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Introduction

Clear cell sarcoma (CCS) is a rare but highly malignant 
soft tissue sarcoma that typically develops in the tendons 
and aponeuroses of children and young adults [1, 2]. 
CCS is very resistant to conventional chemotherapy and 
radiation therapy. The high rate of local and distant recur-
rence results in 5-year overall survival rates of 30–67% 

[3–10]. Thus, there is an urgent need for novel therapeutic 
approaches against CCS.

Cytogenetic analysis of CCS revealed the presence of 
translocation t(12;22)(q13;q12), resulting in a chimeric 
EWSR1-ATF1 gene [11–14]. CCS was originally considered 
to be a melanoma of soft tissue origin and was called 
“malignant melanoma of soft parts.” From this point of 
view, CCS has been proposed to arise from a progenitor 
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Abstract

Clear cell sarcoma is an aggressive soft tissue sarcoma and highly resistant to 
conventional chemotherapy and radiation therapy. This devastating disease is 
defined by EWSR1-ATF1 fusion gene resulting from chromosomal translocation 
t(12;22)(q13;q12) and characterized by melanocytic differentiation. A marine-
derived antineoplastic agent, trabectedin, inhibits the growth of myxoid lipo-
sarcoma and Ewing sarcoma by causing adipogenic differentiation and neural 
differentiation, respectively. In this study, we examined the antitumor effects 
and mechanism of action of trabectedin on human clear cell sarcoma cell lines. 
We showed that trabectedin decreased the cell proliferation of five clear cell 
sarcoma cell lines in a dose-dependent manner in vitro and reduced tumor 
growth of two mouse xenograft models. Flow cytometry and immunoblot analyses 
in vitro and immunohistochemical analysis in vivo revealed that trabectedin-
induced G2/M cell cycle arrest and apoptosis. Furthermore, trabectedin increased 
the expression of melanocytic differentiation markers along with downregulation 
of ERK activity in vitro and the rate of melanin-positive cells in vivo. These 
results suggest that trabectedin has potent antitumor activity against clear cell 
sarcoma cells by inducing cell cycle arrest, apoptosis, and, in part, by promoting 
melanocytic differentiation through inactivation of ERK signaling. Our present 
study indicates that trabectedin is a promising differentiation-inducing agent 
for clear cell sarcoma.
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neural crest cell with the potential for melanocytic dif-
ferentiation and melanin synthesis [15–17].

Trabectedin (ET-743; Yondelis®) is a marine-derived 
natural product originally isolated from the Caribbean 
Sea squirt, Ecteinascidia turbinata and currently prepared 
synthetically [18]. It has potent antitumor activity in vitro 
and in vivo against ovarian cancer, breast cancer, non-
small-cell lung cancer, melanoma, and soft tissue sarcoma 
(STS) [19–23]. Clinical trials revealed that trabectedin is 
particularly active in sarcomas bearing translocations, 
namely myxoid liposarcoma, Ewing sarcoma, and synovial 
sarcoma [24, 25]. The mechanisms of action of trabectedin 
seem to be unique and still poorly understood. It has 
been reported that trabectedin interferes with several tran-
scription factors, DNA-binding proteins, and DNA repair 
pathways, likely differing from other DNA-interacting 
agents [26]. It has also been demonstrated that trabectedin 
shows antitumor activity by inducing adipogenic differ-
entiation in liposarcoma [27] and neural differentiation 
in Ewing sarcoma [28]. However, the activity and potential 
mode of action of trabectedin against CCS is still unknown.

In this study, we examined the antitumor effects of 
trabectedin on human CCS cell lines in vitro and in vivo. 
Furthermore, we investigated the mechanisms of action 
of trabectedin, focusing on the melanocytic differentiation 
pathway.

Materials and Methods

Cell culture

The human CCS cell lines Hewga-CCS [29] and Senju-CCS 
were established in our laboratory. MP-CCS-SY and KAS 
were kindly provided by Dr. Moritake (Miyazaki University, 
Miyazaki, Japan) [30] and Dr. Nakamura (Japanese 
Foundation for Cancer Research, Tokyo, Japan), respectively 
[31]. SU-CCS1 was purchased from American Type Culture 
Collection. We performed reverse transcription–PCR (RT–
PCR) and assessed the type of EWSR1-ATF1 chimeric tran-
scripts in all CCS cell lines according to the EWSR1-ATF1 
fusion types proposed by Panagopoulos, et  al. [11] (Data 
S1, Fig. S1). All the cell lines were cultured in Dulbecco’s 
Modified Eagle Medium (Life Technologies, Carlsbad, CA, 
USA) containing 10% FBS (Sigma-Aldrich, St. Louis, MO, 
USA) at 37°C with 5% CO2 and 100% humidity.

Quantitative real-time PCR analysis

Real-time PCR was performed, using a Step One Plus 
Real-Time PCR System (Life Technologies) and Fast SYBR 
Green Master Mix (Life Technologies), in which each 
cDNA sample was evaluated and expression values were 
normalized to GAPDH. PCR primers (forward and reverse, 

respectively) were as follows: GAPDH (5′-TGCACCACC 
AACTGCTTAGC-3′ and 5′-ACTGTGGTCATGAGTCCT 
TCCA-3′) and MITF (5′-GAGGCAGTGGTTTGGGCTT-3′ 
and 5′-AATTCTGCACCCGGGAATC-3′).

Reagents and antibodies

Trabectedin was gifted by TAIHO Pharmaceutical, Co. 
LTD (Tsukuba, Japan). Methotrexate (MTX) hydrate and 
doxorubicin (DOX) were purchased by Sigma-Aldrich (St. 
Louis, MO, USA) and Wako Pure Chemical Industries 
(Osaka, Japan), respectively. The ERK inhibitor, 
SCH772984, was purchased from Cayman Chemical (Ann 
Arbor, MI, USA). The drugs were prepared in dimethyl 
sulfoxide (DMSO) and stored at −20°C. For in vitro 
examinations, the drugs were diluted in DMEM to the 
desired concentration. For in vivo experiments, trabectedin 
was further diluted with phosphate buffer pH 4.0 imme-
diately before administration.

The following primary antibodies were used: anti-cleaved 
caspase-3 and anti-beta-actin (Cell Signaling Technology, 
Inc., Danvers, MA, USA); anti-microphthalmia-associated 
transcription factor (MITF) and anti-activating transcrip-
tion factor 1 (ATF1) (Abcam, Cambridge, UK); anti-PCNA, 
anti-tyrosinase (TYR), and anti-tyrosinase-related protein 
2 (TRP2) (Santa Cruz Biotechnology, Inc., Dallas, TX, 
USA). Horseradish peroxidase (HRP)-conjugated second-
ary antibody was obtained from GE Healthcare Life Sciences 
(Pittsburg, PA, USA).

Immunoblot analysis

For the lysate preparation, cells were first washed with 
phosphate-buffered saline and lysed in radioimmunopre-
cipitation assay (RIPA) buffer (Thermo Scientific, Waltham, 
MA, USA). Protein concentrations were measured using 
the bicinchoninic acid method (Thermo Scientific). The 
cell lysates were separated on 4–12% Bis-Tris gels (Life 
Technologies) and transferred to polyvinylidene difluoride 
membranes (Nippon Genetics, Tokyo, Japan). The mem-
branes were incubated in 5% skim milk in Tris-buffered 
saline with Tween 20 (TBS-T) at room temperature. Blocked 
membranes were incubated with primary antibodies at 
4°C overnight, followed by incubation with secondary 
antibodies at room temperature for 1 h. After washing 
in TBS-T, immunoreactive bands were visualized using 
enhanced chemiluminescence (GE Healthcare Life 
Sciences).

Cell proliferation assay

CCS cells were plated into 96-well plates at a density of 
2  ×  103 and incubated with trabectedin or the vehicle for 



2123© 2017 The Authors. Cancer Medicine published by John Wiley & Sons Ltd. 

Trabectedin Promotes Melanocytic DifferentiationT. Nakai et al.

72 h. Cell proliferation rate was measured using the premix 
WST-1 cell proliferation assay system (Takara Bio, Inc., 
Otsu, Japan). Absorbance was measured with a microplate 
reader and relative cell proliferation rate was calculated.

Flow cytometry

5  ×  105 CCS cells per dish were plated in 10  cm culture 
dishes and grown overnight, followed by treatment with 
trabectedin or vehicle solution for 48  h. The cells were 
harvested and stained with propidium iodide (PI) solution 
(25  μg/mL PI, 0.03% NP-40, 0.02  mg/mL RNase A, 0.1% 
sodium citrate) for 30  min at room temperature. For cell 
cycle analysis, we used a BD FACSCanto II flow cytometer 
(Becton Dickinson (BD) Biosciences, San Jose, CA, USA).

In vivo mouse xenograft model

Five-week-old male BALB/c nu/nu mice (SLC, Shizuoka, 
Japan) were housed at the Institute of Experimental Animal 
Sciences, Osaka University Medical School, in accordance 
with a guideline approved by the Institutional Animal 
Care and Use Committee of the Osaka University Graduate 
School of Medicine. For the xenograft tumor growth assay, 
1  ×  107 CCS cells were injected subcutaneously into the 
left side of the back. Tumor volumes were measured twice 
per week with calipers and calculated by the formula 
(A  ×  B2)/2, where A was the longest diameter and B was 
the shortest diameter of the tumor. When the average 
diameter of tumors reached 5  mm, therapy was initiated. 
The mice were randomized and divided into trabectedin-
treated or vehicle-treated groups. Trabectedin was intra-
venously injected through the tail vein at the dose of 
0.15  mg/kg, every 7  days for three cycles. After 18  days 
of treatment, all mice were euthanized and the tumor 
weight was measured. The tumors were resected for his-
tological analysis. Body weight of each mouse was measured 
once a week for the evaluation of side effects.

Histological analysis

Specimens of xenograft tumors were fixed in 10% neutral-
buffered formalin, embedded in paraffin, and sectioned in 
4  μm thicknesses. Paraffin-embedded sections were depar-
affinized and dehydrated. After antigen retrieval (boiled at 
95°C for 20 min in a 10 mmol/L citrate buffer), endogenous 
peroxidase activity was blocked for 10  min with methanol 
containing 3% H2O2. The sections were reacted for 1  h 
with TBS containing 2% bovine serum albumin at room 
temperature. The sections were incubated with designated 
antibodies at 4°C overnight, followed by 1  h incubation 
with secondary antibodies and stained with 
3,3′-diaminobenzidine tetrahydrochloride (Dako, Glostrup, 

Denmark). Finally, the sections were counterstained using 
hematoxylin. To detect melanin, paraffin sections were 
stained using Fontana–Masson stain as described previously 
[32].

Statistical analysis

All data are expressed as means ± SDs. We used Student’s 
t-test for biological assays and Mann–Whitney’s U test 
for animal experiments to determine significant differences. 
Values of P  <  0.05 were considered significant.

Results

Trabectedin suppressed the growth of CCS 
cell lines in vitro

Cell proliferation assays were performed to examine the 
antitumor activity of trabectedin against 5 CCS cell lines 
in vitro. Trabectedin suppressed proliferation of all CCS 
cell lines in a dose-dependent manner (Fig.  1). The 50% 
inhibitory concentration (IC50) values of trabectedin were 
as follows: Hewga-CCS: 0.48  nmol/L, Senju-CCS: 
0.87  nmol/L, SU-CCS1: 0.30  nmol/L, MP-CCS-SY: 
0.47  nmol/L, KAS: 0.42  nmol/L (Fig.  1).

Trabectedin induced G2/M cell-cycle arrest 
and apoptosis in CCS cell lines

Flow cytometry analyses showed that 1 nmol/L trabectedin 
induced G2/M cell-cycle arrest, and 10 nmol/L trabectedin 
increased the number of cells in sub-G1 phase in Hewga-
CCS and KAS cells (Fig.  2A). Furthermore, cleavage of 
caspase-3 was enhanced dose-dependently after trabectedin 
exposure by immunoblot (Fig.  2B). These findings indi-
cated that trabectedin inhibited the cell proliferation in 

Figure 1. Trabectedin inhibits CCS cell growth in vitro. The CCS cells 
were incubated with various concentrations of trabectedin for 72 h. Cell 
proliferation was determined by WST-1 assay. The IC50 values were 
calculated and shown in the table. Bars: SD.
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all CCS cell lines by inducing G2/M cell cycle arrest and 
apoptosis in vitro.

The expression of melanocytic 
differentiation markers was upregulated by 
treatment with trabectedin in vitro

We examined the expression of melanocytic differentiation 
markers such as MITF, TYR, and TRP2 in Hewga-CCS 

and KAS cells treated with trabectedin, MTX, and DOX 
by immunoblot. It was reported that MTX increased MITF 
expression and induced melanocytic differentiation in 
melanoma cells [33]. DOX is a conventional chemothera-
peutic drug and was used as a control. All three drugs 
induced cleavage of caspase-3 in both cell lines (Fig.  3). 
Interestingly, prior to cleavage of caspase-3, expression 
of melanocytic differentiation markers was upregulated 
by treatment with trabectedin and MTX (Fig.  3B). 

Figure 2. Trabectedin induces G2/M cell-cycle arrest and apoptosis in CCS cells. (A) Hewga-CCS and KAS cells were exposed to 0.1–10 nmol/L 
trabectedin or vehicle for 48 h. After exposure, cells were stained with PI and analyzed by flow cytometry. (B) After treatment of trabectedin or vehicle 
in CCS cells, the protein expressions were observed by Immunoblot analyses.
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Treatment with DOX did not upregulate these markers 
(Fig.  3C). These results suggested that trabectedin might 
inhibit the growth of CCS cells by inducing melanocytic 
differentiation and apoptosis.

Trabectedin caused inactivation of ERK and 
increased MITF protein level

To elucidate the reason why trabectedin increased MITF 
protein level, we examined whether the drug induced 
MITF gene transcription. Unexpectedly, trabectedin did 
not upregulate the mRNA level of MITF in Hewga-CCS 

and KAS cells (Fig.  4A). Further, the expression of the 
EWSR1-ATF1 fusion protein was not affected by the treat-
ment of trabectedin in both cells (Fig  4B). These results 
suggested that the upregulation of MITF protein levels 
by trabectedin treatment was neither attributable to the 
transcriptional activation of MITF nor mediated by the 
interaction between trabectedin and EWSR1-ATF1.

Previous studies showed that the activation of ERK 
was followed by MITF ubiquitination and degradation 
[34, 35], thus we evaluated the phosphorylation status of 
ERK in response to trabectedin treatment. Consistent with 
those studies, the reduction in ERK phosphorylation via 

Figure 3. Melanocytic differentiation markers in Hewga-CCS and KAS were upregulated by the treatment of trabectedin and MTX, but not DOX. 
Hewga-CCS and KAS were treated with (A) 5 nmol/L trabectedin for 0–24 h, (B) 1 uM MTX for 0–72 h and (C) 1 uM DOX for 0–24 h. The protein 
expressions were evaluated by Immunoblot analyses.
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trabectedin exposure was accompanied by the upregulation 
of MITF (Fig.  4B). Since trabectedin appeared to induce 
melanocytic differentiation by deregulating the activation 
of ERK, we investigated whether its similar effect on CCS 
was promoted by the treatment of SCH772984, a specific 
inhibitor of ERK signaling. Similar to trabectedin, 
SCH772984 suppressed ERK activation and upregulated 
MITF protein level in Hewga-CCS and KAS cells (Fig. 4C). 
These findings suggested that the inhibition of the ERK 
signaling might play a pivotal role in trabectedin-induced 
melanocytic differentiation.

Trabectedin suppressed the growth of CCS 
xenograft tumors

We evaluated the antitumor effects of trabectedin against 
Hewga-CCS and KAS xenograft tumors. Trabectedin at a 
dose of 0.15  mg/kg was intravenously injected once every 
7 days for three cycles. Administration of trabectedin notably 
suppressed the growth of CCS xenograft tumors compared 
to the vehicle control (Fig.  5A). Body weight loss of the 
mice was not observed and drug treatment was well-tolerated 
with no toxicity in this study. Consistent with the in vitro 

Figure 4. Trabectedin did not enhance the mRNA expression of MITF. Moreover, the drug did not affect the expression of EWSR1-ATF1 fusion 
protein. Both trabectedin and a selective ERK inhibitor, SCH772984, decreased the ERK signaling and increased the protein level of MITF. Hewga-CCS 
and KAS were treated with 5 nmol/L trabectedin or 100 nmol/L SCH772984 for 0–24 h. (A) Total RNA was extracted, and MITF transcription was 
quantified by qRT-PCR. Values mean ± SD. (B, C) The protein expressions were assessed by Immunoblot analyses.

Figure 5. Trabectedin abrogated the growth of Hewga-CCS and KAS xenograft tumors. (A) Hewga-CCS (n = 8/group each) and KAS (n = 7/group 
each) xenograft tumors were treated with 0.15 mg/kg trabectedin intravenously injected. (B) The rate of PCNA-positive tumor cells, cleaved caspase-
3-positive cells, and melanin-positive cells were counted in Hewga-CCS xenograft tumors. *P < 0.01.
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data, a decrease in the rate of PCNA-positive tumor cells 
and an increase in that of cleaved caspase-3-positive cells 
and melanin-positive cells were observed in trabectedin-
treated CCS xenograft tumors (Fig.  5B). These data sug-
gested that trabectedin showed antineoplastic activity against 
CCS cells, and supported the hypothesis that one of the 
mechanisms of action of trabectedin might be associated 
with promotion of melanocytic differentiation in addition 
to the induction of cell cycle arrest and apoptosis.

Discussion

Prior publications suggest that maintaining an undiffer-
entiated state is a crucial aspect of cancer tumorigenesis 
since cancer cells display suspended differentiation proper-
ties compared to normal cells [36, 37]. Extended from 
those studies, several investigators presented an idea that 
the lineage differentiation block associated with both fusion 
protein expression and sarcoma-associated genetic abnor-
malities played a critical role in translocation-based sar-
comagenesis [38–40]. For instance, Tirode, et  al. 
demonstrated that EWSR1-FLI1 fusion protein blocked 
terminal differentiation of mesenchymal stem cells, leading 
to Ewing sarcoma tumorigenesis [38]. Similarly, 
Charytonowicz, et  al. reported that PAX3/PAX7-FOXO1 
translocation promoted the differentiation arrest in the 
myogenic lineage, resulting in alveolar rhabdomyosarcoma 
sarcomagenesis [39]. These results suggest that suspension 
of undifferentiated state is required for tumorigenic process 
and targeting impaired terminal differentiation could be 
a novel therapeutic strategy for translocation-based 
sarcomas.

Differentiation therapies aim to force the cancer cell 
to resume the process of maturation and tend to have 
less toxicity than conventional cancer treatments [41]. 
Many approaches for differentiation therapy in cancer 
using histone deacetylase inhibitors [42], retinoids [43], 
or peroxisome proliferator-activated receptors γ agonists 
[44] exhibited encouraging results in both in vitro and 
in vivo experiments. Among them, the highly successful 
clinical application of differentiation therapy was all-trans-
retinoic acid-based therapy against acute promyelocytic 
leukemia [45].

CCS is characterized by a chromosomal translocation, 
t(12;22)(q13;q12), that leads to the fusion of EWSR1 gene 
with a CREB-family transcription factor gene (ATF1, or 
more rarely CREB1) [11–14]. These translocations provided 
a means of defining CCS and distinguishing it from malig-
nant melanoma. Recent studies showed that CCS was a 
neural crest-derived malignancy as malignant melanoma 
[15–17]. Several lines of evidence indicated that trabectedin 
was more effective against translocation-related sarcoma, 
such as myxoid liposarcoma, Ewing sarcoma and synovial 

sarcoma [24, 25]. It was hypothesized that the greater 
sensitivity of these sarcomas was related to the ability of 
trabectedin to interact with the fusion gene product. Beyond 
expectations, we found that trabectedin did not influence 
the expression of EWSR1-ATF1 protein.

This study demonstrated that treatment of CCS with 
trabectedin suppressed cell proliferation, increased the 
number of cells in G2/M and sub-G1 phase in vitro, 
and induced cleavage of caspase-3 both in vitro and in 
vivo. Previous studies revealed that trabectedin exerted 
differentiation inducing and antitumor effects for a subset 
of translocation-related sarcomas, including myxoid 
liposarcoma [27] and Ewing sarcoma [28]. In this study, 
we also noticed that trabectedin treatment upregulated 
the expression of melanocytic differentiation markers 
including MITF in vitro and melanin-positive cells in 
vivo, even though it did not enhance the transcriptional 
activity for MITF. Intriguingly, recent works suggested 
that MITF protein levels were regulated by ERK-induced 
ubiquitination and degradation in melanoma cells [34, 
35]. In agreement with this, we noted that the reduc-
tion in ERK signaling was associated with the increase 
in MITF protein levels by the treatment with trabectedin 
or an ERK inhibitor. These findings suggested that tra-
bectedin might induce melanocytic differentiation on 
CCS as a result of the reduction in ERK activity, aside 
from the interaction with the EWSR1-ATF1 fusion gene 
product.

Our findings strongly indicate that trabectedin exerts 
antitumor effects via induction of G2/M cell cycle arrest, 
apoptosis, and, in part, the acceleration of melanocytic 
differentiation against CCS cell lines. Taken together, we 
conclude that trabectedin should be a promising thera-
peutic option and might be a novel differentiation therapy 
agent for CCS.
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Supporting Information

Additional supporting information may be found in the 
online version of this article:

Data S1. EWSR1-ATF1 cDNA was identified by PCR. 
PCR primers were as follows: EWSR1 forward primer 
5′-TCCTACAGCCAAGCTCCAAGTC-3′ and ATF1 reverse 
primer 5′-ACTCGGTTTTCCAGGCATTTCAC-3′.

Figure S1. RT–PCR with EWSR1 forward primer and 
ATF1 reverse primer that amplifies a 779-base pair (bp) 
PCR product in the type 1 EWSR1-ATF1 transcript, a 
464-bp PCR product in type 2, and a 713-bp PCR product 
in type 3. The type 1 transcript of EWSR1-ATF1 was 
detected in Senju-CCS, SU-CCS1, and MP-CCS-SY cells. 
The type 2 and the type 3 transcripts of EWSR1-ATF1 
were detected in Hewga-CCS and KAS cells, 
respectively.


