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Abstract: Herbicides are key weed-control tools, but their repeated use across large areas has fa-
vored the evolution of herbicide resistance. Although target-site has been the most prevalent and
studied type of resistance, non-target-site resistance (NTSR) is increasing. However, the genetic
factors involved in NTSR are widely unknown. In this study, four gene groups encoding puta-
tive NTSR enzymes, namely, cytochrome-P450, glutathione-S-transferase (GST), uridine 5′-diphospho-
glucuronosyltransferase (UDPGT), and nitronate monooxygenase (NMO) were analyzed. The monocot
and dicot gene sequences were downloaded from publicly available databases. Phylogenetic trees
revealed that most of the CYP450 resistance-related sequences belong to CYP81 (5), and in GST, most
of the resistance sequences belonged to GSTU18 (9) and GSTF6 (8) groups. In addition, the study
of upstream promoter sequences of these NTSR genes revealed stress-related cis-regulatory motifs,
as well as eight transcription factor binding sites (TFBS) were identified. The discovered TFBS were
commonly present in both monocots and dicots, and the identified motifs are known to play key
roles in countering abiotic stress. Further, we predicted the 3D structure for the resistant CYP450
and GST protein and identified the substrate recognition site through the homology approach. Our
description of putative NTSR enzymes may be used to develop innovative weed control techniques
to delay the evolution of NTSR.

Keywords: non-target site; cytochrome-P450; monooxygenase; gluthatione; transferase; metabolism

1. Introduction

Crop-infesting weeds are a foremost cause of crop loss worldwide, posing a significant
danger to food security. For the past several decades, herbicides have been the tool of
choice for effective weed management. Management of weeds in modern cropping systems
is imperative for maintaining high crop productivity, sustainable agri-business, and global
food production. Herbicide usage, especially in large extensions of land dedicated to grow-
ing a few crops, creates a substantial selection pressure and is responsible for the evolution
of herbicide-resistant weeds. As the first report of 2,4-D herbicide-resistant weeds [1],
herbicide resistance has evolved in all major cropping systems due to widespread herbicide
use over time, causing the strong selection of resistant alleles [2]. Herbicide resistance
has been recorded in 152 broadleaf and 110 grass species affecting 70 different crops to
date [3,4]. There has been abundant research on the processes that bestow herbicide resis-
tance. Target-site herbicide resistance (TSR) and non-target-site herbicide resistance (NTSR)
are two broad categories in which resistance mechanisms are grouped [5]. Target-site herbi-
cide resistance occurs when the functional or active site of proteins (frequently enzymes)
undergo structural changes as a consequence of amino acid deletion or substitution, as
well as when gene overexpression or amplification causes an increase in the abundance
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of the target protein [6]. The NTSR mechanisms, on the other hand, encompasses all
resistance biochemical processes that are independent of the binding site of the herbicide
to its target protein. Generally, decreased herbicide absorption/translocation, increased
herbicide detoxification rate, or sequestration to organelles where the herbicide has no
herbicidal activity are common NTSR mechanisms that ultimately limit the amount of her-
bicide reaching the site of action [7]. CytochromeP450, glutathione-S-transferase (GST), uridine
5′-diphospho-glucuronosyltransferase (UDPGT), nitronate monooxygenase (NMO), esterases,
transporters, and aldo-keto reductase genes are known to be involved in NTSR [8–11].
NTSR mechanisms play major roles in the evolution of cross-resistance and potentially
multiple-resistance, including herbicides to which weeds have never been exposed [12].
Increased detoxification rates of herbicides due to upregulation of GST or CytochromeP450
genes have been associated with gains in resistance to herbicides [10,13–15]. Herbicide
resistance has evolved rapidly as vast and genetically diverse weed species have been
exposed to recurrent selection, with herbicide programs lacking diversity in mechanisms
of action.

In the last 30 years, no new herbicide mechanism of action (MOA) has been reg-
istered for commercial use [16]. To delay the evolution of weed resistance to existing
herbicides, the search for new herbicide MOA is urgent, but the difficulty of finding new
effective lethal target sites and the lack of a detailed understanding of the mechanisms
of NTSR are limiting the development of new herbicides [17]. The conventional way of
identifying an MOA was to find a herbicidal or phytotoxic agent and then use physio-
logical and biochemical methods to describe how the agent disrupted the metabolism
of the plant. In recent years, ‘omics’ methods have been used to look for new targets
for herbicides. Transcriptomics, proteomics, and metabolomics are examples of ‘omics’
methods that are nowadays used for herbicide target identification. Currently, the use of
genomics for weed control is lagging behind applications for controlling arthropod pests
and pathogens [18–20]. Weed reference genomes will help understand the regulatory and
structural characteristics of a wide range of weedy genes and their evolution. Genome
assemblies of Conyza canadensis (L.), Raphanus raphanistrum (L.), Echinochloa crus-galli (L.)
P. Beauv., Thlapsi arvense (L.), Amaranthus palmeri S. Watson, Amaranthus tuberculatus (Moq.)
J. D. Sauer, and Amaranthus hybridus (L.) have all been recently published [21–27]. Beyond
transcriptomics, genomics holds the potential for providing new insights into weed man-
agement. The conserved motif and regulatory proteins, such as transcription factors (TF),
play a critical role in the intensity and efficacy of NTSR mechanisms [28]. However, little
is known about those mechanisms in the context of herbicide detoxification metabolism,
in part, because of the wide range of proteins and enzymes that might be involved. Bioin-
formatics tools and public transcriptome and genome databases may be used to predict
regulatory elements and TF based on hundreds of independent experiments. This method
has been used to mine critical components of signaling and metabolic pathways in a variety
of species [9,29–31].

Anticipating the mechanisms and conditions that favor the evolution of herbicide
resistance in weed species must be a cornerstone of the development and stewardship of
herbicides. For this reason, the goals of this study were (1) to identify putative NTSR genes
via genomic mining and to analyze their phylogenetic relationships, (2) to identify regula-
tory elements responsible for NTSR genes expression that could aid in the management of
NTSR evolution in weed species and development of crops with an increased spectrum
of herbicide tolerance, and (3) to predict the 3-D structure of resistant CYP450 and GST
proteins by homology modeling to identify key substrate-binding residues.

2. Materials and Methods
2.1. Sequence Retrieval

cDNA, protein, and genomic DNA sequences of dicotyledonous (dicot) plants (Ara-
bidopsis thaliana (L.) Heynh., Capsicum annuum L., Citrus clementina hort., Daucus carota
var. sativus Hoffm., Glycine max (L.) Merr., Ipomoea triloba L., Prunus persica (L.) Batsch.,
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Vitis vinifera L., and Amaranthus hypochondriacus L., and monocotyledonous (monocot)
plants Eragrostris curvula (Schrad.) Nees, Hordeum vulgare L., Oryza sativa subsp. japonica
S. Kato, Setaria viridis (L.) P. Beauv., Sorghum bicolor (L.) Moench, Triticum aestivum L., and
Zea mays L. were downloaded from Ensembl Plants (https://plants.ensembl.org/info/
data/ftp/index.html; accessed on 5 November 2021). The cDNA sequence of monocot weed
species Lolium multiflorum Lam. was retrieved from https://zenodo.org/record/832654#
(accessed on 7 November 2021). YWNH2prMIuU [32] and Echinochloa crus-galli (L.)
P. Beauv. from http://ibi.zju.edu.cn/RiceWeedomes/Echinochloa/ (accessed on 10 Novem-
ber 2021) [23]. The Hidden Markov Model profile UDPGT (PF00201, NMO (PF03060), Cy-
tochromeP450 (PF00067), GST_N (PF02798) and GST_C (PF00043) were downloaded from
Pfam [33] (http://pfam.xfam.org/; accessed on 5 November 2021). The resistant CYP450
and GST sequences were downloaded from NCBI (https://www.ncbi.nlm.nih.gov/; ac-
cessed on 5 November 2021).

2.2. Identification of UDPGT, GST, NMO, and CytochromeP450

The sequences of UDPGT, GST, NMO, and CytochromeP450 proteins were retrieved
from the above-mentioned plant species using the hmmsearch program of the HMMER
suite [34]. HMMER searches sequence databases for homology and performs alignment
of sequences by creating a profile and further, with the help of the hmmsearch program,
searches and retrieves for homologs. The HMM predicted sequences were further con-
firmed using blastp at e-value = 1 × 10−10 and used for further analysis.

2.3. Phylogenetic Study

The Molecular Evolutionary Genetics Analysis (MEGA-X) [35] program aligned the
downloaded sequences with ClustalW (v. 2.0.12, UCD, Dublin, Ireland). This software
provides flexibility and allows users to work with large datasets of protein and DNA
sequences with statistical methods for phylogenetic analysis. The ClustalW provides
the option for simultaneously aligning a large number of sequences at a much faster
rate. Following the first protein alignment, any sequences that were small, divergent, or
lengthy were deleted, and re-alignment of the remaining sequences was then performed.
MEGA-X was used to do phylogenetic analysis using the maximum likelihood statistical
technique with 1000 bootstrap repetitions. The phylogenetic tree was edited and visualized
in the software FigTree.v1.4.4 (http://tree.bio.ed.ac.uk/software/figtree/; accessed on
12 November 2021). The software FigTree is used to visualize and edit the phylogenetic tree.

2.4. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes Pathway Analysis

The Blast2Go program [36] was used to analyze gene ontology and Kyoto Encyclo-
pedia of Genes and Genomes (KEGG) for pathway mapping of UDPGT, GST, NMO, and
CytochromeP450 selected sequences. This software imparts the flexibility for annotating a
large number of DNA and protein sequences conveniently and especially for non-model
organisms. In the gene ontology, every protein sequence is characterized by molecular,
biological, and cellular activities. The KEGG database was mined for retrieving biochemical
pathway information and enzyme codes for each gene. The KEGG database comprises
information for organism biochemical pathways and genes involved in it. The conserved
motif in UDPGT, GST, NMO, and CytochromeP450 were discovered using the MEME suite
(https://meme-suite.org/meme/tools/meme; accessed on 12 November 2021) with no
more than 15 motifs per sequence. The MEME Suite is a comprehensive software tool for
analyzing sequence motifs in DNA and protein sequences. Numerous biological activities
are encoded by such motifs, and their identification and characterization are critical in
studying vital cell regulatory mechanisms, including the modulation of gene expression.

2.5. In Silico Expression Analysis of NTSR Genes

Genevestigator (https://genevestigator.com/; accessed on 15 November 2021) was
used to explore the expression of UDPGT, GST, NMO, and CytochromeP450 genes after

https://plants.ensembl.org/info/data/ftp/index.html
https://plants.ensembl.org/info/data/ftp/index.html
https://zenodo.org/record/832654#
http://ibi.zju.edu.cn/RiceWeedomes/Echinochloa/
http://pfam.xfam.org/
https://www.ncbi.nlm.nih.gov/
http://tree.bio.ed.ac.uk/software/figtree/
https://meme-suite.org/meme/tools/meme
https://genevestigator.com/
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herbicide exposure. The Genevestigator database comprises carefully curated and extensive
expression profiles from 11 distinct plant species (www.genevestigator.com; accessed on
15 November 2021). This software analyzes carefully curated bulk tissue and single-cell
transcriptome data from public sources for different species.

2.6. Identification of Cis Motifs and Transcription Factors Binding Sites in Promoters of NTSR Genes

Sequences in the promoter region were extracted up to 1 kb of NTSR genes. The
promoters of NTSR genes were evaluated using the web-based program “The PlantPan
3.0 (http://plantpan.itps.ncku.edu.tw/ accessed on 15 November 2021) and New PLACE
database [37] to check for the presence of transcription factors binding sites (TFBS) and
motifs in cis-acting regulatory DNA elements in the promoter region of NTSR genes. The
PlantPan and New PLACE database is a useful tool for identifying TFBs, associated TFs,
and other relevant regulatory features in a plant promoter region.

2.7. Homology Modelling and Protein Secondary Structure Assignment

The resistant GST and CYP450 sequences were aligned as representations to better
understand the structure and identify substrate binding sites. The software ESPript [38]
was used to assign secondary structure elements to the matching aligned sequences. The
substrate recognition site was predicted by aligning the closest matched sequence for GST,
and for CYP450, the substrate binding site was identified as described by Dueholm et al. [39].
To choose the optimum templates and target for the homology model, all resistant GST
and CYP sequences were submitted to the Phyre2 server [40]. Phyre2 uses homology-
based alignment and builds accurate 3-D models based on similarity with the earlier
reported 3-D structures. The model building technique was based on model confidence,
query sequence coverage, and query sequence resemblance with the template. Further,
the homology 3-D model was built using the phyre2 server. The details of the target-
template used for homology modeling is provided in Table S1. To confirm the validity
of the homology model, Ramachandran plot analysis in the Ramachandran plot server
(https://zlab.umassmed.edu/bu/rama/; accessed on 21 November 2021) service was
employed, and ERRAT (https://saves.mbi.ucla.edu/; accessed on 21 November 2021) was
used to analyze the amino acid environment.

3. Results
3.1. Identification of Putative NTSR Genes

For this study, we selected four important NTSR genes, namely, CYP450, GST, UDPGT,
and NMO, and mined these genes in monocot and dicot species. Furthermore, we iden-
tified a total of 1190 genes, 559 CytochromeP450, 534 GST, 73 UDPGT, and 24 NMO
genes. The species-wise classification of NTSR genes is provided in Table 1. The vali-
dation of CytochromeP450, GST, UDPGT, and NMO domain was confirmed with pfam [33]
(http://pfam.xfam.org/; accessed on 5 November 2021). Additionally, to have a better un-
derstanding of NTSR, we incorporated resistant CYP450s and GSTs belonging to different
classes based on earlier studies (Table S2). The resistant CYP450 and GST genes belonged to
species Glycine max, Papaver rhoeas L., Arabidopsis thaliana, Aegilops tauschii Coss., Alopecurus
myosuroides Huds., Lolium rigidum Gaudin, Hordeum vulgare, Triticum aestivum, Oryza sativa
L., Helianthus tuberosus L., Nicotiana tabacum L., Echinochloa phyllopogon (Stapf) Vasc., and
Zea mays.

www.genevestigator.com
http://plantpan.itps.ncku.edu.tw/
https://zlab.umassmed.edu/bu/rama/
https://saves.mbi.ucla.edu/
http://pfam.xfam.org/
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Table 1. Species-wise identification of non-specific herbicide resistance genes.

Species Functional Group NMO UDPGT Cytochrome P450 GST

Amaranthus hypochondriacus Dicot 0 0 5 8
Arabidopsis thaliana Dicot 1 1 0 0
Capsicum annuum Dicot 1 0 39 24
Citrus clementina Dicot 1 1 48 21

Daucus carota Dicot 1 2 26 23
Glycine max Dicot 1 13 47 39

Ipomoea triloba Dicot 1 5 36 20
Prunus persica Dicot 1 1 17 31
Vitis vinifera Dicot 1 2 22 38

Echinochloa crus-galli Monocot 2 7 0 0
Eragrostris curvula Monocot 2 4 23 30
Hordeum vulgare Monocot 1 1 71 51

Lolium multiflorum Monocot 1 3 0 0
Oryza sativa Monocot 1 3 39 43

Setaria viridis Monocot 2 6 23 22
Sorghum bicolor Monocot 2 4 30 28

Triticum aestivum Monocot 4 18 99 115
Zea mays Monocot 1 2 22 19

3.2. Gene Ontology and KEGG Pathway Analysis

Furthermore, the potential gene ontology and KEGG pathways were analyzed for the
extracted gene sequences. The gene ontology is a set of three terms (i.e., molecular function,
biological process, and cellular component) that describe our understanding of the biologi-
cal role of a gene [41]. The KEGG is a database that contains information about genomes
and genes and biological pathways associated with them. The gene ontology analysis of
CytochromeP450 genes showed that they are involved in ion binding and oxidoreductase
activity. The gene ontology analysis of GST linked this gene family to cellular nitrogen and
sulfur compound metabolic processes, transferase activity, transferring alkyl or aryl (other
than methyl) groups, and ion binding. Similarly, NMO dominant gene ontology processes
were related to catalytic, oxidoreductase activity, acting on single donors with incorporation
of molecular oxygen and incorporation of one atom of oxygen (internal monooxygenases
or internally mixed-function oxidases). The major pathways for the identified NMO genes
were glyoxylate metabolism and glycine degradation. Finally, UDPGT genes were involved
in glucosyltransferase activity, glucuronidation of flavonoids, and their biosynthesis and
hormonal glycosylation. The major KEGG pathways for UDPGT genes were glucuronida-
tion, zeatin biosynthesis, heme degradation, biosynthesis of cofactors, steroid hormone
biosynthesis, glycosphingolipid metabolism, and phenylpropanoid biosynthesis.

A motif is a small stretch of evolutionarily conserved protein, RNA, or DNA sequence,
and that conservation may be related to important structural functions such as correct
folding or an active site in enzymes. Sequence motifs are thus one of the most fundamental
functional elements in molecular evolution. As a result, recognizing and comprehending
these motifs is critical for understanding biological processes and twigging the causes of
NTSR. Therefore, we used the MEME suite to find the most common and conserved motifs
within all four NTSR gene families. In the CytochromeP450 protein motif, the three most
common motifs are found in all analyzed sequences. In GST protein, motifs 1 and 2 were
found in the majority of the sequences. Further, in NMO protein, motifs 1, 3, 4, and 5 were
found in all sequences. Lastly, in UDPGT protein sequences, motifs 3, 4, 7, and 8 were
present in most of the sequences. The summarized output of motif analysis for the four
NTSR genes is provided in Table 2.
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Table 2. Most predominant motif distribution in NTSR genes.

Gene Most Common Motif

CYP450
Motif 1 GDBFEFIPFGAGRRICPGQNFAL
Motif 2 IKAECKDLFFAGTETTSVTLEWAM
Motif 3 YLTMIIKETLRLHPPAPLLLP

GST
Motif 1 TYYFMATPYASLFDAYPHVKAWWEDJMARP
Motif 2 GEHKSPEHLARNPFGQVPALQD

NMO

Motif 1 CLGTRFVATEESFAHPLYKRKLIEMSCTDYTBVFGRARWPGAPQRVLETP
Motif 3 DHVRELIRKTRSLTEKPFGAAIVLAFPHEENLRVVLEEKLAVLQVYWGEF
Motif 4 DGIIVQGREAGGHVIGQEGLLPLLPRVVDLVSDSGIPVIAAGGIVDGRGY
Motif 5 GILGFDYGIVQAPLGPDISGPELAAAVANAGAIGLLRLPDW

UDPGT

Motif 3 PLHILFFPFLAPGHLIPLADMA
Motif 4 SYGEVFNSFHELEPDYAEHYRT
Motif 7 RAKELGEKARAAVEEGGSSYNDVGRLIDE
Motif 8 CTIJTTPVNAAVIRSAVDRAN

3.3. Phylogenetic Analysis

The phylogenetic tree is a pictorial representation that infers how different organisms,
species, or genes are derived from a common progenitor. Phylogenetic trees are valuable
for shaping information on biological variability, arranging classifications, and offering
insight into evolutionary events. Here, phylogenetic analysis showed that the different
putative NTSR genes were not equally distributed between monocots and dicots and were
not clearly separated in different clades. Furthermore, monocot species had more and more
diverse gene families than dicot species. The phylogenetic tree of CytochromeP450 further
revealed that the identified sequences belong to families CYP71A, CYP71B34, CYP71B,
CYP72A14/15, CYP81, CYP82, CYP98, and CYP76, and the largest clade belonged to the
group CYP72A14/15 (Figure 1). Most of the resistant genes were grouped within CYP81 (5),
followed by CYP72A14/15 (Figure 1).

GSTs have a wide range of substrate specificity, and lone genes can impart resistance
against various herbicides. Based on the phylogenetic analysis, we found that GSTs were
categorized into GSTF6, GSTF11, GSTU1, GSTU8, GSTU18, and GSTU19 (Figure 2). The
majority of the resistant genes belonged to GSTU18 (9) and GSTF6 (8) groups.

The phylogenetic tree of NMO was broadly categorized into dicot and monocot,
where monocot is further subdivided into two groups (Figure 3). Finally, the UDPGT
phylogenetic tree was sub-categorized into UGT703A5, UGT73B4, UGT85A2, UGT91C1,
UGT73C4, UGT73B3, UGT703A5/73B4/73C, and UGT73F15/73A22. The maximum number
of sequences belonged to group UGT703A5 in UDPGT phylogenetic tree (Figure 4).
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Figure 1. Phylogenetic tree of the CytochromeP450 genes. The tree was constructed using the maxi-
mum likelihood statistical technique with 1000 bootstrap repetitions. The letters in red, green, violet, 
and blue legend represents dicot, monocot, CYP450 resistant monocot, and CYP450 resistant dicot. 
The scale bar for evolutionary distance is 3.0. Major clades are highlighted with colors: CYP76 (blue), 
CYP71A (dark green), CYP71B34 (light blue), CYP71B (green), CYP72A14/15 (red), CYP81 (pink), 
CYP82 (orange), and CYP98 (light green). 

Figure 1. Phylogenetic tree of the CytochromeP450 genes. The tree was constructed using the maxi-
mum likelihood statistical technique with 1000 bootstrap repetitions. The letters in red, green, violet,
and blue legend represents dicot, monocot, CYP450 resistant monocot, and CYP450 resistant dicot.
The scale bar for evolutionary distance is 3.0. Major clades are highlighted with colors: CYP76 (blue),
CYP71A (dark green), CYP71B34 (light blue), CYP71B (green), CYP72A14/15 (red), CYP81 (pink),
CYP82 (orange), and CYP98 (light green).
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Figure 2. Phylogenetic tree of gene GST. The tree was constructed using the maximum likelihood 
statistical technique with 1000 bootstrap repetitions. The letters in red, green, violet, and blue legend 
represents dicot, monocot, GST resistant monocot, and GST resistant dicot. The scale bar for evolu-
tionary distance is 3.0. Major clades are highlighted with colors: GSTU19 (light green), GSTF11 (light 
blue), GSTF6 (pink), GSTU8 (orange), GSTU18 (dark green), and GSTU1 (red). 

Figure 2. Phylogenetic tree of gene GST. The tree was constructed using the maximum likelihood
statistical technique with 1000 bootstrap repetitions. The letters in red, green, violet, and blue
legend represents dicot, monocot, GST resistant monocot, and GST resistant dicot. The scale bar for
evolutionary distance is 3.0. Major clades are highlighted with colors: GSTU19 (light green), GSTF11
(light blue), GSTF6 (pink), GSTU8 (orange), GSTU18 (dark green), and GSTU1 (red).
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Figure 3. Phylogenetic tree of gene NMO. The tree was constructed using the maximum likelihood 
statistical technique with 1000 bootstrap repetitions. The circular nodes in red and blue represent 
dicot and monocot species. The scale bar for evolutionary distance is 0.8. The NMO is broadly di-
vided into three clades; the dicot clade is highlighted with pink color, whereas monocot type I and 
monocot type II are highlighted with green and yellow, respectively. 

Figure 3. Phylogenetic tree of gene NMO. The tree was constructed using the maximum likelihood
statistical technique with 1000 bootstrap repetitions. The circular nodes in red and blue represent
dicot and monocot species. The scale bar for evolutionary distance is 0.8. The NMO is broadly
divided into three clades; the dicot clade is highlighted with pink color, whereas monocot type I and
monocot type II are highlighted with green and yellow, respectively.
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(yellow), 85A2 (light green), 73B4 (red), UGT703A5 (pink), and 73F15/73A22 (blue). 

3.4. In-Silico Expression Analysis 
We used a publicly accessible gene expression database (Genevestigator) to investi-

gate the differential expression of putative NTSR genes in Arabidopsis thaliana (L.) Heynh. 
in response to applying different herbicides [42–46] (Table S3). The cytochromeP450 gene 
expression (CYP72A14) was increased in response to cloransulam-methyl, glyphosate, 
and mefenpyr + isoxadifen applications (Figure 5A). The expression of GSTF6 and 
GSTU19 were higher when compared with GSTU1, GSTU8, GSTU18, and GSTF11 (Figure 
5B). Further, NMO, AT5G64250 gene expression was increased due to cloransulam-me-
thyl, glyphosate, mefenpyr+isoxadifen, and primisulfuron-methyl (Figure 5C), while UD-
PGT gene, UGT73B4, was upregulated by cloransulam-methyl, imazapyr, mefenpyr + 
isoxadifen and primisulfuron-methyl (Figure 5D). 

Figure 4. Phylogenetic tree of gene UDPGT. The tree was constructed using the maximum likelihood
statistical technique with 1000 bootstrap repetitions. The circular nodes in red and blue represent
dicot and monocot species. The scale bar for evolutionary distance is 2.0. Major clades are highlighted
with colors: UGT703A5/73B4/73C (light orange), 73B3 (dark orange), 73C4 (green), 91C1 (yellow),
85A2 (light green), 73B4 (red), UGT703A5 (pink), and 73F15/73A22 (blue).

3.4. In-Silico Expression Analysis

We used a publicly accessible gene expression database (Genevestigator) to investigate
the differential expression of putative NTSR genes in Arabidopsis thaliana (L.) Heynh. in
response to applying different herbicides [42–46] (Table S3). The cytochromeP450 gene
expression (CYP72A14) was increased in response to cloransulam-methyl, glyphosate, and
mefenpyr + isoxadifen applications (Figure 5A). The expression of GSTF6 and GSTU19
were higher when compared with GSTU1, GSTU8, GSTU18, and GSTF11 (Figure 5B).
Further, NMO, AT5G64250 gene expression was increased due to cloransulam-methyl,
glyphosate, mefenpyr+isoxadifen, and primisulfuron-methyl (Figure 5C), while UDPGT
gene, UGT73B4, was upregulated by cloransulam-methyl, imazapyr, mefenpyr + isoxadifen
and primisulfuron-methyl (Figure 5D).
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Figure 5. The expression profile of CYP72A14 (A), GSTU1, GSTU8, GSTU18, GSTU19, GSTF6, and 
GSTF11 (B), NMO gene AT5G64250 (C), UDPGT gene UGT73B4 (D) under herbicide stress using 
the software Genevestigator. The level of expression is provided in the log2 scale. The details of 
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GSTF11 (B), NMO gene AT5G64250 (C), UDPGT gene UGT73B4 (D) under herbicide stress using the
software Genevestigator. The level of expression is provided in the log2 scale. The details of herbicide
used, rate of applications, and NCBI Accession no. are provided in Supplementary Table S3.

Additionally, we compared the expression of four NTSR genes with control samples
individually. The expression of NMO genes was upregulated in response to safener
fenclorim when compared with the control samples (Figure 6A). Similarly, the UDPGT gene
expression was increased after exposure to dicamba (Figure 6B). Furthermore, in response
to primisulfuron-methyl, we found the expression of CYP71B15 was highest (Figure 6C).
The heatmap expression analysis of GST revealed that the expression of GSTU19 and
GSTU5 were highest with paraquat when compared with control samples (Figure 6D).
Lastly, Pearson’s correlation coefficient was used to identify the top 25 most upregulated
and correlated genes in response to herbicide exposure (Figure 7).
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Figure 6. Heatmap-list view of the expression profile of NTSR gene under herbicide stress using the
Genevestigator software NMO affymetrix Arabidopsis expression analysis with response to herbicide
safener fenclorim (A), UGT73B4 affymetrix Arabidopsis expression increases proportionally in the
presence of herbicide dicamba when compared with control (B), CYP45071 sub-family affymetrix
Arabidopsis expression study due to the presence of herbicide primisulfuron (sulfonylurea) (C), and
GST affymetrix Arabidopsis expression study when plants were exposed to herbicide paraquat (D).
The level of expression is provided in the log2 scale. The details of the experiments are provided in
Supplementary Table S3.
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3.5. Identification of Cis-Motifs and TFBS in Promoters

Deciphering the architecture of the NTSR response is complicated by the co-occurrence
of single to many NTSR proteins and regulatory factors, which seem to interact through
convergent signal transduction pathways, especially in resistant weeds. This resistance is
caused by the regulators and TF that act in the promoter region, increasing the expression of
NTSR genes, but the level and efficacy of the resistance are dependent on the specificity of
the signal transduction in response to the herbicide and the appropriate control of the NTSR
genes [9,47]. Sequence-dependent secondary characteristics of promoters are undoubtedly
significant in their function, according to experimental findings. Although the genomes
of several weeds have been sequenced, we still lack high-quality assembled reference
genomes. Therefore, we could not extract the 1 kb promoter region of many weed species,
so the analysis included more cultivated species.

The most prevalent motif in CytochromeP450, GST, NMO, and UDPGT is provided in
Table 3 (Supplementary Files S1–S4). The occurrence of motifs remains approximately the
same in both monocot and dicot species. Comparing the TFBS of monocot and dicot, Dof,
Myb/SANT; MYB; ARR-B, and AT-hook (a small DNA binding domain) are found mostly
in dicots and the rest of the binding motifs are present in monocots and dicots at similar
frequencies. The TFBS in GST upstream region in both dicot and monocot are mostly the
same, except for the presence of α-amylase in dicots. The motifs between monocot and
dicot species in NMO are almost the same. The TF C2H2 is mostly found in diploid species
when compared with UDPGT upstream sequences of monocot species.
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Table 3. List of dominant motifs and TFBS present in all four NTSR genes.

NTSR Gene Motif TFBS

CYP450

ABRELATERD1,
IDE1 element,
SURECOREATSULTR11,
IBOXCORE,
TAAGSTKST1,
ASF1MOTIFCAMV,
WBOXHVISO1,
BIHD1OS,
WBOXATNPR1
CCAATBOX1, DOFCOREZM, WRKY71OS,
CACTFTPPCA1, GT1CONSENSUS, GTGANTG10,
ARR1AT

GATA; tify,
AP2; ERF,
Dof,
ZF-HD, Homeodomain; TALE, B3,
NF-YB,
TCP,
Trihelix,
dehydrin

GST

CAATBOX1,
CCAATBOX1,
IBOXCORE,
LTRECOREATCOR15,
CGACGOSAMY3,
MYBST1,
SORLIP1AT,
BIHD1OS,
GT1CONSENSUS, DOFCOREZM, GTGANTG10,
WRKY71OS, CACTFTPPCA1, ARR1AT, EBOXBNNAPA,
MYBCOREATCYCB1,
ABRELATERD1

GATA; tify,
Dof,
AP2; ERF,
B3,
bHLH,
ZF-HD,
NF-YB,
Trihelix,
TCP,
Myb/SANT; MYB; ARR-B,
SBP,
WRKY,
bZIP

NMO

CAATBOX1,
GATABOX,
EBOXBNNAPA,
GT1CONSENSUS,
POLLEN1LELAT52,
DOFCOREZM,
GTGANTG10,
TAAAGSTKST1,
MYCCONSENSUSAT,
WRKY71OS,
CACTFTPPCA1,
ARR1AT

GATA; tify,
Dof,
ZF-HD, Homeodomain; TALE, Myb/SANT;
MYB; ARR-B,
AP2; ERF,
B3,
NF-YB,
Dehydrin,
TCP,
Trihelix,
bZIP,
bHLH,
SBP

UDPGT

CAATBOX1,
GATABOX,
DOFCOREZM,
WRKY71OS,
CACTFTPPCA1,
ARR1AT

GATA; tify,
Dof,
Homeodomain;TALE, AP2; ERF,
B3,
NF-YB,
Dehydrin,
TCP,
Trihelix,
bZIP

3.6. Homology Modelling of Resistant CYP450 and GST Proteins

We conducted a homology modeling approach to unravel the 3D structure of resistant
CYP450 and GST protein using Phyre2. This analysis helped model the protein sequence
with the top-scoring template (Table S1). The Ramachandran plot for the corresponding
protein revealed that most of the residues fall in the allowed regions. Additionally, the 3D
model was also verified with the ERRAT scores indicating an adequate protein environment.
The resistant CYP450 3D structure homology modeled is provided in Supplementary File S5.
Despite their minimal amino acid sequence similarity, organisms appear to adopt a 3D
structure that has remained consistent during evolution when compared with the template.
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Furthermore, according to Gotoh’s hypothesized models, we found six probable substrate
recognition and binding sites for CYP450 (Supplementary File S6). For GST proteins, based
on alignment, we modeled the 3D structure of 22 resistant sequences (Supplementary
File S7). Despite the low overall commonality across the sequences of diverse GST classes,
3D structures of GST were discovered to have a 3D similar structure [48].

4. Discussion

Resistance to herbicides is a form of evolution and a well-known instance of dynamic
responses against selection pressure applied by humans [49,50]. Because herbicide resis-
tance is becoming more common worldwide, a greater knowledge of resistance evolution
and the mechanisms that underpin resistance are critical for the development of better
weed management techniques. However, because plants have enzymes with different
substrate specificities, this makes gene identification for NTSR an arduous task [51]. In
this study, we selected four important gene groups (CYP450, GST, UDPGT, and NMO)
which have been reported to confer NTSR [9,52]. Our goal was to analyze the genes related
to herbicide resistance; therefore, we included only the plant-specific GSTs reputed to
have a very critical role in herbicide detoxification [53–55]. GSTs defend plants against
oxidative damage by catalyzing the conjugation of glutathione with different herbicide
classes [53]. Another enzyme, CYP450, plays a critical role in herbicide detoxification in
major weeds [56]. Also, a variety of plants have been reported to have herbicide detox-
ifying CYP450s [57]. For example, CYP450s can detoxify herbicides such as ALS- and
ACCase-inhibitors either by dealkylation or hydroxylation [58]. Also, cytochromeP450 is
responsible for the detoxification of noxious chemicals by facilitating NADPH and oxygen-
dependent mono-oxygenation steps that help in transforming herbicides into water-soluble,
herbicidal-inactive metabolites [59,60]. UDPGTs, in addition to GSTs, have been implicated
in herbicide detoxification based on conjugation with proteins [61,62]. Phytohormones,
secondary metabolites, and xenobiotics are among the lipophilic small molecule acceptors
conjugated by UDPGT proteins [63]. UDPGT can metabolize different organic molecules
such as the herbicide pinoxaden and the explosive 2,4,6–trinitrotoluene [64,65]. In the case
of UDPGT, herbicide detoxification is achieved by glucuronidation-mediated removal of
lipophilic xenobiotics by aiding their transfer to the vacuole for further degradation [66].
Although glycosylation is a crucial phase for herbicide resistance in plants due to an intrin-
sically high level of glycosyltransferase activity, its role in herbicide tolerance in weeds is
unknown. Nevertheless, multiple insect UDPGT have been found to contribute to pesti-
cide resistance in various species by being part of the detoxification metabolism [67]. In
Alopecurus myosuroides Huds., increased UDPGT action, in combination with GSTs and
CytochromeP450, detoxifies several herbicides, namely dichlormid, cloquintocet mexyl,
aryloxyphenoxypropionate, phenylurea, and sulphonylurea [68]. Most reports of herbicide
resistance with the involvement of UDPGT genes are based on RNA-seq research for weeds
resistant to ALS- and ACCase-inhibitors [66]. In addition, nitrochemicals are abundantly
found throughout the environment and are regularly used in herbicides [69], and NMO en-
zymes are involved in the catabolism of these nitrochemicals [70,71]. Similarly, NMO genes
have been related to enhanced metabolism-mediated herbicide resistance in weeds [11,61].

The gene ontology and KEGG pathway analysis indicated that all identified Cy-
tochromeP450 genes are involved in pathways related to the metabolism of xenobiotics
by cytochrome P450 and glutathione conjugation [72,73]. It is worth mentioning that Cy-
tochromeP450 contributes to about 1% of the plant genome, which highlights the scale
and importance of this gene family as part of regulating pathways for a diverse range of
stress responses, including herbicide detoxification in plants [51]. GST genes are involved
in a variety of processes, including plant stress responses, development, and xenobiotic
detoxification. Our findings revealed that most GST genes were involved in a variety of
catalytic tasks. Both gene ontology and KEGG analyses provided robust evidence that the
retrieved sequences are conserved and coincide with other GSTs [74,75].
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In the phylogenetic analysis, most of the resistant CYP450 belonged to CYP81 and
CYP72A14/15 groups. CYP81 has been reported to play an important role in resistance to
bensulfuron-methyl in Echinochloa phyllopogon by detoxification through O-demethylation [76].
The CYP81 has also been associated with resistance to pendimethalin, fenoxaprop-P-ethyl,
and other ACCase- and ALS-inhibitors [14,76,77]. Furthermore, the expression of CYP72A15
increases in Echinochloa colona after florpyrauxifen-benzyl, quinclorac, and propanil appli-
cations, suggesting involvement in NTST [78,79]. CYP72A15 is involved in hydroxylation
reactions to reduce herbicides for further breakdown [52]. The tau and phi classes are the
most prevalent in plants and critical factors in the removal of xenobiotics such as herbicides
and industrial pollutants from the environment [80]. For the phylogenetic analysis of the
GST gene, our sequence belonged to the tau and phi classes, which have distinct substrate
specificity. Herbicides such as thiocarbamate and chloroacetanilide are strongly reactive
to phi-class enzymes [81]. The phi class has high glutathione peroxidase activity that aids
plants in gaining resistance to different classes of herbicides [55,82]. On the other hand,
aryloxyphenoxypropionate and diphenylether herbicides are effectively countered by tau
enzymes [81]. Tau-class GSTs have important roles in safener-induced responses [45,80].
The majority of the genes found in the present study belonged to the tau class.

UDPGT is the largest class of glycosyltransferases present in the plant kingdom [83].
The phylogenetic analysis of UDPGT genes indicated a considerable expansion of UDPGTs
among monocot and dicot plant species spread across eight groups. Interestingly, UGT703A5
monocot and dicot fall in different clades, indicating structural differences between them.
Although there is little protein similarity among the UDPGT families, the protein structure
appears to be conserved similarly to an earlier report [84]. Lastly, in NMO phylogenetic
analysis, we found that monocots and dicots are clearly grouped into different clades, and
monocot NMOs were further subdivided into two groups. NMOs belong to class H of the
favin-dependent monooxygenases. They are divided into two classes, class I and class II,
based on structural differences, substrate specificity, and catalytic efficiencies [71].

In the gene expression analysis, we found that all four NTSR genes correlated in
response to herbicide resistance, especially UGT73B5. These findings clearly indicate that
the expression of these putative NTSR genes is part of signal transduction pathways that
identify the presence and/or action of the herbicides and differentiate them from mock
applications, increasing the potential for herbicide detoxification. The upregulation of these
genes has been reported in several studies in dicots and monocots [52,58,61,65,85,86].

The bendability, curvature, and stability of DNA in these promoter regions are three
important qualities that are frequently associated with the TFBS and cis-regulatory mo-
tifs [87]. Therefore, to find common and important motifs and TF in monocot and dicot
species, we implemented a detailed in silico analysis on 20 monocot and dicot species, in-
cluding some weeds, which used two plant-specific nucleotide databases, New PLACE and
PlantPan. The New PLACE database is a collection of motifs for plant cis-acting regulatory
DNA elements gathered from published findings. Furthermore, the PlantPan database is
a useful tool for discovering TFBSs, associated TFs, and additional significant regulatory
features (tandem repeats and CpG islands) in a plant promoter or group of promoters.
Identifying regulatory cis-elements in promoter regions is critical for understanding the
temporal and spatial expression patterns of genes engaged in a certain function. These
genes might be controlled by groups of TFs with similar properties and DNA sequence
affinities, which may be identified by the presence of certain regulatory cis-motifs in the
promoter. Therefore, we examined the promoter regions of NTSR genes and identified the
topmost motifs and TFBS present in the studied monocot and dicot species.

Considering all four NTSR gene types, TFs: AP2/ERF, B3, Dof, NF-YB, TCP, Trihe-
lix, ZF-HD, and GATA:tify were discovered to be mutual in dicot and monocot species,
while six conserved motifs: ARR1AT, CAATBOX1, CACTFTPPCA1, DOFCOREZM, GT1
CONSENSUS, and GTGANTG10, were found to be common in the promoter region of
monocot and dicot species. The AP2/ERF family is one of the TF families implicated
in plant responses to abiotic stress and is part of various regulatory and developmental
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pathways [88–90]. The B3 TF is part of stress signaling and disease resistance [91]. The Dof
TF cloned from rice and expressed in Escherichia coli gained the characteristic to survive in
drought as well as saline stress [92]. The TF NF-YB has an important role in improving the
antioxidant ability and drought stress tolerance in plants [93], while TCP TFs are important
growth regulators that transduce a variety of environmental and endogenous cues that
are suited to guarantee plant growth and development [94]. Some TFs can act in a tissue-
specific manner, such as Trihelix TF, which has roles not only in biotic stress but also in
perianth, stomata, and trichome development, late embryogenesis, and abscission layer of
seeds [95]. In addition, the GATA:tify TF has been found to be upregulated in response to
imazamox, suggesting a potential role in herbicide resistance [96] (Wright 2017), while the
ZF-HD TF is upregulated in abiotic stress against xenobiotics [9,97].

The distribution of cis-elements identified in all NTSR gene promoters are involved in
TF modulation and expression of herbicide detoxification genes. Therefore, looking into
the conserved motifs common between monocots and dicots, we found that all six motifs
are related to stress tolerance [98–105].

In resistant CYP450s, six probable substrate recognition site areas were identified in
this study based on homology. This type of recognition site plays an important role in
determining substrate specificity [39] and consequent substrate transformation [106–108].
For example, in the proline-rich membrane pivot found in both animal and plant CYP450,
the amino acid surrounding cysteine in substrate recognition site 4, which forms an axial
ligand for a heme called “I-helix,” binds oxygen and the Glu–Arg–Arg trio utilizing the
glutamic acid and arginine residues of the K-helix (ExxR) and the arginine in the “PERF”
conserved region [39]. The Glu–Arg–Arg trio is assumed to be crucial in securing the
heme site into place and ensuring the stability of the core structure [39]. We also modeled
22 resistant GST proteins. GSTs are 50-kDa homodimers with an α-helical C-terminal do-
main and a thioredoxin-folded N-terminal domain which are joined by a linker [109]. GST
has two ligand-binding sites in each subunit, with the N-terminal exhibiting a conserved
glutathione binding site known as G-site and the C-terminal containing a variable H-site
that can bind to xenobiotic compounds [110]. In this study, we identified both the G-site
and the H-site for the herbicide-resistant proteins.

5. Conclusions

Herbicide resistance is one of the most significant challenges to agricultural produc-
tion, and it has a worldwide impact. It is vital to know how plants cope with stress to
maintain growth. Therefore, a thorough analysis is required to identify and understand
the regulatory mechanisms related to herbicide stress that will help researchers discover
and alter important regulatory elements to delay or mitigate problems associated with
herbicide-resistant weeds. Since the start of agriculture, TF and cis-regulatory motifs have
played a significant role in crop development. Because of their position as master regulators
of gene clusters, TFs and cis-regulatory motifs are attractive candidates for genetic engineer-
ing to increase herbicide resistance in crops. In this study, we extracted the NTSR genes and
performed phylogenetic, gene ontology, in-silico expression analysis, homology modeling,
identification of key residues, and explored the promoter region to identify the TFBS and
cis-regulatory motifs. In total, we found eight TFBS and six cis-regulatory motifs common
to all NTSR genes. All of these TF and cis-motifs have been reported to play important roles
in mitigating the potential negative effects of numerous abiotic stresses. Importantly, the
fact that TF and cis-regulatory motifs are common to all NTSR genes studied here suggests
that selection might act on a single or few TFs and not directly on the NTSR genes. This TF
selection could raise the expression of NTSR genes, ultimately favoring enough herbicide
detoxification to achieve resistance to label rates by the additive or synergistic action of
multiple NTSR proteins. For this reason, the study of TFs, as well as key regulatory motifs,
must be a core component of NTSR research.
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