 

treatment group has an increasing trend [73]. 

 

MT regulates ovarian biological rhythm 
 

The suprachiasmatic nucleus (SCN) of the 

hypothalamus stimulates the biological rhythms. It can 

receive light signals from the retina, and adjust the 

circadian rhythms of the ovary and other organs through 

humoral regulation and neuromodulation [75]. The 

biological clock system plays an important role in the 

physiological activities of the ovary, which is involved 

in the regulation of ovulation, steroid hormone synthesis 

and oocyte maturation [75]. Disturbance of the 

biological clock can seriously affect the ovarian 

function. SCN can regulate the secretion of MT by the 

pineal gland, and the local granulosa cells and oocytes 

of the ovary can also secrete MT [75]. There are MT 

receptors in the granulosa cells of the ovary, which can 

participate in the regulation of the ovarian clock. 
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Studies have found that the loss-of-function mutations 

of the circadian clock genes Per1 and Per2 would 

significantly reduce the number of follicles and litter 

size in female mice, leading to depletion of ovarian 

reserve and decreased fertility [76]. Conditional 

knockout of the circadian clock gene Bmal1 in the 

ovarian steroid synthesizing cells and follicular 

membrane cells would result in decreased fertility and 

litter size in mice [77]. 

 

MT rhythm is an important outgoing hormone signal 

driven by an internal clock, and therefore it can be 

used as an internal synchronizer [78]. MT can 

regulate the circadian rhythm on the targets, which 

can also directly act on the SCN to regulate the clock 

[78]. Its rhythmic secretion can enhance the 

biological clock signal based on SCN to peripheral 

tissues [78, 79]. Giving exogenous MT at the same 

time of the day can trigger physiological and 

behavioral rhythms (such as body temperature and 

rest-activity cycles) [80]. According to previous 

reports, MT can regulate a variety of biological 

functions, including the vision, neuroendocrine, 

reproduction, neuroimmunity, and vascular 

physiology [13, 81–84]. Since the MT secretion is 

proportional to the night length, MT also presents a 

regular seasonal change cycle. MT is indeed a key 

parameter for photoperiod integration and induction 

of specific physiological responses [13]. 

 

Rhythm genes are widely present in the hypothalamic-

pituitary-ovarian axis (HPO). In the cumulus-oocyte 

complex (COC) of rats, the expression of MT-related 

genes and rhythm genes could be detected. Rhythmic 

genes (Clock, Bmal1, Per2, and Cry1) are expressed in 

the rat ovary, and during oocyte maturation, the Clock, 

Per2, and Cry1 in cumulus-oocyte complexes (COCs) 

show the expression trend from high to low, along with 

the MLT-related genes (such as Aanat and Asmt), while 

the changes in the Bmal1 expression levels showing an 

opposite trend [85]. Removal of the pineal gland can 

change the expression of MT-related genes in COC, and 

the MT treatment can restore the expression of rhythm 

genes [85, 86]. These findings indicate that MT can 

regulate the expression of rhythm genes at different 

developmental stages of follicles, thereby regulating the 

 

 

 
Figure 4. MT and follicular development [74, 75]. Abbreviations: MT, melatonin; R, melatonin receptor; ROS, reactive oxygen species; 

CAT, catalase; SOD, superoxide dismutase; GPx, glutathione peroxidase; FSH, follicle stimulating hormone; LH, luteinizing hormone; MIH, 
maturation-inducing hormone; P, progestational hormone; A, androstenedione; NAT, N-acetyltransferase; and HOMT, hydroxyindole-O-
methyltransferase. 
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ovarian function [68, 87]. In addition, studies have 

shown that MT can increase the number of eggs and 

high-quality embryos in patients with sleep disorders 

[68, 88]. 

 

MT and ovarian aging 
 

Ovarian senescence is characterized by gradually 

declined number and quality of oocytes, which may 

lead to infertility. Age-related decline in oocyte quality 

is associated with non-integral increase and 

immaturity of oocytes [89]. Along with the increasing 

age, especially after the age of 38 years, the 

progressive loss of human ovarian follicles will be 

accelerated. Although the molecular mechanism of 

reducing the number and quality of oocytes has not 

been fully understood, the process of ovarian aging is 

similar to the general aging mechanism [90]. Oxidative 

stress caused by reactive oxygen species (ROS) has 

been considered to candidate affecting factors for the 

ovarian aging, followed by the telomere length and 

sirtuins activity, as well as the quality of granulosa 

cells [55]. Telomere is a special structure located at the 

3'-end of DNA, whose main function is to maintain the 

gene stability and protect the ends of chromosomes 

from DNA damages caused by ROS [55]. The 

regulation of telomere length is mainly achieved by 

telomerase. The telomerase activity and telomere 

length of mouse ovaries would be decreased along 

with reproductive aging [91]. The expression of 

sirtuins (SIRT1, SIRT3, and SIRT6) in the ovary is 

positively correlated with ovarian reserve [92]. These 

proteins may be potential markers for ovarian aging, 

and target molecules for delaying the organ aging 

SIRT1, SIRT3, and SIRT6. Studies have shown that 

long-term application of MT can delay the ovarian 

aging [6, 55]. A previous study has reported that the 

long-term administration of MT to Kunming mice can 

significantly reduce ovarian aging, as manifested by 

significantly increased numbers of fetuses, follicular 

pools, telomere length, as well as the number and 

quality of oocytes [6]. 

 

MT treatment significantly prolongs the telomere 

length of aged mice, which may attenuate the age-

related telomere shortening in oocytes [55]. The MT 

treatment can activate the ovarian SIRT1 and SIRT3 

mRNA expression levels. Studies have shown that in 

mice and human beings, the up-regulated expression 

of SIRT1 induced by MT is related to the reduced 

oxidative stress, activated antioxidant enzymes, and 

anti-apoptosis effects [93, 94]. MT delays the 

senescence of mouse oocytes after ovulation through 

the SIRT1-MnSOD-dependent pathway [95]. MT also 

inhibits the autophagic death of hepatocytes induced 

by cadmium by enhancing the activities of human 

SIRT3 and superoxide dismutase 2 (SOD2) [69]. 

Therefore, MT may protect ovarian cells and reduce 

follicular atresia by activating SIRT1 and SIRT3 

signals. 

 

Ribosome-related genes are up-regulated in the 

ovaries treated with MT, indicating that MT may 

regulate its function by participating in the translation 

process of ribosomes [69]. Accurate protein 

translation and normal ribosomal function are crucial 

in delaying cell senescence [96]. MT acts directly as 

an antioxidants, scavenging free radicals, and 

delaying the decline of oocyte quantity and quality 

[69]. MT can also indirectly enhance the activity of 

antioxidant enzymes, or reduce the oxidative stress 

of the ovary by regulating the mitochondrial 

function. In addition to the above pathways, MT 

may also depend on the receptor-mediated binding 

to MT1 and MT2 receptors, mediating multiple 

physiological effects through various signal 

transduction pathways, to fight against premature 

ovarian failure [6, 91]. 

 

MT and polycystic ovary syndrome (PCOS) 
 

Polycystic ovary syndrome (PCOS) is a common 

endocrine disease in women of childbearing age. The 

clinical symptoms are mainly manifested in 

anovulatory infertility, hyperandrogenism and 

polycystic ovarian diseases. The incidence rate has 

been gradually increased in recent years, up to 6%-10% 

[97]. PCOS is a multi-gene-related disease, which is 

characterized by a complex genetic pattern, including 

the hyperandrogenism, ovulation dysfunction and 

polycystic ovary changes [98]. In addition, the 

endocrine and metabolic abnormalities of PCOS 

patients are also manifested as the increased serum 

luteinizing hormone (LH), decreased follicle 

stimulating hormone (FSH), increased serum androgen 

level, hyperinsulinemia, insulin resistance (IR), obesity 

and dyslipidemia. The risks of hypertension and 

cardiovascular diseases would be significantly 

increased [98]. 

 

Studies have shown that the MT levels in serum and 

saliva of PCOS patients are higher than healthy 

women, and the levels of urinary-6-hydroxysulfated 

melatonin (aMT6s), an important metabolite of MT, 

are also significantly increased, while the MT level 

in follicular fluid is on the contrary [74, 99]. The 

MT level in mature follicles before ovulation is 

much higher than the immature follicles [100]. 

Therefore, it is suggested that the decreased MT 

level in follicular fluid of PCOS patients is due to 

decreased absorption and excessive follicular atresia 

[75]. 
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MT has obvious influence on the clinical, endocrine 

and metabolic characteristics of PCOS patients. MT 

can inhibit androgen-estrogen conversion in granular 

cells, leading to decreased estrogen levels, thereby 

causing negative feedback release from the 

hypothalamus-pituitary axis, and increasing the FSH 

secretion through pituitary stimulation [101]. A study 

has shown that after 6 months of MT treatment, the 

androgen level and anti Mullerian hormone (AMH) 

serum level of PCOS patients are significantly 

decreased, while the FSH level is significantly 

increased, and the parameters of blood glucose and 

blood lipid (except low density lipoprotein) have no 

significant change [102]. A randomized, double-

blind, placebo-controlled clinical trial has been 

conducted in 56 patients with PCOS, and the results 

show that MT significantly reduces hirsutism, serum 

total testosterone, high-sensitivity C-reactive protein 

(hs CRP), plasma malondialdehyde (MDA) levels, 

and significantly increases the plasma levels of total 

antioxidant capacity (TAC) and total glutathione 

(GSH) [103]. MT supplementation can significantly 

reduce the Pittsburgh sleep quality index, Beck 

Depression scale index (BDI) and Beck Anxiety 

Scale index, which can significantly reduce the 

serum insulin, homeostasis model of insulin 

resistance (HOMA-IR), serum total cholesterol and 

LDL cholesterol levels, and significantly improve 

the quantitative insulin sensitivity test index 

(QUICKI) [104]. In addition, inhibiting aromatase 

activity at the ovarian level can increase androgens 

in the ovaries, thereby improving the follicular 

sensitivity. MT could also exert the effects and 

functions, as the selective estrogen enzyme 

modulator (SEEM) and selective estrogen receptor 

modulator (SERM) [99]. 
 

PCOS leads to anovulation in women of 

childbearing age, which is one of the pathological 

factors of in vitro fertilization (IVF) failure [105]. 

It is very important for PCOS patients to improve 

the quality of oocytes. It has been shown that, MT 

supplementation (3mg/day) can help improve the 

pregnancy rate by reducing the concentration of 

8-hydroxy-2'-deoxyguanosine during IVF [56]. A 

double-blind randomized clinical trial has been 

conducted in 198 PCOS patients undergoing 

intrauterine insemination (IUI), which indicates 

that the MT (3mg/ml) treatment can improve the 

quality of follicles and significantly increase the 

chemical pregnancy rate [106]. MT promotes the 

expression levels of CYP19A1 and HO-1 in human 

ovarian GCS, reduces the level of IL-18, and 

promotes the oocyte maturation in PCOS patients 

with hyperandrogenemia [107]. In addition, MT 

has been proved to effectively stimulate the nuclear 

maturation of oocytes and improve the maturation 

rate by regulating free radicals to a certain level 

[37]. In a randomized double-blind trial of PCOS 

patients, MT and inositol can synergistically 

improve the ovarian response to gonadotropin 

stimulation at the ovarian level, thereby improving 

the quality of oocytes and embryos [108].  

 

The application of conventional treatment to control 

ovarian hyperstimulation in patients with PCOS 

would lead to a higher risk of ovarian hyper-

stimulation syndrome (OHSS). Insulin resistance of 

ovarian granulosa cells and over-expression of 

vascular endothelial growth factor (VEGF) caused 

by insulin stimulation have been considered to be 

potential mechanisms underlying the adverse 

clinical outcomes [109]. The combination of MT 

supplement and exercise behavior may (through up-

regulating GLUT4 and PGC-1α and mitochondrial 

biogenesis mechanism) improve antioxidant 

activity, hyperlipidemia, and inflammatory cyto-

kines, thereby improving IR [110]. 

 

Menstrual cycle disorder is one of the main 

complications of PCOS, which seriously affects the 

patients’ quality of life. The disorders of HPO axis 

in PCOS patients lead to the disorder of follicle 

maturation and ovulation, while IR and 

hyperinsulinemia also lead to ovarian dysfunction, 

leading to anovulation and menstrual cycle disorder 

in PCOS. One study has investigated 40 PCOS 

patients who took MT for 6 months, and 95% of 

them had improved menstrual cycle [102]. So far, 

however, there are few data about MT improving the 

menstrual cycle of PCOS patients. 

 

Summary 
 

A large number of studies on mammalian MT have 

made great progress in understanding the MT action 

mechanism on ovarian function (Table 1). There is 

evidence that MT acts through a variety of receptors, 

or it can be directly used as a direct free radical 

scavenger without receptor action. A large number of 

experimental data show that MT can participate in the 

ovarian physiology, including the follicular 

development, ovulation, oocyte maturation, and 

ovarian biological rhythm. The lack of MT is one of 

the causes of ovarian aging, polycystic ovary 

syndrome and other diseases. In clinical application, 

MT function has been explored and applied. Even if 

the application of MT is limited, it provides a good 

basis for future exploration. 



 

www.aging-us.com 17939 AGING 

Table 1. References concerning melatonin (MT) improving ovarian function. 

 
Animal/
people 

Design Melatonin regulation results Year Author/Reference 

Follicle Sheep vitro, IVM 

The lowest MT level was seen in the small 
follicles, but there was no significant difference 

between medium follicles and large follicles 
AANAT, HIOMT, MT1, and MT2 mRNA 

expression levels in COCs were decreased with 
increasing follicle diameter 

2012 Xiao L [21] 

Oocyte Carps vitro, IVM 
GVBD↑, the histone H1 kinase activity in 

oocyte↑, acceleration in histone H1 
Phosphorylation↑ 

2004 Chattoraj A [65] 

Oocyte Mouse 
vitro, IVM, 
implantation 

Gss, Atp6, Atp 8, Tet1, Tet2, and Tet3 mRNA 
expression↑ normal distribution rates of IP3R1, 
CD9 protein, mitochondrial, CGs and ER, Juno 
expression↑ the representative images of DNA 
methylation analysis of promoters of CD9 and 

Juno genes↑ two-pronuclear embryos rate, 
cleavage and blastocyst rates↑ Dnmt1↓, 

DNMT1↓, TET1↑, the normal distribution rates 
of↑ 

2018 Zhao XM [68] 

Oocyte mouse vitro, IVM 

proportion of PBE in BPA-exposed oocytes↑ 
did not affect GVBD a majority of disorganized 

spindle morphologies and misaligned 
chromosomes was observed in BPA-exposed 
oocytes restores the defective kinetochore-

microtubule attachment rates of fertilization, 
sperm binding ability↑ ZP2 cleavage level, 

rescues localization and protein level of 
ovastacin↑ June↑, ROS↓ 

 Zhang M [69] 

Biorhythm Mouse vitro, IVM 
clock genes (Clock, Bmal1, Cry1, Cry2, Per1, 

Per2) in COCs↑ 
2015 Coelho LA [77] 

Ovarian 
senescence 

Mouse vitro, IVM SIRT1, Bcl2↑, ROS↓ 2015 Yang Y [111] 

Ovarian 
senescence 

Mouse vitro, IVM 
Counteracted age-related fertility decline, 

oocytes↑, ovarian mitochondrial oxidative stress 
and apoptosis↓ 

2016 Song C [6] 

Ovarian 
senescence 

Mouse vitro, IVM 
SOD, CAT, MDA, SIRT1, Ac-FoxO1, Ac-p53, 
Ac-NF-κB, Bcl-2↑, Ac-FoxO1, Ac-p53, Ac-NF-

κB, Bax↓ 
2015 Zhao L [93] 

PCOS people clinic LH, FSH, testosterone↑ 2004 Luboshitzky R [102] 

PCOS people clinic 
MT levels were found to be positively 
associated with increased testosterone 

2013 Jain P [97] 

PCOS people 
randomized 
controlled 
trial, vitro 

the effect of myo-inositol and MT improving in 
vitro fertilization of patient with PCOS is better 

than myo-inositol 
2015 Pacchiarotti A [109] 

PCOS mouse vitro, IVM 
LH, FSH, IVM↑ lower doses MT enhanced 

maturation rate 
2017 Nikmard F [108] 

PCOS people clinic 
MT treatment can restore menstrual cyclicity in 

women with PCOS 
2018  Tagliaferri V [103] 

PCOS people clinic 
The level of MT in serum and saliva of PCOS 

patients was higher than that of healthy women 
2013 Jain P [97] 

PCOS people clinic MT in urine of patients with PCOS, aMT6s↑ 2001 Luboshitzky R [99] 

PCOS people clinic 

Androgen, AMH↓; FSH↑, blood glucose and 
blood lipid had no significant change; The 

menstrual cycle was improved in 95% of the 
subjects 

2018 Tagliaferri V [103] 

PCOS people clinic 
Hirsutism, serum total testosterone, hs CRP, 

MDA↓ TAC/GSH↑ 
2019 Jamilian M [104] 
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PCOS people clinic 
Pittsburgh sleep quality index, Beck Depression 

scale index and Beck Anxiety Scale index; 
QUICKI↑ 

2019 Shabani A [105] 

PCOS people clinic 

Supplementation of 3 mg/day melatonin can 
help improve the pregnancy rate by reducing the 
concentration of 8-hydroxy-2′- deoxyguanosine 

during IVF 

2019 Tamura H [55] 

PCOS people clinic 
Given 3 mg/ml melatonin treatment, can 

improve the quality of follicles, improve the 
pregnancy rate 

2019 Mokhtari F [107] 

PCOS people clinic 

The expression of CYP19A1 and HO-1 in GCs 
was↑; IL-18↓; Promote the decrease of IL-18 

level, promote the oocyte maturation of PCOS 
patients with hyperandrogenemia 

2019 Yu K [37] 

PCOS people clinic 
GLUT4, PGC-1 α↑; Improve mitochondrial 
mechanism, improve antioxidant activity, 
hyperlipidemia, inflammatory cytokines 

2017 Rahman MM [112] 

Abbreviations: AANAT: arylalkylamine N-acetyltransferase; HIOMT: hydroxyindole-O-methyltransferase; COCs: cumulus–
oocyte complexes; E2: β-estradiol; A: androstenedione; P: progestin; MIH: maturation inducing hormone; GVBD: germinal 
vesicle breakdown; CGs: cortical granules; ER: endoplasmic reticulum; Cat, Sod1, GPx: endogenous antioxidant genes, IP3R1 
distribution and expression of CD9 and Juno: fertilization-related events, BPA (Bisphenol A), PBE: Polar Body Extrusion; GVBD: 
Germinal Vesicle Breakdown); Hs CRP: high sensitivity C-reactive protein; MDA: plasma malondialdehyde, TAC: plasma total 
antioxidant capacity; GSH: total glutathione; QUICKI: quantitative insulin sensitivity index. 
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