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Abstract

Information criteria have had a profound impact on modern ecological science. They allow 

researchers to estimate which probabilistic approximating models are closest to the generating 

process. Unfortunately, information criterion comparison does not tell how good the best model is. 

In this work, we show that this shortcoming can be resolved by extending the geometric 

interpretation of Hirotugu Akaike’s original work. Standard information criterion analysis 

considers only the divergences of each model from the generating process. It is ignored that there 

are also estimable divergence relationships amongst all of the approximating models. We then 

show that using both sets of divergences and an estimator of the negative self entropy, a model 

space can be constructed that includes an estimated location for the generating process. Thus, not 

only can an analyst determine which model is closest to the generating process, she/he can also 

determine how close to the generating process the best approximating model is. Properties of the 

generating process estimated from these projections are more accurate than those estimated by 

model averaging. We illustrate in detail our findings and our methods with two ecological 

examples for which we use and test two different neg-selfentropy estimators. The applications of 

our proposed model projection in model space extend to all areas of science where model selection 

through information criteria is done.
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1. INTRODUCTION

Recent decades have witnessed a remarkable growth of statistical ecology as a discipline, 

and today, stochastic models of complex ecological processes are the hallmark of the most 

salient publications in ecology (e.g., Leibold et al., 2004; Gravel et al., 2016; Zeng and 

Rodrigo, 2018). Entropy and the Kullback-Liebler divergence as instruments of scientific 

inquiry are now at the forefront of the toolbox of quantitative ecologists, and many exciting 

new opportunities for their use are constantly being proposed (e.g., Casquilho and Rego, 

2017; Fan et al., 2017; Kuricheva et al., 2017; Milne and Gupta, 2017; Roach et al., 2017; 

Cushman, 2018). One of the most important, but under explored, applications of the 

Kullback-Liebler divergence remains the study or characterization of the error rates incurred 

while making model selection according to information criteria (Taper and Ponciano, 

2016b). This research is particularly relevant when, as it almost always happens in science, 

none of the candidate models exactly corresponds to the chance mechanism generating the 

data.

Understanding the impact of misspecification of statistical models constitutes a key 

knowledge gap in statistical ecology, and many other areas of biological research for that 

matter (e.g., Yang and Zhu, 2018). Research by us and many others (see citations in Taper 

and Ponciano, 2016b and in Dennis et al., 2019) has led to detailed characterizations of how 

the probability of making the wrong model choice using any given information criterion, not 

only may depend on the amount of information (i.e., sample size) available, but also on the 

degree of model misspecification.

Consequently, in order to estimate the error rates of model selection according to any 

information criterion, practitioners are left with the apparent paradox (“catch-22”) of being 

able to estimate how likely it is to erroneously deem as best that model which is furthest 

apart from the generating model, only after having accomplished the unsolved task of 

estimating the location of the candidate models relative to the generating process and to each 

other.

In this paper, we propose a solution to this problem. Our solution was motivated by the 

conceptualization of models as objects in a multi-dimensional space as well as an extension 

of the geometrical thinking that Akaike used so brilliantly in his 1973 paper introducing the 

AIC. Starting from Akaike’s geometry, we show how to construct a model space that 

includes not only the set of candidate models but also an estimated location for the 

generating process. Now, not only can an analyst determine which model is closest to the 

generating process, she/he can also determine the (hyper)spatial relationships of all models 

and how close to the generating process the best model is.
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In 1973, Hirotugu Akaike wrote a truly seminal paper presenting what came to be known as 

the AIC. Akaike initially called the statistic “An Information Criterion,” but soon after its 

publication it came to be known as “Akaike’s Information Criterion.” Various technical 

accounts deriving the AIC exist (e.g., Burnham and Anderson, 2004, Chapter 7), but few 

explain in detail every single step of the mathematics of Akaike’s derivation (but see De 

Leeuw, 1992). Although focusing on the measure-theoretic details, deLeeuw’s account 

makes it clear that Akaike’s paper was a paper about ideas, more than a paper about a 

particular technique. Years of research on this project has led us to understand that only after 

articulating Akaike’s ideas, the direction of a natural extension of his work is easily revealed 

and understood. Although thinking of models and the generating mechanism as objects with 

a specific location in space is mathematically challenging, this exercise may also prove to be 

of use to study the adequacy of another common statistical practice in multi-model 

inference: model averaging.

Intuitively, if one thinks of the candidate models as a cloud of points in a Euclidean space, 

then it would only make sense to “average” the model predictions if the best approximation 

of the generating chance mechanism in that space is located somewhere inside the cloud of 

models. If however the generating model is located outside such cloud, then performing 

model average will only at best, worsen the predictions of the closest models to the 

generating mechanism. The question then is, can this idea of thinking about models as points 

in a given space be mathematically formalized? Can the structure and location of the 

candidate models and the generating mechanism be somehow estimated and placed in a 

space? If so, then the answer to both questions above (i.e., the error rates of multi-model 

selection under misspecification and when should an analyst perform model averaging) 

could be readily explored. These questions are the main motivation behind the work 

presented here.

2. THE AIC AND A NATURAL GEOMETRIC EXTENSION: MODEL 

PROJECTIONS IN MODEL SPACE

In his introduction to Akaike (1973)’s original paper, De Leeuw (1992) insisted on making 

sure it was understood that Akaike’s contribution was much more valuable for its ideas than 

for its technical mathematical developments: “…This is an ‘ideas’ paper,’ promoting a new 

approach to statistics, not a mathematics paper concerned with the detailed properties of a 

particular technique…” After this explanation, De Leeuw undertakes the difficult labor of 

teasing Akaike’s thought process from the measure-theoretic techniques. In so doing, the 

author manages to present a clear and concise account clarifying both, Akaike’s 

mathematical approach and his ideas. De Leeuw was keenly aware of the difficulty of trying 

to separate the ideas from the mathematical aspects of the paper: in introducing the key 

section in Akaike’s paper, he describes it as “a section not particularly easy to read, that does 

not have the usual proof/theorem format, expansions are given without precise regularity 

conditions, exact and asymptotic identities are freely mixed, stochastic and deterministic 

expressions are not clearly distinguished and there are some unfortunate notational… 

typesetting choices” (De Leeuw, 1992). To us, however, the importance of De Leeuw’s 

account stems from the fact that it truly brings home the crucial point that at the very heart 
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of Akaike’s derivation there was a geometrical use of Pythagoras’ theorem (see Equation 1, 

page 604 in De Leeuw, 1992). The modern literature has been able to reduce Akaike’s 

derivation to just a few lines (see Davison, 2003). However, such condensed proofs conceal 

the original geometric underpinnings of Akaike’s thinking, which De Leeuw exposed. Our 

contribution for this special issue consists of taking Akaike’s derivation one step further by 

using Pythagoras’ theorem again to attain not a relative, but an absolute measure of how 

close each model in a model set is from the generating process.

Akaike’s (1973) paper is difficult and technical but at the same time, it is a delightful 

reading because he managed to present his information criterion as the natural consequence 

of a logical narrative. That logical narrative consisted of six key insights that we strung 

together to arrive at what we believe is a second natural consequence of Akaike’s 

foundational thoughts: our model projections proposal. After introducing our notation 

following Akaike’s, we summarize those six key insights. We stress that these insights and 

the accompanying key figure we present below are none other than a simple geometric 

representation of De Leeuw’s measure-theoretic re-writing of Akaike’s proof. We encourage 

readers with a strong probability background to read De Leeuw’s account. We then present 

our main model projections proposal and contribution and support it with a fully illustrated 

example.

2.1. Theoretical Insights From Akaike (1973)

Akaike’s quest was motivated by a central goal of modern scientific practice: obtaining a 

comparison measure between many approximating models and the data-generating process. 

Akaike began thinking about how to characterize the discrepancy between any given 

approximating model and the generating process. He denoted the probability densities of the 

generating process and of the approximating model as f (x, θ0) and f (x, θ), respectively, 

where θ0 denoted the column vector of dimension L of true parameter values. Although he 

started by characterizing the discrepancy between the true model and the approximating 

model, his objective was to come up with an estimate of such discrepancy that somehow was 

free of the need of knowing either the dimension or the model form of f (x, θ0). The fact that 

he was able to come up with an answer to such problem is not only outstanding, but the 

reason why the usage of the AIC has become ubiquitous in science. Akaike’s series of 

arguments arriving to the AIC can be summarized by stringing together these six key 

insights:

2.1.1. Insight 1: Discrepancy From the Generating Process (Truth) Can Be 
Measured by the Average of Some Function of the Likelihood Ratio—Akaike’s 

first important insight follows from two observations. First, under the parametric setting 

defined above, a direct comparison between an approximating model and the true, 

generating stochastic process can be achieved via the likelihood ratio, or some function of 

the likelihood ratio. Second, because the data X are random, the expected discrepancy 

(average over all possible realizations of the data) would be written as

Ponciano and Taper Page 4

Front Ecol Evol. Author manuscript; available in PMC 2021 March 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



D θ, θ0; Φ = ∫ f x; θ0 Φ τ x, θ, θ0 dx

= EX Φ τ X, θ, θ0 ,

where the expectation is, of course, taken with respect to the generating stochastic process 

X. We denote the likelihood ratio as τ x, θ, θ0 = f(x; θ)
f x; θ0

 and a twice differentiable function of 

it as Φ(τ(x, θ, θ0)).

Akaike then proposed to study under a general framework how sensitive this average 

discrepancy would be to the deviation of θ from the truth, θ0.

2.1.2. Insight 2: D θ, θ0; Φ  Is Scaled by Fisher’s Information Matrix—Akaike 

thought of expanding the average discrepancy D θ, θ0; Φ  using a second order series 

approximation around θ0. Akaike’s second insight then consisted of noting the strong link 

between such approximation and the theory of Maximum Likelihood (ML).

For a univariate θ, the Taylor series approximation of the average function Φ of the 

likelihood ratio is written as

D θ, θ0; Φ ≈ D θ0, θ0; Φ + θ − θ0
∂D θ, θ0; Φ

∂θ θ = θ0

+ θ − θ0
2

2!
∂2D θ, θ0; Φ

∂θ2
θ = θ0

+ …
(1)

To find an interpretable form of this approximation, just like Akaike did following Kullback 

and Leibler (Kullback and Leibler, 1951; Akaike, 1973), we use two facts: first, by 

definition τ(x, θ, θ0)|θ=θ0 = 1 and second, that ∫ f (x; θ)dx = 1 because f is a probability 

density function. Together with the well-known regularity conditions used in mathematical 

statistics that allow differentiation under the integral sign (Pawitan, 2001), these two facts 

give us the following: first, ∫ ∂f(x; θ)
∂θ dx = ∫ ∂2f(x; θ)

∂θ2 dx = 0. Hence, 
∂D θ, θ0; Φ

∂θ θ = θ0
= 0. This 

result then allows writing the second derivative of the approximation as
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∂2D θ, θ0; Φ
∂θ2 θ = θ0

= ∫ ∂
∂θ

∂Φ(τ)
∂τ

∂τ
∂θ f x; θ0 dx θ = θ0

= ∫ ∂2Φ(τ)
∂τ2

∂τ
∂θ

2
f x; θ0 dx

θ = θ0

+ ∫ ∂2τ
∂θ2

∂Φ(τ)
∂τ f x; θ0 dx

θ = θ0

= Φ′′(1)∫ 1
f x; θ0

∂f(x; θ)
∂θ

2
f x; θ0 dx ∣ Sθ = θ0

= Φ′′(1)∫ ∂logf(x; θ)
∂θ

2
f(x; θ)dx θ = θ0

= Φ′′(1)ℐ θ0 ,

where ℐ θ0  is Fisher’s information. To move from the first line of the above calculation to 

the second line we used a combination of the product rule and of the chain rule. To go from 

the second to the third line, note that because the first derivative is equal to 0 as shown 

immediately above of this equation, the integral in the right hand is null.

Hence, in this univariate case, the second order approximation is given by 

D θ, θ0 ≈ Φ(1) + 1
2Φ″(1) θ − θ0

2ℐ θ0 , where ℐ θ0  is Fisher’s information. Thus, the 

average discrepancy between an approximating and a generating model is scaled by the 

inverse of the theoretical variance of the Maximum Likelihood estimator, regardless of the 

form of the function Φ().

2.1.3. Insight 3: Setting Φ(t) = −2 log t Connects D θ, θ0; Φ  With Entropy and 

Information Theory—Akaike proceeded to arbitrarily set the function Φ(t) to Φ(t) = −2 

log t. Using this function not only furthered the connection with ML theory, but also 

introduced the connection of his thinking with Information Theory. By using this arbitrary 

function, the average discrepancy becomes a divergence because D θ0, θ0 = Φ(1) = 0 and the 

approximation of the average discrepancy, heretofore denoted as W θ, θ0 , is modulated by 

Fisher’s information, the variance of the Maximum Likelihood estimator: 

D θ, θ0 ≈ W θ, θ0 = θ − θ0
2ℐ θ0 . For a multivariate θ0 we get then that 

W θ, θ0 = θ − θ0 ′ℐ θ0 θ − θ0  where ℐ θ0  is Fisher’s Information matrix (Pawitan, 2001). 

Conveniently then, the arbitrary factor of 2 gave his general average discrepancy function 

the familiar “neg-entropy” or Kullback-Leibler (KL) divergence form

D θ, θ0 = − 2∫ f x; θ0 log f(x; θ)
f x; θ0

dx

= − 2EX log f(X; θ)
f X; θ0

= − 2 EX(logf(X; θ)) − EX logf X; θ0
= 2EX logf X; θ0 − 2EX(logf(X; θ))
= 2KL θ, θ0

(2)
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thus bringing together concepts in ML estimation with a wealth of results in Information 

Theory. The two expectations (integrals) in the last line of the above equation were often 

succinctly denoted by Akaike as Sgg and Sgf, respectively: these are the neg-selfentropy and 

the neg-crossentropy terms. Thus, he would write that last line as 2KL(θ, θ0) = 2[Sgg − 

Sgf]. Note that for consistency with Akaike (1973) we have retained his notation and in 

particular, the order of arguments in the KL function, as opposed to the notation we use in 

Dennis et al. (2019).

2.1.4. Insight 4: D θ, θ0  Is Minimized at the ML Estimate of θ—Aikaike’s fourth 

critical insight was to note that a Law of Large Numbers (LLN) approximation of the 

Kullback-Leibler divergence between the true, generating stochastic process and a statistical 

model is minimized by evaluating the candidate model at its maximum likelihood estimates. 

Such conclusion can be arrived at even if the generating stochastic model is not known. 

Indeed, given a sample of size n, X1, X2, …, Xn from the generating model, from the LLN 

we have that

Dn θ , θ0 = − 2 × 1
n ∑

i = 1

n
log

f xi; θ
f xi; θ0

,

which is minimized at the ML estimate θ . Akaike actually thought that this observation 

could be used as a justification for the maximum likelihood principle: “Though it has been 

said that the maximum likelihood principle is not based on any clearly defined optimum 

consideration, our present observation has made it clear that it is essentially designed to keep 

minimum the estimated loss function which is very naturally defined as the mean 

information for discrimination between the estimated and the true distributions” Akaike 

(1973).

2.1.5. Insight 5: Minimizing D θ, θ0  Is an Average Approximation Problem—

Akaike’s fifth insight was to recognize the need to account for the randomness in the ML 

estimator. Because multiple realizations of a sample X1, X2, …, Xn each results in different 

estimates of θ, the average discrepancy should be considered a random variable. The 

randomness hence, is with respect to distribution of the maximum likelihood estimator θ . 

Let ℛ θ0 = Eθ D θ , θ0  denote our target average over the distribution of θ . Then, the 

problem of minimizing the Kullback Leibler divergence can be conceived as an 

approximation problem where the target is the average:

ℛ θ0 = EθD θ , θ0 = 2Eθ EX logf X; θ0
−EX(logf(X; θ ) ∣ θ )
= 2EX logf X; θ0
− 2Eθ EX(logf(X; θ ) ∣ θ ) .

In the final expression of the equation above, the first term is an unknown constant. The 

second term on the other hand, is the expected value of a conditional expectation.
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2.1.6. Insight 6: D θ, θ0  Can Be Approximated Geometrically Using 

Pythagoras’ Theorem—Instead of estimating the expectations above, Akaike thought of 

substituting the probabilistic entropy D θ , θ0  with its Taylor Series approximation 

W θ , θ0 = θ − θ0 ′ℐ θ0 θ − θ0 , which can then be interpreted as a squared statistical 

distance. This approximation is indeed the square of a statistical distance wherein the 

divergence between any two points θ  and θ0 is weighted by their dispersion in multivariate 

space, measured by the eigenvalues of the positive definite matrix ℐ θ0 . This sixth insight 

led him straight into the path to learning about the KL divergence between a generating 

process and a set of proposed probabilistic mechanisms/models. By viewing this quadratic 

form as a statistical distance, Akaike was able to use a battery of clear measure-theoretic 

arguments relying on various convergence proofs to derive the AIC.

Interestingly, and although he doesn’t explicitly mentions it in his paper, his entire argument 

can be phrased geometrically: if the average discrepancy that he was after could be 

approximated with the square of a statistical distance, its decomposition using Pythagoras 

theorem was the natural thing to do. By doing such decomposition, one can immediately 

visualize the ideas in his proof with a simple sketch. We present such sketch in Figure 1. In 

that figure, the key triangle with a right angle has as vertices the truth θ0 of unknown 

dimension L, the ML estimator θ  of dimension k ≤ L, denoted θk and finally, θ0k. This 

quantity represents the orthogonal projection of the truth in the plane where all estimators of 

dimension k lie, which is in turn denoted as Θk (Figure 1A). Figure 1B shows a fourth 

crucial point in this geometrical interpretation: it is the estimator of θ0 from the data using a 

model with the same model form as the generating model, but with parameters estimated 

from the data. To distinguish it from θk we denote this estimator θ0. Because it has the same 

dimensions than the generating model, θ0 can be thought of as being located in the same 

model surface as the generating model θ0. Akaike’s LLN approximation of the KL 

divergence as an average of log-likelihood ratios Dn θ , θ0 = − 2 × 1
n ∑i = 1

n log
f xi; θ
f xi; θ0

 comes 

to play in this geometric derivation as the edge labeled e2 in Figure 1B that traces the link 

between θ0 and the ML estimator θk. Following Akaike’s derivation then, the ML estimator 

θk can be thought as the orthogonal projection of θ0 onto the plane Θk.

Before continuing with our geometric interpretation, we alert the reader that in Figure 1 all 

the edges are labeled with a lowercase letter with the purpose of facilitating this geometric 

visualization. The necessary calculations to understand Akaike’s results are presented as 

simplified algebraic calculations but the reader however, is warned that these edges or lower 

case letters denote for the most part random variables. We leave these simple letters here 

because in Akaike’s original derivations, the technical measure-theoretic operations may end 

up distracting the reader from a natural geometric understanding of the AIC.

In simple terms then, the objective of this geometric representation is to see that obtaining an 

estimate of the discrepancy between the approximating model and the generating process 

amounts to solving for the square of the edge length b, which is in fact the KL divergence 

quadratic form approximation. That is, b2 = W θ , θ0 . Proceeding with our geometric 
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interpretation, note that the angle ϕ between edges h and c in Figure 1B is not by necessity a 

right angle, and that the generalized Pythagoras Theorem to find the edge length d applies. 

Akaike then noted that provided that the approximating model is in the vicinity of the 

generating mechanism, the third term of the generalized Pythagoras form of the squared 

distance d2 = c2 + h2 − 2ch cos ϕ was negligible when compared with c2 and h2 [see Akaike, 

1973, his Equation (4.15) and his comment about that term in the paragraph above his 

Equation (4.19). See also De Leeuw 1992, text under his Equation (4)], and so he proceeded 

to simply use only the first two terms, c2 and h2 (see Figure 1C). The immense success of 

the AIC in a wide array of scientific settings to date shows that this approximation, as rough 

as it may seem, is in fact quite reliable. This approximation allowed him to write the squared 

distance d2 in two different ways: as d2 ≈ c2 + h2 and as d2 = a2 + e2. Because by 

construction, we have that b2 = h2 + a2, one can immediately write the difference b2 − e2 as

b2 − e2 = ℎ2 + a2 − d2 + a2

= ℎ2 + a2 − c2 − ℎ2 + a2,

and then solve for b2 (see Figure 1D):

b2 = e2 + 2a2 − c2 . (3)

Using asymptotic expansions of these squared terms, the observed Fisher’s information and 

using known convergence in probability results, Akaike showed when multiplied by the 

sample size n, the difference of squares c2 −a2 was approximately chi-squared distributed 

with degrees of freedom L − k and that na2 χk
2. Then, multiplying equation (3) by n gives

nb2 = nW θk, θ0 ≈ nDn θk, θ0
= 2 × log‐likelihood ratio 

+ na2

χk
2

− n c2 − a2

χL − k
2

.

Finally, one may arrive at the original expected value of the conditional expectation shown 

above by replacing the chi-squares with their expected values, which are given by their 

degrees of freedom. Hence,

nEθk W θk, θ0   ≈ nDn θk, θ0 + 2k − L,  or

Eθk W θk, θ0 ≈ −2
n ∑

i = 1

n
logf xi; θk + 2k

n − L
n

+ 2
n ∑

i = 1

n
logf xi; θ0 .

(4)

The first two terms in the above expression, −2∑i = 1
n logf xi; θk + 2k, constitute what came 

to be known as the AIC. These terms correspond respectively to twice the negative log-

likelihood evaluated at the MLE and twice the number of parameters estimated in the 

approximating model. To achieve multi-model comparison (see Figure 2), Akaike swiftly 
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pointed out that in fact, only these first two terms are needed because the true model 

dimension L and the term ∑i = 1
n logf xi; θ0  both terms (1) remain the same across models, 

as long as the same data set is used and (2) cannot be known because they refer to the true 

model dimension. Akaike rightly noted that if one were to compute Equation (4) for a suite 

of approximating models, these two terms would remain the same across all models and 

hence, could in practice be ignored for comparison purposes: these unknowns then act as 

constants of proportionality that are invariant to model choice. Therefore, in order to 

compare the value of this estimated average discrepancy across a suite of models, the user 

only needs to calculate the AIC score −2∑i = 1
n logf xi; θk + 2k for each model and deem as 

best that model for which the outcome of this calculation is the smallest. The logic 

embedded in Akaike’s reasoning is represented graphically in Figure 2 (redrawn from 

Burnham et al., 2011). This reasoning kickstarted the practice, still followed in science 46 

years later, to disavow the absolute truth in favor of a careful examination of multiple, if not 

many, models.

Finally, the reader should recall that what Equation (4) is in fact approximating is

ℛ θ0 = EθD θk, θ0 = − 2Eθ EX logf X; θk ∣ θk
+ 2EX logf X; θ0 . (5)

and that this last expression is in fact the expectation with respect to θk of

−2∫ f x; θ0 log
f x; θk
f x; θ0

dx = − 2∫ f x; θ0 logf x; θk dx

+ 2∫ f x; θ0 logf x; θ0 dx .
(6)

Later, Akaike (1974) referred to the integral ∫ f x; θ0 logf x; θk dx as Sgf and to ∫ f (x; θ0) 

log f (x; θ0)dx as Sgg, which are names easy to remember because it’s almost as if the S in 

Sgf and Sgg represent the integral sign and g and f are a short hand representation of the 

probability density function of the generating stochastic process and of the approximating 

model, respectively.

One of our central motivations to write this paper is the following: by essentially ignoring 

the remainder terms in Equation (4), since 1973 practitioners have been almost invariably 

selecting the “least worst” model among a set of models (but see Spanos, 2010). In other 

words, we as a scientific community, have largely disregarded the question of how far, in 
absolute terms not relative, is the generating process from the best approximating model. 

Suppose the generating model is in fact very far from all the models in a set of models 

currently being examined. Then, the last term in Equation (4) will be very large with respect 

to the first two terms for all the models in a model set that is being examined, and essentially 

any differences between the terms −2∑i = 1
n logf xi; θk + 2k for every model will be 

meaningless.
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2.2. The Problem of Multiple Models

Akaike’s realization that “truth” did not need to be known in order to select from a suite of 

models which one was closest to truth shaped the following four and a half decades of 

scientific undertaking of model-centered science. Scientists were then naturally pushed 

toward the confrontation of not one or two, but multiple models with their experimental and 

observational data. Such approach soon led to the realization that basing the totality of the 

inferences on the single best model was not adequate because it was often the case that a 

small set of models would appear indistinguishable from each other when compared (Taper 

and Ponciano, 2016b).

Model averaging is by far, the most common approach used today to make inferences and 

predictions following an evaluation of multiple models via the AIC. Multiple options to do 

model averaging exist but in all cases, this procedure is an implicit Bayesian methodology 

that results in a set of posterior probabilities for each model. These posterior probabilities 

are called the “Akaike weights.” For the ith model in a set of candidate models, this weight is 

computed as

wi = e −Δi/2

∑r = 1
R e −Δr/2 .

In this expression, Δi is the ith difference between the AIC value and the best (i.e., the 

lowest) AIC score in the set of R candidate models. Although this definition is very well-

known, cited and used (Taper and Ponciano, 2016b), it is seldom acknowledged that because 

these weights are in fact posterior probabilities, they must result from adopting a specific set 

of subjective model priors. Burnham et al. (2011) actually show that the weights shown 

above result from adopting the following subjective priors qi:

qi = C ⋅ exp 1
2kilog(n) − ki , (7)

where C is a normalization constant, ki is the model dimension (the estimated number of 

parameters) of model i and n denotes the total sample size. Note that with sample sizes 

above 7, those weights increase with the number of parameters, thus favoring parameter rich 

models. The use of these priors makes model averaging a confirmation approach 

(Bandyopadhyay et al., 2016).

For someone using evidential statistics, adopting the model averaging practice outline above 

presents two important problems: first, the weights are based on prior beliefs that favor more 

parameter rich models and are not based on actual evidence (data). Second, and much more 

practically, model averaging appears to artificially favor redundancy of model specification: 

the more models that are developed in any given region of model space, the stronger this 

particular region gets weighted during the model averaging process. To counter these two 

problems, here we propose alternatively to estimate (1) the properties of a hyperplane 

containing the model set, (2) the location in such plane of the best projection of the 

generating process and (3) an overall general discrepancy between each of the models in the 

model set and the generating process or truth. We achieve these goals by using the estimated 
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KL divergences amongst all estimated models, that is, the estimated Sfifj for all models i and 

j in the candidate set. This is information that is typically ignored. Here again, we use 

Akaike’s mnemonic notation where g denotes the generating model and f the approximating 

model. Then the so called neg-crossentropy and neg-selfentropy are written as

Sgf = ∫ f x; θ0 logf x; θk dx and

Sgg  = ∫ f x; θ0 logf x; θ0 dx, respectively.

In his 1974 paper, Akaike observed that the neg-crossentropy could be estimated with

Sgf = 1
n ∑

i = 1

n
logf xi; θk − k

n = − AIC
2n . (8)

We wish to point out that in the “popular” statistical literature within the Wildlife Ecology 

sciences (e.g., Burnham and Anderson, 2004; Burnham et al., 2011), it is often repeated that 

an estimator of Eθ EX logf X; θk ∣ θk  is given by −AIC/2. In fact, Akaike (1974) shows 

that the correct estimator is given by Equation (8). This distinction, albeit subtle, marks a 

difference when the analyst wishes to compare not only which model best approximates the 

generating process, but also the strength of the evidence for one or the other model choice.

In what follows, we extend Akaike’s geometric derivation to make inferences regarding the 

spatial configuration of the ensemble of models being considered as approximations to the 

generating process. As we show with an ecological example, unlike model averaging this 

natural geometric extension of the AIC is fairly robust to the specification of models around 

the same region of model space and is actually aided, not hampered, by proposing a large set 

of candidate models.

2.3. A Geometrical Extension of Akaike’s Extension to the Principle of Maximum 
Likelihood

As modelers, scientists are naturally drawn to visualize a suite of candidate models as 

entities in a (hyper)plane. By so doing, the geometric proximities between these entities are 

then intuitively understood as similarities amongst models. The key questions we answer in 

this paper are whether it is possible to estimate the architecture of such model space, locate a 

suite of approximating models within such space as well as estimating the location of the 

projection of truth onto that plane. All of this while not having to formulate an explicit 

model for the generating model. The estimation of the location of the truth projection in that 

plane would open the door to a formulation of an overall goodness of fit measure qualifying 

every single one of the AIC scores computed for a set of candidate models. Additionally, 

answering these questions automatically provides valuable insights to intuitively understand 

why or why not model averaging may be an appropriate course of action. As we show 

below, these questions are answerable precisely because any given set of models has a set of 

relationships which are typically ignored but that can be translated directly to a set of 

geometrical relationships that carry all the needed information and evidence.
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One of the key observations of this contribution is the fact that while at the time of Akaike’s 

publication his approach could not be extended due to mathematical intractabilities, 

nowadays computer intensive methods allow the design of a straightforward algorithm to 

solve the model projection problem outlined above. These computational tools basically 

involve two methodologies: first, a numerical estimation of Kullback-Leibler (KL) 

divergences between arbitrary distributions and second, parallel processing to carry a Non-

Metric Multidimensional (NMDS) space scaling algorithm. With the help of a NMDS, a 

matrix of amongst-candidate models estimated KL divergences can be transformed into an 

approximated Euclidean representation of models in a (hyper)plane. The coordinates of each 

model in that plane, that we heretofore denote (y1, y2, …) are used to solve the model 

projection problem. The algorithm presented here is not necessarily restricted to a two-

dimensional representation of model space, but for the sake of visualization we present our 

development in ℛ2.

Consider the sketch in Figure 3. There, to begin with we have drawn only two 

approximating models f2 and f3 on a Euclidean space, along with a depiction of the location 

of the generating process g outside that plane. Such representation immediately leads to the 

definition of a point m in that plane that correspond to the orthogonal projection of the 

generating process onto the plane. The location of such point is denoted as (y1
⋆, y2

⋆). The 

length h in that sketch represents the deviation of the generating process from the plane of 

approximating models as a line from g to the plane that crosses such plane perpendicularly. 

Note also that every one of the approximating models fi in that plane is situated at a distance 

d(fi, m) from the orthogonal projection m. In reality, both the edges as well as the points in 

this plane are random variables associated with a sampling error. But we ask the reader’s 

indulgence for the sake of the argument, just as we did above when we explained Akaike’s 

results, and think of these simply as points and fixed lengths. Doing so, one may also 

indulge, as Akaike did, in using the right-angle, simple version of the Pythagoras theorem, 

and assume that all the amongst-models KL divergences have a corresponding squared 

Euclidean distance in that representation. Then, the following equations hold

KL g, f1 = d f1, m 2 + ℎ1
2

KL g, f2 = d f2, m 2 + ℎ2
2

⋮

where necessarily h1 = h2 = hi = … = h. Recalling Equation (8) we note that every one of the 

divergences between the approximating models and g can be expressed as a sum of an 

estimable term and a fixed, unknown term. These terms are Sgfi and Sgg, respectively. 

Writing such decomposition of the KL divergences for all the equations above, and 

explicitly incorporating the coordinates of m then results in this system of equations

Sgg − Sgf1 − d f1, m y1
⋆, y2

⋆ 2 = ℎ1
2,

Sgg − Sgf2 − d f2, m y1
⋆, y2

⋆ 2 = ℎ2
2,

⋮ ⋮ ⋮

(9)
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which can be solved and optimized computationally by constructing an objective function 

that, for any given set of values of sgg, y1
⋆, y2

⋆ in the left hand of these equations returns the 

sum of squared differences between all the hi. Because by necessity (see Figure 3) ℎ2 = ℎi
2

for all i, a routine minimization of this sum of squared differences can be used as the target 

to obtain optimal values of the unknown quantities of interest and obtain the model-

projection representation shown in Figure 5. Although previously unrecognized by Taper 

and Ponciano (2016a), in these equations the terms Sgg and h2 appear always as a 

difference, and hence are not separable. Fortunately, a non-parametric, multivariate estimate 

of Sgg can be readily computed. We use the estimator proposed by Berrett et al. (2019), a 

multivariate extension of the well-known univariate estimator by Kozachenko and Leonenko 

(1987). Other non-parametric entropy estimators could be used if they prove to be more 

appropriate. For instance, the Berrett et al. (2019) estimator assumes that the data are iid. 

This restricts the class of problems for which we are able to separate Sgg and h2. An 

estimator for Sgg for dependent data would expand the class.

3. EXAMPLES

In what follows we illustrate our ideas and methodology with two ecological examples. The 

first example is an animal behavior study aiming to understand the mechanism shaping 

patterns of animal aggregations. The second one is an ecosystems ecology example, where 

the aim was to try to understand the biotic and abiotic factors that shape the species diversity 

and composition of a shrubland ecosystem in California.

3.1. An Application in Animal Behavior

The phenomenon of animal aggregations has long been the focus of interest for evolutionary 

biologists studying behavior (Brockmann, 1990). In some animal species, males form groups 

surrounding females, seeking breeding opportunities. Often, these mating groups vary 

substantially in size, even during the same breeding season and breeding occasion. This is 

particularly true in some species with external fertilization where females spawn the eggs 

and one or more males may fertilize them. The females of the American horseshoe crab, 

Limulus polyphemus leave sea “en masse” to spawn at the beach during high tide, 1–4 times 

a year. As females enter the beach and find a place to spawn, males land in groups and begin 

to surround the females. Nesting typically occur in pairs, but some females attract additional 

males, called satellites, and spawn in groups. As a result, when surveys of the mating group 

size are done, one may encounter horseshoe crab pairs with 0, 1, 2, 3, … satellite males. 

That variation in the number of satellite males is at the root of the difficulty in characterizing 

the exact make-up of the crab population. Hence, for years during spawning events, 

Brockmann (1990) focused on recording not only the total number of spawning females in a 

beach in Seahorse Key (an island along Florida’s northern west coast) but also the number of 

satellite males surrounding each encountered pair. Those data have long been the focus of 

attempts at a probabilistic description of the distribution of the number of satellite males 

surrounding a pair of horseshoe crabs using standard distribution models (e.g., Poisson, zero 

inflated Poisson, negative binomial, zero inflated negative binomial, hurdle-negative 

binomial distributions).
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When one of us (JMP) met H. J. Brockmann in 2010, she asked the following: “how will 

fitting different discrete probability distributions to my data help me understand the 

biological mechanisms underlying group formation in this species?” After years of 

occasional one-on one meetings and back and forth discussions, we put together a detailed 

study (Brockmann et al., 2018) in which we compared the observed distribution of the 

number of satellites surrounding a female to the same distribution resulting from a complex, 

individual-based model simulation program. Importantly, this individual-based model 

allowed us to translate different hypotheses regarding the influence of different factors, like 

female density or male density around a female, into the decision by a new satellite male of 

joining a mating group or continuing the search.

The comparison between the real data and the simulated data via discrete probability 

distributions then allowed these authors to identify the biological settings that resulted in in 
silico distributions of satellites that most resembled the real, observed distributions of 

satellite males. To do that comparison, Brockmann et al. (2018) first fitted a handful of 

discrete probability models to the counts of the number of satellites surrounding each pair 

from each one of N = 339 tides, and proceeded to find the standard probability model that 

best described the data. These authors then fitted the same models to the simulated data sets 

under different biological scenarios and found the simulation setting that yielded the highest 

resemblance between the real data and the digital data. Finally Brockmann et al. (2018) 

discuss the implications of the results.

One of the most relevant conclusions of these authors was that their comparative approach 

was useful as a hypothesis generator. Indeed, by finding via trial and error which biological 

processes gave rise in the individual-based simulations to distributions of satellites that most 

resembled the real distributions, the researchers basically came up with a system to elicit 

viable biological explanations for the mechanisms shaping the distribution of the number of 

satellite males surrounding a pair. This approach was an attempt to answer Brockmann’s 

initial question to JMP.

Here, we used the simulation setting of Brockmann et al. (2018) to exemplify how our 

Model Projections in Model Space (MPMS) approach can further our understanding of what 

are the model attributes that make a model a good model to better understand the underlying 

mechanisms generating the data. By having a complex simulation program, we can describe 

exactly the probability distribution of the data-generating process and we can validate our 

MPMS approach.

In what follows we first explain how we fitted our proposed models to the tides’ count data, 

and then how we compute the quantities needed to generate an approximate representation 

of models in model space that includes the estimated projection of the true, data-generating 

process.

3.1.1. Likelihood Function for the Satellites Count Data—A handful of discrete 

probability models can be fit conveniently to the male satellites counts data using the same 

general likelihood functions by means of a reduced-parameter multinomial distribution 

model parameterization. As we will see below, this reduced-parameter multinomial 
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likelihood formulation is instrumental to compute analytically the KL divergences between 

each one of the models as well as the neg-selfentropy. Many modern biological models, like 

phylogenetic Markov models, use this reduced-parameter formulation (Yang, 2000), and the 

example presented here can be readily used in many other settings in ecology and evolution 

(e.g., Rice, 1995).

In this example we adopt the following notation: the probability mass function of each 

discrete probability model i (i = 1, 2, … r where r is the number of models in the model set) 

is denoted as fi(x). Following Brockmann et al. (2018), we use f1(x) to denote the Poisson 

distribution (Poisson), f2(x) the negative binomial distribution (NegBin), f3(x) the zero 

inflated Poisson distribution (ZIP), f4(x) the zero inflated negative binomial distribution 

(ZINegBi), f5(x) a hurdle negative binomial distribution (HurdNBi), f6(x) a Poisson-negative 

binomial mixture (PoiNB), f7(x) a negative-binomial-Poisson mixture (NBPois), f8(x) a one-

inflated Poisson distribution (OIPoiss), and f9(x) a one inflated negative-binomial 

distribution (OINegBi). In this example, r = 9.

We begin with the likelihood function for the counts for one tide, and extend it to the 

ensemble of counts for N tides Because for each tide j, j = 1, 2, …, N the data consisted of 

the number of 0’s, 1’s, etc…, the data can be represented as a multinomial sample with k 
categories and probabilities π1, π2, …, πk: Let Y1 be the number of pairs with no satellites 

found at the beach in one tide, Y2 the number of pairs with 1 satellite male in one tide, Y3 

the number of pairs with 2 satellite males in one tide, …, Yk−1 the number of pairs with k − 

2 satellites in one tide and Yk the number of pairs with k − 1 or more satellites in one tide. 

Suppose for instance that we are to fit the Poisson distribution model with parameter λ to 

the counts of one tide. Then, the reduced parameter multinomial distribution arranged to fit 

the Poisson model would be parameterized using the following probabilities for each 

category:

π1 = P (X = 0) = f1(0) = e−λ,
π2 = P (X = 1) = f1(1) = λe−λ,

π3 = P (X = 2) = f1(2) = λ2e−λ

2! ,

⋮

πk − 1 = P (X = k − 2) = f1(k − 2) = λk − 2e−λ

(k − 2)!

πk = P (X ≥ k − 1) = 1 − ∑s = 0
k − 2 f1(s) = 1 − ∑s = 0

k − 2 λse−λ

(s)! .

(10)

It follows that if in a given tide j a total of nj pairs are counted and yj,1 is the number of 

females with no satellites, yj,2 is the number with one satellites, etc., such that 

∑i = 1
k yj, k = nj, the likelihood function needed to fit the Poisson probability model to the 

data of one tide is simply written as:
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Lj(λ) = P Y j, 1 = yj, 1, Y j, 2 = yj, 2, …, Y j, k − 1 = yj, k − 1, Y j, k = yj, k

= n!
yj, 1!yj, 2!yj, 3!…yj, k!π1

yj, 1π1
yj, 2…πk

yj, k,

and the overall likelihood function for the N tides is simply

L(λ) = ∏
i = 1

N
Lj(λ) .

Finally, note that for this reduced parameter multinomial model, the ML expected 

frequencies would simply be computed as njπ1. For example, under the Poisson model, the 

expected number of 0’s in a sample would be computed as njπ1 = P (X = 0) = e−λ, where λ
denotes the ML estimate of λ.

The likelihood function and each of the predicted probabilities for every model were 

computed using the programs in the files CrabsExampleTools.R and AbundanceToolkit2.0.R 

downloadable from our github webpage, which works as follows. Suppose that for a single 

tide, the counts of the number of pairs with 0, 1, 2, 3, 4, and 5 or more satellites are 112, 96, 

101, 48, 22, 16, respectively. Then, the program abund.fit (found in the set of functions 

AbundanceToolkit2.0.R) takes those counts and returns, for every model in a pre-specified 

model set, the expected frequencies (from which the probabilities of every category in the 

reduced-parameter multinomial are retrievable), the ML estimates of each set of model 

parameters, the maximized log-likelihood and other statistics.

The processes of simulating any given number of tide counts according to Brockmann et al. 

(2018) and computing the ML estimates and other statistics for every model and every tide 

in a pre-specified model set are packaged within our function short.sim() whose output is (1) 

a matrix of simulated counts, with one row per tide. In each row the data for a single tide is 

displayed from left to right, showing the number of pairs with 0, 1, 2, 3, 4, and 5 or more 

satellites. (2) a list with the statistics (ML estimates, maximized log-likelihood, predicted 

counts, etc…) for every model and every tide. (3) A matrix of information criteria values for 

every tide (row) and every model (column) in the set of tested models.

3.1.2. Calculation of Quantities Needed to Generate a MPMS—The generation 

of the MPMS necessitates solving the system of Equation (9). To solve that system of 

equations for any given dat set we need

1. A non-parametric estimate of the neg-selfentropy Sgg, Sgg. Berrett et al. (2019) 

recently proposed such an estimator. Their estimator is in essence a weighted 

(Kozachenko and Leonenko, 1987) estimator, and uses k nearest neighbors of 

each observation as follows:
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Hnw = 1
n ∑

i = 1

n
∑

j = 1

k
wjlogξ(j), i,

where ξ(j),i = (n− 1)e−ψ(j) Vq∥X(j),i−Xi∥q with X(j),i indicating the j-th nearest 

neighbor from the i-th observation Xi. Also, in these equation n indicates the 

number of observations, ψ(j) is the digamma function and Vq = πq/2/Γ(1 + q/2) 

is the volume of the unit q-dimensional ball and q is the dimension of the 

multivariate observations.

The focus of Berrett et al. (2019) was writing a complete theoretical proof of the 

statistical properties of their estimator. Practical guidance as to how to find these 

weights is however lacking in their paper, but through personal communication 

with T. Berrett we learned that their weights wj must only satisfy the constraints 

(see their Equation 2):

∑
j = 1

k
wj = 1   and     ∑

j = 1

k
wjΓ (j + 2l/q)/Γ (j) = 0    for

l = 1, …, q/4,

where k is the number of observations that define a local neighborhood of 

observations around any given observation. Berrett (personal communication) 

recommends arbitrarily choosing k as the sample size to the power of a third. 

The other restrictions on Berrett et al. (2019)’ theorem about the support of these 

weights were needed only for technical convenience for the proof. Berrett et al. 

(2019) also mentioned that for small sample sizes, the unweighted estimator may 

be preferable. For larger problems he recommended solving the above 

restrictions with a non-linear optimizator. We wrote such non-linear optimization 

routine to compute the weights wj’s and tested it extensively via simulations and 

embedded it into a function whose only argument is the data itself. Through 

extensive simulations we have verified that this routine works well for 

dimensions at least up to q = 15. We coded our optimization in R and is now part 

of a package of functions accompanying this paper. The function is found in the 

file MPcalctools.R and was named Hse.wKL. Finally, note that a typical data set 

for our crabs example is of dimension 6, so our routine is more than enough for a 

typical set of counts similar to the ones in this example. For instance, one set of 

counts of pairs with 0 satellites, 1 satellite, 2 satellites, …, 5 or more satellite 

males for one tide is y1 = 112, y2 = 96, y3 = 101, y4 = 48, y5 = 22, y6 = 16.

2. A matrix of KL divergences between all models estimated in the model set being 

considered. If a total of r models are being considered, then the elements of this 

matrix are {KL(fi, fj)}i,j, i, j = 1, 2, …, r. Computing these divergences may seem 

like a daunting task, especially because these quantities are, in fact, different 

expectations (i.e., infinite sums) evaluated at the ML estimates for each model in 

the model set. However, those calculations are enormously simplified by 
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adopting the general reduced-parameter likelihood approach because the neg-

crossentropy H(fr, fs) between two multinomial models fr and fs with a total 

sample size n can be computed exactly:

H fr, fs = ∑ y1, y2, …, yk ≥ 0, ∑kyk = n
n!

y1!…yk!π1, r
y1 …

πk, r
yk log n!

y1!…yk!π1, s
y1 …πk, s

yk

= logn! + n∑ i = 1kπi, rlogπi, s

− ∑
i = 1

k
∑

yi = 0

n n
yi

πi, r
yi 1 − πi, r

n − yi logyi! .

(11)

Note that when s = r, then H(fr, fs) becomes the neg-selfentropy. Because the KL 

divergence is the sum of a neg-selfentropy and a crossentropy, in practice, to 

compute the KL divergence between two count models for a single vector of 

counts for one tide we only needed to compute the probabilities in Equation (10) 

for every model using the ML estimates for each data set and use Equation (11) 

above. The function in R used to compute either the neg-crossentropies or the 

neg-selfentropies is named H.multinom.loop() and found in the file 

MPcalctools.R. Following simple rules of expected values, the overall KL 

divergence between two count models for a set of N vectors of tide counts, each 

drawn from the same true generating process (the individual-based model 

simulator program), was just computed as the sum of the divergences between 

the two models for each vector of counts. Note that the same simplification in 

Equation (11) applies to the computation of the neg-selfentropy for a 

multinomial distribution, a fact that we used to compute the true Sgg for our 

simulator algorithm, given that the individual-based model simulator of 

Brockmann et al. (2018) could be used to the estimate numerically true 

probabilities for 0,1,2,… satellites.

3. The estimates of the neg-crossentropies Sgfi and of Sfig for i = 1, 2, …, r. 

Although the first set of divergences, the Sgfi, can be estimated either using the 

AIC and Equation (8), by definition of the KL divergence, the estimates Sfig are 

in general not equal to the estimates Sgfi and cannot be computed using the AIC 

and Equation (8). If however, h2 is very small, then using the approximation 

Sgfi ≈ Sfig works quite well as we show in example 3.2 and in Taper and 

Ponciano (2016a). Fortunately, using this approximation is not always necessary 

and does not have to be used for a large class of statistical problems. Indeed, for 

the example at hand where we are fitting multiple count models and for any other 

case where the likelihood function may be written by means of a reduced-

parameter multinomial model (like the likelihood function for most 

phylogenetics models, for instance), both the Sgfi and the Sfig can be computed 

using Equation (11) by using the ML estimates of the multinomial π’s for each 

model and the ML estimates of the π’s for the fully parameterized (i.e., the 

empirical model) in lieu of the π parameter values for g. We will denote these 
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empirical estimates (i.e., the sample proportions) as πi. These estimates and 

Equation (11) can be used to compute Sgg. For a set of models and a data set 

including one or more tides, the estimates Sgfi, Sfig, Sfifj and Sgg are 

computed using the function entropies.matcalc() found in the file MPcalctools.R.

For a simulated example where the data consisted of counts for 300 tides for 

which the first 5 tides were

> simdat [1:5,]

0 1 2 3 4 5

[1,] 112 96 101 48 22 16

[2,] 135 125 108 44 19 12

[3,] 141 108 91 55 23 16

[4,] 119 117 99 60 18 10

[5,] 139 120 117 37 26 11

The estimated matrix of neg-crossentropies for these N = 300 tides was

$Sfifjs.hat

Poisson NegBin ZIPoiss ZINegBi HurdNBi PoisNB NBPois OIPoiss OINegBi

Poisson −4693.860 −6788.198 −7144.127 −7261.358 −7276.347 −7240.670 −7268.412 −4694.360 −5474.936

NegBin −7140.595 −4801.609 −5748.393 −5402.616 −5393.795 −5141.644 −5417.371 −7142.133 −6271.978

ZIPoiss −7269.760 −5688.618 −4778.731 −4958.789 −4991.042 −5157.351 −4973.420 −7271.568 −6703.770

ZINegBi −7483.025 −5374.228 −4980.700 −4792.072 −4868.308 −5004.579 −4952.840 −7484.694 −6719.950

HurdNBi −7504.330 −5366.989 −5015.873 −4870.053 −4792.890 −4980.233 −4974.241 −7503.976 −6688.178

PoisNB −7476.723 −5131.165 −5178.562 −5008.269 −4982.275 −4794.920 −4975.992 −7477.044 −6595.687

NBPois −7453.540 −5389.715 −4984.999 −4949.951 −4969.751 −4970.038 −4790.289 −7455.437 −6702.133

OIPoiss −4694.328 −6789.643 −7145.910 −7262.925 −7275.909 −7240.883 −7270.251 −4693.826 −5474.358

OINegBi −5606.894 −6051.992 −6648.368 −6590.061 −6559.321 −6453.790 −6596.554 −5606.393 −4735.259

The true generating process neg-selfentropy, Sgg was −16.01199 and the 

estimated neg-selfentropy Sgg was −15.96137. The real neg-crossentropies 

between the generating process and each of the models Sgfi’s and Sfig’s were:

$Sgfis

Poisson NegBin ZIPoiss ZINegBi HurdNBi PoisNB NBPois OIPoiss OINegBi

−7601.606 −5603.842 −5485.607 −5432.819 −5457.657 −5450.109 −5463.949 −7606.407 −6832.673

$Sfisg

Poisson NegBin ZIPoiss ZINegBi HurdNBi PoisNB NBPois OIPoiss OINegBi

−7276.506 −5615.999 −5431.557 −5414.428 −5439.071 −5436.292 −5435.686 −7281.250 −6653.690

whereas the estimated neg-crossentropies were

$Sgfis.hat

Poisson NegBin ZIPoiss ZINegBi HurdNBi PoisNB NBPois OIPoiss OINegBi

−7891.890 −5652.049 −5403.773 −5200.907 −5179.331 −5323.294 −5253.094 −7891.705 −7051.753

$Sfisg.hat

Poisson NegBin ZIPoiss ZINegBi HurdNBi PoisNB NBPois OIPoiss OINegBi
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−7638.034 −5682.275 −5396.418 −5213.190 −5193.804 −5339.449 −5264.447 −7637.716 −6906.558

4. The coordinates of every model in an NMDS space. Multidimensional scaling, 

MDS, is an established method (Borg et al., 2018) for representing the 

information in the s × s matrix D of distances/divergences among s objects as a 

set of coordinates for the objects in a k-dimensional euclidian space (k ≤ s). If k 
< s, there may be some loss of information. MDS has two major varieties, metric 

multidimensional scaling, MMDS, in which D is assumed to be comprised of 

Euclidean distances, and non-metric multidimensional scaling, NMDS, in which 

D can be made up of divergences only monotonically related to distances. The 

MMDS projection can be made analytically, while the NMDS projection can 

only be found algorithmically by iteratively adjusting the configuration to 

minimize a statistic known as “Stress,” which is a weighted average squared 

deviation of the distances between points (models in our case) calculated from 

the proposed configuration and the distances given in D.

The matrix D required by NMDS should be symmetric. KL divergences are not, 

however, symmetric. The KL divergence can be reasonably symmetrized in a 

number of ways (Seghouane and Amari, 2007). We symmetrize using the 

arithmetic average of KL(θi, θj) and KL(θj, θi). As mentioned above in this 

problem we can directly calculate the symmetric KL. For other applications the 

symmetric KL can be estimated (up to the constant Sgg) using the KIC and its 

small sample version the KiCc (Cavanaugh, 1999, 2004). We follow Akaike in 

considering the KL divergence as a squared distance, and thus construct the 

matrix D from the square roots of the symmetrized KL divergence. We use the 

function smacofSym (De Leeuw and Mair, 2009) from the R package smacof 

(version 2.0, Mair et al., 2019) to calculate the NMDS. For the purposes of this 

paper we chose k = 2 so that we could have a graphical representation after 

augmenting the dimension to 3 to show the orthogonal distance from the 

generating process to its orthogonal projection M in the estimated plane of 

models. Nevertheless, the Stress of 0.029 indicates an excellent fit. Except for the 

very important aspect of visualization, dimension reduction is not an essential 

aspect of our method. Finally, the tight pseudo-confidence ellipses (95%) 

illustrated in Figure 4, based on Stress derivatives (Mair et al., 2019) indicate that 

this NMDS is quite stable.

Once all these components are computed, the system of Equation (9) can be solved with 

non-linear optimization. We coded such solution in the R function MP.coords found in the 

file MPcalctools.R. This function takes as input the estimated neg-crossentropies between all 

models, an estimate of Sgg or the neg-selfentropy of the generating process, and the vectors 

of estimated neg-crossentropies Sgfi and Sfig to output the matrix of dimension (r + 1) × (r 

+ 1) of symmetrized KL divergences, and the results of the NMDS with the coordinates of 

every model in a two-dimensional space, the estimated location of the orthogonal projection 

of g in such plane, M, and the estimate of h. Notably, this function works for any example 

for which these estimated quantities are available. Its output is taken by our function 

plot.MP to produce the three-dimensional representation of the Model Projection in Model 
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Space shown in Figure 5. For this example, the estimated distances in the model projection 

space between all models, g and its projection M were

Poisson NegBin ZIPoiss ZINegBi HurdNBi PoisNB NBPois OIPoiss OINegBi M

NegBin 4.46711

ZIPoiss 5.09358 1.51616

ZINegBi 5.21422 1.26069 0.42784

HurdNBi 5.22444 1.19699 0.52347 0.09773

PoisNB 5.10858 0.89561 0.81309 0.42542 0.33690

NBPois 5.19883 1.24348 0.43208 0.01798 0.09139 0.41228

OIPoiss 0.00181 4.46859 5.09530 5.21588 5.22609 5.11018 5.20050

OINegBi 1.69500 2.85332 3.73875 3.76818 3.75926 3.58746 3.75125 1.69618

M 4.51235 2.33280 1.26566 1.67451 1.76140 1.97444 1.67387 4.51416 3.50306

g 4.51235 2.33280 1.26566 1.67451 1.76140 1.97444 1.67387 4.51416 3.50306 0.00032

whereas the real distances (because we knew what the simulation setting was) were

> dist(true.MP$XYs.mat)

Poisson NegBin ZIPoiss ZINegBi HurdNBi PoisNB NBPois OIPoiss OINegBi M

NegBin 4.46711

ZIPoiss 5.09358 1.51616

ZINegBi 5.21422 1.26069 0.42784

HurdNBi 5.22444 1.19699 0.52347 0.09773

PoisNB 5.10858 0.89561 0.81309 0.42542 0.33690

NBPois 5.19883 1.24348 0.43208 0.01798 0.09139 0.41228

OIPoiss 0.00181 4.46859 5.09530 5.21588 5.22609 5.11018 5.20050

OINegBi 1.69500 2.85332 3.73875 3.76818 3.75926 3.58746 3.75125 1.69618

M 4.14688 2.14942 1.34587 1.70959 1.78455 1.93970 1.70493 4.14868 3.12059

g 4.14688 2.14942 1.34587 1.70959 1.78455 1.93970 1.70493 4.14868 3.12059 0.00037

From these matrices, it is readily seen that the real value of h in the model projection space 

was 0.000372 whereas its corresponding estimated h value is 0.000323. A quick calculation 

yields the distances between the true location of the orthogonal projection M, its estimate, 

the true location of g and its estimate:

hat.m hat.g true.m

hat.g 0.000323

true.m 0.383074 0.383074

true.g 0.383074 0.383074 0.000372

As expected, variation in the quality of these estimates and the difference with the true 

locations changes from simulated dat set to simulated data set. Two questions are a direct 

consequence of this observation: first, the MPMS data representation in Figure 5 could be 

more accurately depicted via bootstrap and confidence clouds or spheres for the location of 

each model in model space could be drawn. Such task would however involve entertaining 

the problem of the representation of multiple bootstrap NMDS runs in a single space, using 

the same rotation.
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Classically, variation among NMDS object has been estimated only after Procrustes rotation 

has oriented the various coordinate systems for maximal similarity among the NMDS 

objects (see Mardia et al., 1979). A long series of articles involving authors, such as T. M. 

Cole, S. R. Lele, C. McCulloch, and J. Richtsmeir demonstrates that this approach is deeply 

flawed. This work is summarized in the monograph by Lele and Richtsmeier (2001). The 

problem is that the apparent variability among equivalent points in the multiple objects 

depends on distance from the center of rotation. Lele and Richtsmeir argue that inference is 

better made regarding variation in estimated distances between points than on the 

coordinates of points. A mean distance matrix can be estimated from a set of bootstrapped 

replicates, and it is almost certain that the mean distance matrix will be the most informative 

matrix both for inference and for graphical purposes as this mean corresponds to the 

expectation with respect to θ  in Akaike’s 5th insight (see section 2.1.5). Further, variation 

and covariation in all estimated distances and contrasts of distances can be invariantly 

calculated and used for inference. Finally, extending our MPMS methodology to include 

confidence bounds for our estimates is a topic of current research in our collaboration and 

will be treated in a future manuscript because it necessitates the same degree of care used to 

generate confidence intervals for Model-Average inferences (see for instance Turek, 2013).

The second question has to do with how would our estimate of the location in model space 

of the orthogonal projection of the generating process compare to the location of the model-

average. For our example at hand, the AIC values as well as the ΔAICs were:

> AICs

Poisson NegBin ZIPoiss ZINegBi HurdNBi PoisNB NBPois OIPoiss OINegBi

14301.321 9823.639 9327.086 8923.355 8880.203 9168.129 9027.727 14302.951 12625.047

> delta.is

Poisson NegBin ZIPoiss ZINegBi HurdNBi PoisNB NBPois OIPoiss OINegBi

5421.11814 943.43554 446.88328 43.15146 0.00000 287.92594 147.52444 5422.74769 3744.84389

To compare the estimated location of the model average with our estimated our model 

projection, we plotted both panels in Figure 6 into a single, two-dimensional figure with: the 

location of every estimated model, the location of the model averaged coordinates using the 

AIC weights, the location of the estimated orthogonal projection of g, and the location of the 

true location of the orthogonal projection g. Such figure is presented in Figure 6. In this 

figure, the distance between the real projection M of g and our estimated projection is 

0.383074 whereas the distance between the model-average and the real projection of g is 

1.784555. A quick inspection of Figure 6 shows that this case in fact, is a real-life 

illustration of the point brought up by Figure 3B. When the geometry of the model space is 

as in Figures 3B, 5, 6, model averaging may not be a suitable enterprise.

3.2. An Ecosystems Ecology Application

Here we discuss a worked example highlighting the strengths of the model projections 

approach to multi-model inference. This example was originally presented in Taper and 

Ponciano (2016a) which is freely downloadable from: https://link.springer.com/book/

10.1007/978-3-319-27772-1 This example is an analysis of data simulated from a structural 
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equation model (SEM) based on a study by Grace and Keeley (2006). Simulation from a 

known model in necessary to understand how well our methods capture information about 

the generating process, while basing that model on published research guarantees that our 

test-bed is not a toy, but is a problem of scientific interest. SEM is a flexible statistical 

method that allows scientists to analyze the causal relationship among variables and even 

general theoretical constructs (Grace and Bollen, 2006, 2008; Grace, 2008; Grace et al., 

2010). Grace and Keeley (2006) analyzed the development of plant diversity in California 

shrublands after natural fires. Structural equations models were used to make inferences as 

to the causal mechanisms influencing changes in diversity. Plant composition at 90 sites was 

followed for 5 years. The Grace and Keely final model is displayed in Figure 7. To 

summarize the causal influences, species richness is directly affected by heterogeneity, local 

abiotic conditions, and plant cover. Heterogeneity and local abiotic conditions are in turn 

affected by landscape position, but total cover is only directly affected by burn intensity. 

Burn intensity is in turn only affected by stand age, which itself depend on landscape 

position. Affects and their direction are shown as arrows in the figure. The strength of affects 

(i.e., the path coefficients) are shown both as numbers on the figure and as the thickness of 

the arrows).

Forty-one models were fit to our generated data. The models ranged from underfitted to 

overfitted approximations of the generating process. The actual generating model was not 

included in this model set. Using this set of fitted models, we estimated a 2-d Non-Metric 

Dimensional Scaling model space as discussed above. The calculated stress was tiny 

(0.006%) indicating almost all higher dimensional structure is captured by an ℛ2 plane. A 

mapping of the estimated space analogous to our Figure 6 is shown in their Figure 6 Taper 

and Ponciano (2016a). ΔAIC values are indicated by color. As in Figure 6 of this paper, on 

this map of model space we also indicated: (1) The estimated projection (location) of the 

generating process to the 2-d NMDS space, (2) The Akaike weighted model averaged 

location and 3) The actual projection of the true generating process l onto the 2-d manifold 

(in this worked example this can be done because we have simulated from a known model).

Two important observations can be made based on the graph in Figure 6 (both in this 

manuscript and in Taper and Ponciano, 2016a) : First while there is a rough agreement 

between proximity to the generating process and ΔAIC values, this relationship is not as 

tight as one might naively expect. The inter-model KL distances do have substantial impact 

on the map. Second, using our methods and just like in example 3.1 above, the estimated 

projection of the generating process is somewhat nearer to the actual projection of the 

generating process than the location produced by model-averaging (Figure 6 in this 

manuscript).

Figure 8 demonstrates the sensitivities of both the estimated projection and model average of 

eliminating fitted models from the estimation of the NMDS space. We repeatedly eliminate 

the left-most model in the model set and reestimate the space after each cycle. With each 

model elimination, the model-averaged location moves toward the right. On the other hand, 

the estimated projection stays near its original location, even after all fitted models in that 

side of the map have been eliminated. Conversely, eliminating from the right, the model 
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average shifts to the left as anticipated. Under right-side model elimination, the model 

projection is somewhat more variable than under elimination from the other direction.

This model elimination example illuminates differences in the two kinds of estimates the 

generating process location. These differences follow directly from the geometric 

development of the AIC by Akaike, and from the mathematics of model averaging. (1) The 

model average must fall inside of the bounds of the fitted models. changing the model set 

will, except in contrived cases, change the model average. (2) Because it is a projection, our 

method’s estimate of the generating process’ location can fall outside the bounds of the 

model set. And (3), because of the nature of projection geometry, farther models can inform 

the estimated situation of the generating process in the NMDS map. Point (3) is 

demonstrated in the discrepancy in the stability of the model projection location under 

model elimination from the left and model elimination from the right. There are several 

models with high influence that are deleted quickly under model elimination from the right 

that stay in the model set much longer under elimination from the left.

Our approach calculates two important diagnostic statistics not even thought of in model 

averaging. The first is measure of the dispersion of the generating process. This is the neg-

selfentropy or Sgg. In this example it is calculated to be −9.881, very close to the known 

magnitude of −9.877. The second statistic is an estimate of the perpendicular distance of the 

generating process to the NMDS manifold (h in Equation 9). This diagnostic is critical for 

proper interpretation of your model set. If the generating process is far from NMDS 

manifold, then any statistic based on models in the model set is likely to be inaccurate. 

Using our approach we calculate h to be 0.0002. The known h is 6e – 08.

3.3. Testing the Non-parametric Estimation of Sgg

To exemplify the independent estimation of Sgg with a data set we simulated samples from a 

seven-dimensional multivariate normal distribution and compared the true value of Sgg with 

its non-parametric estimate according to Berrett et al. (2019). We chose to simulate data 

from a multivariate normal distribution because its Sgg value is known analytically. When 

the dimension of a multivariate normal distribution is p and is variance-covariance matrix is 

Σ, then

Sgg = − 1
2ln (2πe)pdet(Σ) . (12)

To carry our test, we chose five testing sample sizes 10, 25, 50, 75, 150, and for each sample 

size we simulated 2,000 data sets according to a multivariate normal distribution with p = 7 

and Σ = I, and computed each time Berrett et al.’s non-parametric estimate. The resulting 

estimates, divided by the true value of 9.93257 are plotted as boxplots in Figure 9.

4. DISCUSSION

We have constructed a novel approach to multi-model inference. Standard multi-model 

selection analyses only estimate the relative, not overall divergences of each model from the 

generating process. Typically, divergence relationships amongst all of the approximating 
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models are also estimable (dashed lines in Figure 5). We have shown that using both sets of 

divergences, a model space can be constructed that includes an estimated location for the 

generating process (the point g in Figure 5). The construction of such model space stems 

directly from a geometrical interpretation of Akaike’s original work.

The approach laid out here has clear and substantial advantages over standard model 

identification and Bayesian based model averaging. A heuristic approach aiding the 

development of novel models is now possible by simply being able to visualize a set of 

candidate models in an Euclidean space. Now the overall architecture of model space vis-a-

vis the generating process is statistically estimable. Such architecture is composed of a 

critical set of quantities and relationships. Among these objects, we now include the 

estimated coordinates of the closest orthogonal generating model projection onto the 

manifold of candidate models (the point M in Figure 5). Second, the estimated magnitude of 

the total divergence between the truth and its orthogonal projection onto the manifold of 

models can give the analyst an indication of whether important model attributes have been 

overlooked.

In the information criterion literature and all scientific application, the neg-selfentropy Sgg 
of the generating process is simply treated as an unknown quantity. In fact, it can be 

estimated quite precisely as our example shows. Sgg is itself of great interest because with it 

the overall discrepancy to the generating process becomes estimable. Because this quantity 

is estimable, now the analyst can discern the overall quality and proximity of the model set 

under scrutiny. Thus, our approach solves a difficulty that has long been recognized (Spanos, 

2010) but yet treated as an open problem.

Studying the model space architecture gives the information to correct for misleading 

evidence (the probability of observing data that fails to support the best model), 

accommodation (over-fitting), and cooking your models (Dennis et al., 2019). The 

scaffolding from which to project the location of the generating process is estimated can be 

rendered more robust simply by considering more models. This is an interesting result that 

we expect will later contribute to the discussion of data dredging. On the other hand, non-

identifiability and weak estimability (Ponciano et al., 2012) are, of course, still a problem, 

but at least the model space approach will clearly indicate the difficulties.

As conceived here, model projection is an evidential alternative (Taper and Ponciano, 2016b) 

to model averaging using Akaike weights (or other Bayesian alternatives) because it 

incorporates the available information estimated by many models without the redundancy 

inherent in model averaging. Through model projection the analyst can use more of the 

information available but usually ignored. Furthermore, our methodology provides new 

important diagnostic statistics previously not considered by model averaging: Sgg and h. As 

we showed in our results, model projection is not as sensitive as model average to the 

composition of the set of candidate models being investigated. Model averaging appears to 

artificially favor redundancy of model specification: the more models are developed in any 

given region of model space, the stronger this particular region gets weighted during the 

model averaging process. Finally, an emergent pattern in the analysis is that the optimization 
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problem of our model projection methodology can be used to project outside the bounds of 

the available model set whereas the model averaging methodology, by definition, cannot.

As well as proposing solutions to existing problems, any new method also raises a variety of 

technical problems that need to be solved. This is certainly the case with the model 

projection approach presented here.

Our methodology bears a near-model limitation that, although important, is shared with the 

usage of Akaike’s Information Criterion. Our exposition makes it clear that near model 

requirement is due to the imperfect yet useful approximation employed by Akaike while 

setting ϕ ≈ π/2 (see Figure 1). It was only thanks to this approximation that Akaike was able 

to solve for the estimable divergence contrasts between all approximating models and the 

generating process. This approximation breaks down in curved model spaces as the 

divergence from the generating process increases. Indeed, as the KL distance between 

approximating models and the generating model increases, −AIC/2n becomes an 

increasingly biased and variable estimate of the Sgf component of the KL distance between 

the approximating model and the generating model. This effect is strong enough that 

sometimes very bad models can have very low ΔAIC scores, sometimes even as low as the 

minimum score. The TIC (Takeuchi, 1976) and the EIC2 (Konishi and Kitagawa, 2008; 

Kitagawa and Konishi, 2010) are model identification criteria designed to be robust to model 

misspecification. Substituting one of these information criteria for the AIC in constructing 

the matrix of inter-model divergences should allow the use of models more distant from 

truth than is acceptable using the AIC.

Our methodology focuses on estimation of the model space geometry but uncertainties 

around such estimation are not fully worked out as of yet. Work in progress by Taper, Lele, 

Ponciano and Dennis, the estimation of the uncertainties associated with doing inference 

with evidence functions, such as ΔSIC scores, can be assessed via non-parametric bootstrap 

techniques. We expect bootstrap to be also useful to reduce the variance of information 

criterion’s bias correction (Kitagawa and Konishi, 2010).

We think that this model projection methodology should be the starting point to do a careful, 

science-based inquiry of what are the model attributes that make a model a good model. 

Knowing the location of the projected best model is an essential component of our multi-

model development strategy because a response surface analysis can reveal what model 

attributes tend to be included near the location of the projected best model thus aiding in the 

construction of a model closer to the best projection.
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FIGURE 1 |. 
The geometry of Akaike’s Information Criterion. (A) Shows θ0, which is the generating 

model and θ0k which is the orthogonal projection of the generating model into the space Θk 

of dimension k. θk is the ML estimate (MLE) of an approximating model of dimension k 

given a data set of size n. Akaike’s objective was to solve for b2, which represents in this 

geometry W θ , θ0 , the quadratic form approximation of the divergence between the 

generating and the approximating models. Akaike showed that θk can be thought of as the 

orthogonal projection of the MLE of θ0 (B). This last quantity θ0 represents the MLE of θ0 

with a finite sample of size n and assuming that the correct model form is known. The angle 

ϕ is not necessarily a right angle, but Akaike used ϕ ≈ π/2 so that the generalized Pythagoras 

theorem [equation on the lower left side of (B)] could be approximated with the simple 

version of Pythagoras [equation on the lower left side of (C)] when the edge h is not too 

long. When implemented, this Pythagoras equation can be used in conjunction with the other 

Pythagorean triangles in the geometry to solve for the squared edge b. The equations leading 

to such solution are shown in (D).
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FIGURE 2 |. 
Schematic representation of the logic of multi-model selection using the AIC. g represents 

the generating model and fi the ith approximating model. The Kullback-Leibler information 

discrepancies (di) are shown on the left (A) as the distance between approximating models 

and the generating model. The ΔAICs shown on the right (B) measures the distance from 

approximating models to the best approximating model. All distances are on the information 

scale.
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FIGURE 3 |. 
The geometry of model space. In this figure, f2 and f3 are approximating models residing in 

a (hyper)plane. g is the generating model. m is the projection of g onto the (hyper)plane. d(;)
· are distances between models in the plane. d(f2, f3) ≈ KL(f2, f3) with deviations due to the 

dimension reduction in NMDS and non-Euclidian behavior of KL divergences. As KL 

divergences decrease, they become increasingly Euclidian. (A) Shows a projection when m 

is within the convex hull of the approximating models, and (B) shows a projection when m 

is outside of the convex hull. Prasanta S. Bandyopadhyay, Gordon Brittan Jr., Mark L. Taper, 

Belief, Evidence, and Uncertainty. Problems of Epistemic Inference, published 2016 

Springer International Publisher, reproduced with permission of Springer Nature Customer 

Service Center.
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FIGURE 4 |. 
Count models for the horseshoe crab example (section 3.1) in NMDS space, along with 

pseudo-confidence ellipses (95%). These ellipses are based on Stress derivatives (Mair et al., 

2019) and indicate in this case that the NMDS is quite stable (overall stress is 0.029).
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FIGURE 5 |. 
The models of Figure 2 visualized by our new methodology, and applied to our Horseshoe 

crab example (section 3.1). As before, g is the generating model and models f1, …, f9, are 

the approximating models and named in the legend of each panel. (A) Shows the estimated 

model projection “M” and the estimated location of the true generating process whereas (B) 
shows the location of the true model projection “M” and of the true generating process. The 

dashed lines are KL distances between approximating models, which were calculated 

according to Equation 2. The solid gray lines are the KL distances from approximating 

models to the generating model. The vertical dotted line shows h, the discrepancy between 

the generating model and its best approximation in the NMDS plane, whereas all the other 

dotted lines mark the discrepancy between the approximating models and the model 

projection “M.” A 2-dimensional representation of only the plane of models, the estimated g 
model projection and the true model projection of g onto that plane is shown in Figure 6.
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FIGURE 6 |. 
NMDS space of nine models for the Horseshoe crab example (section 3.1). The true 

projection, M, of the generating model onto the NMDS plane is shown, along with the 

location of the estimated location of such projection, m, and of the model average, wAIC.
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FIGURE 7 |. 
The final, simplified model explaining plant diversity from Grace and Keeley (2006). 

Arrows indicate causal influences. The standardized coefficients are indicated by path labels 

and widths. See section 3.2 for details. Prasanta S. Bandyopadhyay, Gordon Brittan Jr., 

Mark L. Taper, Belief, Evidence, and Uncertainty. Problems of Epistemic Inference, 

published 2016 Springer International Publisher, reproduced with permission of Springer 

Nature Customer Service Center.
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FIGURE 8 |. 
Stability test of the displacement (trajectories) of the model prediction (in blue) and the 

model average (in red) under deletion of 1 – 30 models. M denotes the true location of the 

orthogonal projection of the generating model in the hyperplane. m and a mark the location 

of the model projection and the model average, respectively, when the 30 models are used. 

In both cases, as models are removed one by one from the candidate model set, the location 

of both m and a changes (little vertical lines). Note how the model projection estimate is 

more stable to changes in the model set than the model average. Prasanta S. Bandyopadhyay, 

Gordon Brittan Jr., Mark L. Taper, Belief, Evidence, and Uncertainty. Problems of Epistemic 

Inference, published 2016 Springer International Publisher, reproduced with permission of 

Springer Nature Customer Service Center.
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FIGURE 9 |. 
Boxplots of sets of 2,000 non-parametric estimates of Sgg (from Berrett et al., 2019) relative 

to the true Sgg value of 9.93257, for different sample sizes. The simulated data comes from 

a seven-dimensional Multivariate Normal distribution with means equal to 10 and the 

identity matrix as a variance-covariance matrix. The dashed, horizontal line at 1 shows the 

zero-bias mark.

Ponciano and Taper Page 39

Front Ecol Evol. Author manuscript; available in PMC 2021 March 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	INTRODUCTION
	THE AIC AND A NATURAL GEOMETRIC EXTENSION: MODEL PROJECTIONS IN MODEL SPACE
	Theoretical Insights From Akaike (1973)
	Insight 1: Discrepancy From the Generating Process (Truth) Can Be Measured by the Average of Some Function of the Likelihood Ratio
	Insight 2: D(θ,θ0;Φ) Is Scaled by Fisher’s Information Matrix
	Insight 3: Setting Φ(t) = −2 log t Connects D(θ,θ0;Φ) With Entropy and Information Theory
	Insight 4: D(θ,θ0) Is Minimized at the ML Estimate of θ
	Insight 5: Minimizing D(θ,θ0) Is an Average Approximation Problem
	Insight 6: D(θ,θ0) Can Be Approximated Geometrically Using Pythagoras’ Theorem

	The Problem of Multiple Models
	A Geometrical Extension of Akaike’s Extension to the Principle of Maximum Likelihood

	EXAMPLES
	An Application in Animal Behavior
	Likelihood Function for the Satellites Count Data
	Calculation of Quantities Needed to Generate a MPMS

	An Ecosystems Ecology Application
	Testing the Non-parametric Estimation of Sgg

	DISCUSSION
	References
	FIGURE 1 |
	FIGURE 2 |
	FIGURE 3 |
	FIGURE 4 |
	FIGURE 5 |
	FIGURE 6 |
	FIGURE 7 |
	FIGURE 8 |
	FIGURE 9 |

