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ABSTRACT Temperate phages (prophages) are ubiquitous in nature and persist as dor-
mant components of host cells (lysogenic stage) before activating and lysing the host (lytic
stage). Actively replicating prophages contribute to central community processes, such as
enabling bacterial virulence, manipulating biogeochemical cycling, and driving microbial
community diversification. Recent advances in sequencing technology have allowed for
the identification and characterization of diverse phages, yet no approaches currently exist
for identifying if a prophage has activated. Here, we present PropagAtE (Prophage Activity
Estimator), an automated software tool for estimating if a prophage is in the lytic or lyso-
genic stage of infection. PropagAtE uses statistical analyses of prophage-to-host read cov-
erage ratios to decipher actively replicating prophages, irrespective of whether prophages
were induced or spontaneously activated. We demonstrate that PropagAtE is fast, accu-
rate, and sensitive, regardless of sequencing depth. Application of PropagAtE to prophages
from 348 complex metagenomes from human gut, murine gut, and soil environments
identified distinct spatial and temporal prophage activation signatures, with the highest
proportion of active prophages in murine gut samples. In infants treated with antibiotics
or infants without treatment, we identified active prophage populations correlated with
specific treatment groups. Within time series samples from the human gut, 11 prophage
populations, some encoding the sulfur metabolism gene cysH or a rhuM-like virulence fac-
tor, were consistently present over time but not active. Overall, PropagAtE will facilitate
accurate representations of viruses in microbiomes by associating prophages with their
active roles in shaping microbial communities in nature.

IMPORTANCE Viruses that infect bacteria are key components of microbiomes and
ecosystems. They can kill and manipulate microorganisms, drive planetary-scale proc-
esses and biogeochemical cycling, and influence the structures of entire food net-
works. Prophages are viruses that can exist in a dormant state within the genome of
their host (lysogenic stage) before activating in order to replicate and kill the host
(lytic stage). Recent advances have allowed for the identification of diverse viruses in
nature, but no approaches exist for characterizing prophages and their stages of
infection (prophage activity). We develop and benchmark an automated approach,
PropagAtE, to identify the stages of infection of prophages from genomic data. We
provide evidence that active prophages vary in identity and abundance across multi-
ple environments and scales. Our approach will enable accurate and unbiased analy-
ses of viruses in microbiomes and ecosystems.
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Viruses that infect bacteria and archaea (bacteriophages or phages) are pervasive
entities that are ubiquitous on Earth. Phages drive evolutionary adaptation and

diversification of microorganisms, play critical roles in global nutrient cycles, and can
directly impact human health (1–8). Phages can be organized into two categories
according to how they infect a host cell, lytic and temperate. Temperate phages are
those that have the ability to integrate their double-stranded DNA (dsDNA) genome
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into their bacterial host and can be identified in nearly half of all cultivated bacteria (9).
These integrated prophage sequences can coexist with the host cell in a lysogenic
stage in which virions are not produced. During host genome replication, the pro-
phage sequence is likewise replicated in a one-to-one ratio. Given host-dependent or
environmental cues such as DNA damage or nutrient stressors, or spontaneous activa-
tion, the prophage can enter a lytic stage to produce virions and lyse the host (10–15).
On the other hand, lytic phages are those that directly enter the lytic stage upon infec-
tion with no mechanism for integration and dormancy.

Prophages can affect their host and surrounding microbial communities in both the
“dormant” lysogenic stage as well as in the “active” lytic stage. In the dormant stage, pro-
phages can impose physiological changes on the host by altering gene expression pat-
terns, inducing DNA transfer or recombination events, and providing virulence attributes
(16–20). For example, the pathogenicity of some strains of Staphylococcus aureus is reliant
on the presence of integrated prophage sequences (21). In the active stage, the result of
phage lysis significantly impacts microbial communities by turning over essential nutrients,
especially carbon, nitrogen, and sulfur (22–27). Lysis of bacterial populations likewise alters
whole microbiomes by diversifying community structures and expanding niche opportuni-
ties (3, 28). For example, the “kill the winner” model of virus population growth suggests
that dominant bacterial populations are more susceptible to phage predation, which will
facilitate expansions of less abundant taxa as the dominant populations are lysed (29–31).
Despite the importance of phage lysis on microbial communities, the proportion of lysis by
prophages entering the lytic cycle is unclear. As opposed to strictly lytic phages, it remains
difficult to associate prophages with active lysis. This is because prophage genome abun-
dance can fluctuate according to host genome replication in the absence of lysis, whereas
lytic phages, with few exceptions, must lyse a host in order to increase the abundance of
their genomes.

In addition to traditional approaches such as isolation of phages, advances in high-
throughput metagenomic sequencing have sped up the ability to identify a large di-
versity of lytic and lysogenic phage sequences. Recently developed software has
allowed for accurate characterization of prophages in both isolate and metagenomic
assembled genomes, namely, VIBRANT (32), VirSorter (33), PHASTER (34), and Prophage
Hunter (35). Thus far, this software has allowed us to begin to estimate the total diver-
sity of prophages in nature. However, identifying the genome sequences of prophages
does not provide context to their in situ state of being in the lysogenic or lytic stage of
infection. This information is vital, as it distinguishes which prophage or phage popula-
tions are actively impacting a microbial community through lysis events. Moreover,
with the exception of Prophage Hunter, current software cannot distinguish prophage
genomes that have become “cryptic” or those that have lost functional abilities to
enter the lytic stage (36–38). Yet Prophage Hunter still cannot identify if a given pro-
phage is active, only if it may have the ability to become so.

Providing context to the infection stage of a prophage is imperative for accurate conclu-
sions on its role in affecting its host and the microbial community. For example, identifying
a prophage encoding a virulence factor or metabolic gene may have important implications
for its role in manipulating its host’s pathogenic interactions, metabolic transformations, and
impacts on nutrient and biogeochemical cycling. In order to place the prophage into con-
text within the microbial community, it would be necessary to first determine which stage
the prophage is in, namely, lytic or lysogenic. Assuming that all identified prophages are in
a lytic stage could lead to misrepresentations or misinterpretations of the data if the pro-
phage is actually dormant or even cryptic.

Here, we present the software PropagAtE (Prophage Activity Estimator). PropagAtE
uses genomic coordinates of integrated prophage sequences and short sequencing
reads to estimate if a given prophage was in the lysogenic (dormant) or lytic (active)
stage of infection. PropagAtE was designed for use with metagenomic data but can
also use other forms of genomic data (e.g., sequence data from isolated microorgan-
isms). When tested on systems with known active prophages, PropagAtE was fully
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accurate in determining prophages that were active versus dormant, regardless of
read coverage depth. No active prophages were identified in control systems encoding
prophages that were known to be dormant. PropagAtE was also utilized to identify
active prophages in several metagenomes, including the adult and infant human gut,
murine gut, and three different peatland soil environments. We show that specific pro-
phages can be identified within differing antibiotic treatment and no-treatment groups
of individuals and that activity of those prophages are correlated with particular treat-
ment groups. Finally, we show that identifying the retention of a prophage over time
does not necessarily indicate activity over time. PropagAtE is freely available at https://
github.com/AnantharamanLab/PropagAtE.

RESULTS
Conceptualization of PropagAtE. Temperate phages that are integrated exist as a

component of their host’s genome. When the host genome replicates, the prophage is
also replicated likewise in a one-to-one ratio. As a result, when sequencing the host ge-
nome, the prophage region and the flanking host region(s) are represented equally.
Upon activation and entry into the lytic cycle, the prophage sequence is independently
replicated for phage propagation and assembly into new virions. At this stage within
the host cell, there will be one host genome equivalent for multiple-phage genomes
regardless of whether lysis has occurred yet or not. Following lysis, virions containing
phage genomes are released into the surrounding environment. These released
genomes continue to represent the ratio of prophage to host genome copies if these
prophage genomes are still included in the metagenome (Fig. 1A).

The specific ratio of phage to host genomes depends on many factors. One major
factor is the burst size of a given phage or the number of virions released from a lysed

FIG 1 Schematic conceptualization of PropagAtE mechanism. (A) Stages of integrated prophage
infection from the lysogenic (dormant) to lytic (active) stages. Over the course of infection, the
prophage/host genome copy ratio increases. (B) Microbial community structure with an active
prophage, from phage activation to lysis. The prophage/host genome copy ratio increases to greater
than 1:1 through phage genome replication and host genome degradation. (C) Microbial community
structure with a dormant prophage in which the prophage/host genome copy ratio is near 1:1. Here,
one host is depicted as having cured the prophage from its genome. (D) Conceptual diagram of the
read coverage for a prophage in a dormant (top) or active (bottom) stage of infection. Active
prophages result in an increased read coverage above the baseline read coverage of the host.
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host. Phage burst sizes can range from fewer than 10 in the case of crAssphage that
infects Bacteroides intestinalis (39) to many thousands in the case of phage MS2 that
infects Escherichia coli (40). Another factor, utilized by many phages, including those
that infect marine cyanobacteria, is that the host genome is degraded during the lytic
stage to supply nucleotides to the replicating phage genomes, which will further
increase the prophage-to-host genome copy ratio (41, 42). Thus, during the lytic stage
of phage propagation, as well as postlysis, the ratio of prophage to host genome cop-
ies will become skewed in favor of prophage genomes (43, 44). This will lead to a pro-
phage/host genome copy ratio significantly greater than 1:1 (Fig. 1B). If the prophage
was in a dormant stage of infection, the prophage/host genome copy ratio would be
approximately 1:1 (Fig. 1C). This is likewise dependent on various factors, such as
the ability of some members of the host population to “cure” (i.e., remove) the pro-
phage from its genome. Despite nuances in specific prophage/host genome copy
ratios, active prophages will yield a ratio greater than 1:1, whereas dormant prophages
will yield a ratio near 1:1.

Whether or not the prophage/host genome copy ratio is skewed can be identified using
statistical analyses of aligned sequencing read coverage after genome sequencing and read
alignment. After sequencing and assembly of a system (e.g., isolated bacterial culture, com-
plex microbiome, etc.), the integrated prophage sequence will assemble as a component of
the host genome in an ;1:1 ratio, regardless of activity. However, if a prophage has acti-
vated, then the resulting phage genome copies contained in virions are identical to the inte-
grated prophage sequence. Therefore, read alignment to the assembly will recruit reads to
the prophage and host regions in a ratio indicative of the stage of infection. During the lyso-
genic stage where the prophage is dormant, read recruitment will generate even coverage
across the regions. Conversely, a prophage that has entered the lytic, active stage will gener-
ate an uneven read recruitment skewed toward greater coverage at the prophage region
only (Fig. 1D). Read alignment will not determine the true prophage/host abundance, but it
can quantify a relative ratio to accurately determine stage of infection.

Overview of PropagAtE’s workflow. Differentiating active prophages from those
that are dormant is essential for accurate representation and evaluation of individual cell-
and community-level systems. PropagAtE provides the first automated platform for the
identification of active prophages that is scalable for isolate genomes or complex metage-
nomes. Since most prophages exist as an integrated (i.e., connected) element of a host ge-
nome, the read coverage from the prophage and host sections can be compared in a one-
to-one manner to estimate a genome copy ratio. PropagAtE utilizes the ratio of prophage/
host read coverage along with the ratio’s effect size (i.e., significance of the ratio) to desig-
nate if a given prophage was dormant or active. The PropagAtE workflow can be simplified
into four general steps, data input, read alignment and processing, coverage calculations,
and statistical results output (Fig. 2A). Users are given two options for data input, (i)
genomes/scaffolds of host sequences with raw short sequencing reads, or (ii) a pregener-
ated alignment file in SAM or BAM format. If given the former input, reads will be aligned
using Bowtie2 (45) to generate a SAM file. All SAM format files are converted to BAM for-
mat for more efficient processing (46).

Using the BAM file either generated or supplied by the user, aligned reads exceed-
ing the percent alignment threshold are removed. Following filtering, coverage per nu-
cleotide is extracted, including all nucleotides with zero coverage. To eliminate noise,
coverage values at the sequence ends are trimmed off to a length roughly equivalent
to the input read length. Then, users are given two options for prophage coordinate
data input, direct results from a VIBRANT (v1.2.1 or greater) analysis (32) or a manually
generated coordinate file of a specified format. In cases for which multiple prophages
are present on a single genome/scaffold, all prophage regions are considered inde-
pendently. In addition, the host region is segmented to exclude all prophage regions,
but each segment is considered a single, cohesive host sequence. That is, if two or
more prophages are present on a single host scaffold, neither prophage will interfere
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with the other in terms of coverage value calculations, and each prophage is compared
to an identical prophage-excluded host region.

For each prophage and host pair, metrics for average coverages, median coverages,
coverage standard deviations, and prophage/host coverage ratio are calculated. Each
prophage’s activity is estimated according to the prophage/host coverage ratio and
Cohen’s d effect size of the coverage difference. Prophages exceeding the default or
user-set thresholds for both metrics are considered potentially active. Additionally,
potentially active prophages must pass the minimum average coverage and minimum
coverage breadth thresholds. If these latter coverage criteria are met, the prophage is
estimated to be active; otherwise, the prophage is labeled as ambiguous (Fig. 1A).

Read alignment can visualize active prophages. Two activated prophages in the
genome of Bacillus licheniformis DSM13 (44) were used to visualize active prophage
identification using PropagAtE using full and subsampled read sets (Fig. 2B and C).
Visualization of the read coverage at each nucleotide in the genome clearly depicted
coverage spikes exclusively at the prophage regions. The example prophages existed
in close proximity to each other and had differing average coverages (60� and 169�).
Both example prophages likewise met the minimum prophage/host coverage ratio
(2.08 and 5.81) and Cohen’s d effect size (1.45 and 3.58) thresholds. These results are in
line with the conceptualization of the workflow seen in Fig. 1D apart from notable
spikes in coverage at prophage genome centers and host genome ends. The host ge-
nome end coverage spikes are commonly explained by the location of the host’s origin
of replication (47, 48). The coverage spike at the prophage genome center is likely the
result of a similar occurrence of a prophage replication-related packaging site (44, 49).

Positive-control tests for prophages from isolate genomes. Positive-control tests
were utilized in order to set threshold boundaries for PropagAtE to identify active pro-
phages as well as assess the recall rate of PropagAtE. Positive-control samples were
considered those for which DNA from both an active prophage and its host were
extracted and sequenced in tandem. This method best represents metagenomic sam-
ples in which all DNA is extracted and sequenced together. In addition, extraction of
both host and free phage DNA together is essential for positive tests because this
method will best depict the most accurate prophage/host coverage ratio. Three model
systems for which sequencing data were publicly available were identified for use as

FIG 2 Workflow and implementation of PropagAtE. (A) Workflow of PropagAtE, including data input, read alignment processing, and results output.
Example of read coverage profiles for two active Bacillus licheniformis DSM13 prophages with all reads (B) or 5% subsampled reads (C) aligned, respective
to the conceptual diagram in Fig. 1D. For panels B and C, statistics for coverage, Cohen’s d effect size, and prophage/host coverage ratio are shown.
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positive controls. All experiments and sequencing were performed elsewhere (44, 50,
51) (Table S1 in the supplemental material). Each system, since they represent isolate
bacteria, has a much higher read coverage than a typical metagenome-assembled ge-
nome. To ensure validation of PropagAtE for both isolate and metagenomic samples,
two tests per system were done. One was done with all available reads (“full reads”),
and another was done with a random subset of 5% of the reads (“5% reads”).
Furthermore, prophages were predicted from these systems using both VIBRANT and
PHASTER to ensure accurate predictions despite variable prophage coordinate predic-
tions. All PropagAtE results for positive-control tests can be found in Table S2A.

The first system we tested was Bartonella krasnovii OE1-1 and its prophage (50). In
triplicate, the bacteria were either induced for prophage using mitomycin C or unin-
duced as controls. For the induced prophages, the prophage/host coverage ratios
were relatively even between the three samples for VIBRANT (1.82, 1.87, and 2.07) and
PHASTER (1.22, 1.26, and 1.21). Likewise, in the uninduced control samples. the pro-
phage/host coverage ratios depicted nearly equal coverage (VIBRANT, 1.06 and 1.13;
PHASTER, 0.73, 0.98, and 1.03) except one sample from VIBRANT with a low ratio (0.46)
(Fig. 3A and B). This suggests the method is reliable across multiple samples or time
points for the same phage. The ratio effect size, using Cohen’s d metric, indicated that
the prophage/host coverage ratios observed from the VIBRANT predictions were signif-
icant in their difference. For the induced prophages, the effect sizes were greater than
1 (1.20, 1.19, and 1.15), indicating a high dissimilarity between the prophage and host
coverages. The uninduced controls’ effect sizes were low (0.33 and 0.59) except for the
sample with the low ratio, which had a higher effect size (1.62) corresponding to the
host having a higher coverage (Fig. 3C). For PHASTER, the same results were not
observed. The effect sizes for both the induced prophages (0.45, 0.42, and 0.38) and
uninduced controls (0.95, 0.07, and 0.15) were not significant (Fig. 3D). When 5% of the
reads were randomly sampled for PropagAtE, the induced and uninduced results were

FIG 3 Positive- and negative-control results using full read sets. (A to L) Positive-control results for Bartonella krasnovii OE1-1 (A to D), Lactococcus lactis
MG1363 (E to H), and Bacillus licheniformis DSM13 (I to L). Samples are labeled as containing active or dormant prophages. (M to P) All negative-control
results with each value on the x axis representing a single prophage. Prophage and host average read coverages (green and purple, respectively), as well
as Cohen’s d effect sizes and prophage/host coverage ratios (blue and orange, respectively), are shown. Each positive- and negative-control set has
prophage predictions generated by both VIBRANT and PHASTER (labeled vertically).
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essentially equivalent to that of the full read set for VIBRANT and PHASTER in terms of
prophage/host coverage ratios (Fig. S1A and B) and only marginally lower effect sizes
(Fig. S1C and D). This further indicates that high read coverage is not essential, nor sig-
nificantly impacts, the outcome of analysis. However, this system suggests that the
method in which prophages are predicted can determine the outcome and accuracy
of PropagAtE activity estimation. Here, VIBRANT predictions yielded expected results,
whereas PHASTER predictions yielded dormant predictions where active was expected.

The second system we tested was Lactococcus lactis MG1363 and its prophage (51).
Similar to the previous system, in one sample, the prophage was induced with mitomycin
C, and another was used as an uninduced control. The induction sample was sequenced 1
and 2 h postinduction for a total of two positive samples. For the induced samples, the
resulting prophage/host coverage ratios were high and increased over time (VIBRANT, 116
and 204; PHASTER, 117 and 210). In the uninduced control, the prophage/host coverage ra-
tio was, as seen with the previous system, nearly equal (VIBRANT, 1.02; PHASTER, 1.01)
(Fig. 3E and F). The effect sizes of the ratio for the induced samples were also high
(VIBRANT, 5.98 and 5.91; PHASTER, 4.92 and 4.88), while the effect size of the control sam-
ple ratio was low (VIBRANT, 0.10; PHASTER, 0.05). The results from 5% subsampled reads
yielded nearly identical equally determinant values for prophage/host coverage ratios
(Fig. S1E and F) and effect sizes (Fig. S1G and H).

The third system we tested was Bacillus licheniformis DSM13 and its prophages (44).
Here, two prophages were spontaneously activated at 26°C, and no control was used for
comparison. For VIBRANT, the prophage/host coverage ratios (2.08 and 5.81), as well as the
corresponding effect sizes (1.55 and 3.58), were significant (Fig. 3I and K). For PHASTER, the
prophage/host coverage ratios (1.74 and 1.28), as well as the corresponding effect sizes
(0.93 and 0.40), were not significant (Fig. 3J and L). The same results for both prediction
tools were observed when 5% subsampled reads were used (Fig. S1I to L).

Although the available control sample size of the three systems and four unique pro-
phages could not designate a true discovery rate with statistical confidence, the controls
tested with VIBRANT predictions yielded high accuracy and recall. Specifically, only the B.
krasnovii prophage in two induced samples yielded a dormant prediction where active
was expected. However, these false-negative results are not entirely unexpected, as the
default prophage/host coverage ratio for PropagAtE is set very conservatively to 2.0 and
can be reduced to 1.75 while maintaining high accuracy. With a ratio cutoff of 1.75, all con-
trols with VIBRANT predictions would have yielded expected results. When PHASTER pre-
dictions were used, the false-negative rate for PropagAtE increased considerably, indicating
that accurate prophage coordinate predictions are essential.

Negative-control tests for prophages from isolate genomes. Negative-control
tests were utilized in order to set threshold boundaries for PropagAtE to identify dormant
prophages as well as assess PropagAtE’s specificity. Several negative-control samples were
used for testing in addition to the control samples presented above. Negative controls
were considered those in which a bacterial genome encoding at least one prophage was
sequenced in the absence of known prophage induction (i.e., isolate cultures without pro-
phage induction). A total of 19 diverse bacterial genomes encoding 40 predicted pro-
phages by VIBRANT and 37 predicted prophages by PHASTER were used. As before, each
system was tested with a set of all reads as well as smaller data set containing 5% ran-
domly subsampled reads. All sequencing was performed elsewhere (Table S1). All
PropagAtE results for negative-control tests can be found in Table S2A.

When using the complete reads sets, all prophages were found to be dormant.
Average prophage (1,512� to 0.04�) and host (982� to 0.06�) coverages ranged consid-
erably (Fig. 3M and N). All prophage/host coverage ratios were below 1.75 (VIBRANT, max,
1.55; PHASTER, max, 1.54) with the exception of one prophage predicted by PHASTER with
a prophage/host coverage ratio of 1.97. However, the effect size of the high prophage/
host coverage ratio was only 0.11. All coverage ratio effect sizes ranged from 2.65 to 0.01
(Fig. 3O and P). A total of three prophages predicted by VIBRANT and two prophages pre-
dicted by PHASTER had effect sizes greater than 1.75, but the prophage/host coverage
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ratios were less than 1.55. For the 5% subsampled read results, the prophage/host cover-
ages ranged from 1.55 to 0, and the coverage ratio effect sizes ranged from 2.14 to 0.01.
One prophage from each VIBRANT and PHASTER had an effect size greater than 1.75, but
the prophage/host coverage ratios were again less than 1.55 (Fig. S1M to P).

Given that all prophages were identified as dormant, these results suggest that
the two metrics, prophage/host coverage ratio and corresponding effect size, func-
tion adequately in a check and balance system with each other. Prophages with
significantly high prophage/host coverage ratios had insignificant effect sizes and
vice versa. Likewise to the positive-control tests, the observed false-discovery rate
was zero, though the true accuracy of PropagAtE is likely small but greater than
zero. In addition, the negative- and positive-control tests suggest a prophage/host
coverage ratio of 1.75, rather than the conservative default of 2.0, can yield accu-
rate results.

Testing PropagAtE on mock metagenomes. Sequences assembled from complex
metagenome samples typically have lower read coverage than those from isolate systems,
and read mapping is performed in the presence of multiple genomes. We next tested
PropagAtE on a mock metagenome consisting of prophages predicted by VIBRANT from
21 unique bacteria from the positive- and negative-control tests. Lactococcus lactis SD96
from the negative controls was not included in favor of Lactococcus lactis MG1363 from
the positive controls. A total of 21 corresponding read sets, one per host, were selected,
and 300,000, 100,000, or 20,000 paired reads were randomly subsampled per read set and
combined to generate the mock metagenome. Thus, three mock metagenomes in total
were generated representing 300,000, 100,000, and 20,000 subsampled reads per system
(Table S2B). The resulting average read coverages of the prophages was 46�, 16�, and 3�
for the 300,000, 100,000, and 20,000 subsampled mock metagenomes, respectively. The
results from the 300,000 subsampled reads mock metagenome corresponded to the
results from the positive- and negative-control tests, with 4 active and 36 dormant pro-
phages. A total of 8 prophages with unconfirmed activity status from the positive-control
hosts were not considered. For the 100,000 and 20,000 subsampled reads mock metage-
nomes, the B. krasnovii active prophage was identified as dormant due to insufficient pro-
phage/host coverage ratios (1.75 and 1.70, respectively), and all dormant prophages were
accurately identified. This depicts that PropagAtE functions well with combined sequences
and partial reads from multiple sources, suggesting the method can work suitably with
metagenomes.

Comparing PropagAtE and hafeZ. The software hafeZ (52) similarly utilizes read
coverage to identify active prophages. Contrary to PropagAtE, hafeZ does not take in
prophage coordinates as input but, rather, predicts prophages from a host sequence
based on read coverage signatures. Using the hafeZ example Flavonifractor plautii host
genome and prophages predicted by VIBRANT, PropagAtE correctly identified the
expected active prophage with a prophage/host coverage ratio of 3.38 and effect size
of 5.98. Conversely, hafeZ was unable to identify any prophages in the positive-control
data sets presented here. Although PropagAtE and hafeZ cannot be compared directly
due to differing methods of identifying active prophages, these results suggest
PropagAtE is better capable of identifying more active prophages than hafeZ.

Applying PropagAtE to identify active prophages in metagenomes. PropagAtE
was designed to rapidly assess the activity of prophages in metagenomes in a high-
throughput manner. Additionally, PropagAtE can also identify active prophages in genomes
of cultivated organisms, irrespective of the manner of prophage induction (i.e., spontane-
ously or experimentally induced). To validate the broad utility of PropagAtE, we demon-
strate its application on 348 metagenomic samples from a variety of environments, adult
and infant human gut, murine gut, and peatland soil (22, 53–57) (Table 1 and Table S1). A
total of 349 semiredundant prophages were identified as active across all samples. Per sam-
ple, the percentage of prophages that were active ranged from 0% to 18% with a combined
average of 1.1% (Fig. 4). The murine gut had the most active prophages per sample with an
average of 8.9%, whereas all human gut samples had a combined average of 1.1%. With a
prophage/host coverage ratio of 1.75, the number of active prophages increased to 402,
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with a combined average of 1.3%. These results show that for metagenomic samples, most
prophages identified as integrated into a host genome are dormant or activity is undetect-
able. All PropagAtE results for metagenomic samples can be found in Table S3A and B.

For metagenome data sets with various conditions (e.g., antibiotic dosage), no signifi-
cant difference was observed in the total number of active prophages per condition
(Fig. S2 and Table S4A). However, utilizing PropagAtE to identify which sets of prophages
are active yielded interesting results. For example, hosts with active prophage populations
were compared from the gut of infants given antibiotics compared to infants without anti-
biotics. A total of 62 host populations with a combined 192 active prophages were com-
pared. Interestingly, a distinct pattern was observed wherein prophage activity was corre-
lated with antibiotic treatment per host population. Generally, a host population had
prophage activity in either antibiotic treatment or no treatment, with few host populations
having prophage activity uncorrelated with a treatment (Fig. 5; Table S4B). This indicates
that although a given prophage or host population may be found across multiple samples,
they may be predominately active in specific treatments.

Estimating prophage activity over time. To further explore the activity of specific
prophage populations over time, a sixth set of metagenomic samples was used (58). This
set included human gut fecal samples from three different children with Crohn’s disease.
For each individual, four time series samples were taken at approximately days 0, 16, 32,
and 54. Among all 3 individuals, a total of 11 unique prophages were identified across all 4
time points. None of the 11 prophages were shared between 2 or more individuals.
Therefore, these 11 prophages were found to be consistently present and retained stably
over time. All prophage populations encoded hallmark phage proteins, nucleotide replica-
tion proteins, and lysis proteins, indicating they likely have the ability to activate (i.e., not
cryptic). For most populations, genes for integration were also identified (Fig. S3A;
Table S5). Furthermore, one prophage population encoded the auxiliary metabolic gene
cysH for assimilatory sulfate reduction, a metabolic process that can yield hydrogen sulfide,
which has been implicated in exacerbating inflammatory bowel diseases such as Crohn’s
disease (59, 60). Another prophage population encoded a RhuM family virulence protein.
Yet PropagAtE identified none of these prophages to be active at any time point. This con-
clusion is important, as it suggests that the prophages, in addition to the cysH- and rhuM-
like genes, were present but may not have been actively impacting the microbial commu-
nity at the time of sample collection. Genome alignment of each prophage population
yielded 99.8 to 100% identity with a maximum number of two nucleotide differences
between members of a population (Fig. S3B). The lack of sequence diversification likewise
suggests the prophage populations were primarily dormant over time since active phage
genome replication typically results in nucleotide changes. However, the minor nucleotide
differences may have resulted from alignment or sequencing error or from prophage activ-
ity between the time points sampled.

TABLE 1 Summary of metagenomic sample data setsa

Data set Description
No. of
samples

No. of
prophages

No. of
hosts Reference(s) Label

Human gut (fecal) Adult individuals with colorectal adenoma,
carcinoma, or healthy controls (“CRC”)

15 489 484 57 a

Human gut (fecal) Adult individuals with Crohn’s Disease or healthy
controls (“HeQ”)

96 2,938 2,897 54 b

Human gut (fecal) Infant individuals given antibiotics or untreated
controls (“infant gut”)

139 356 333 55 c

Peatland (soil) Peatland soil cores of bog, fen, and palsa
environments (“soil”)

75 379 375 22, 56 d

Murine gut (fecal) Virome fraction samples from the murine gut
(“murine gut”)

23 1,308 1,292 53 e

Human gut (fecal) Time series of adult individuals with Crohn’s
disease (“IjazUZ”)

12 155 153 58 f

aThe environment type, description of the data set and total number of samples per metagenomic data set are provided. The final column, “Label”, corresponds to labeling
in Fig. 4 and Fig. S4.
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Sequencing depth does not correlate with total active prophages. As a final vali-
dation test, we examined if the total number of sequencing reads, as an estimation of
sequencing depth, had an impact on the total number of active prophages identified. It
may be assumed that since PropagAtE relies on read coverage, samples with a greater
number of reads would identify disproportionately more active prophages. Using five of
the metagenomic sample sets (Table 1), we correlated the total number of reads used by
PropagAtE to the total number of active prophages identified. Four of the five sets of meta-
genomic samples yielded near-linear, flat trends, indicating no correlation between total
reads and total active prophages. The fifth set, representing infant gut samples, depicted
more of a trend toward a correlation between more reads and more active prophages.
However, the trend was not significant (Fig. S4 and Table S3A).

PropagAtE run time. Efficiency and quick run speed are essential for large-scale
metagenomic workflows. PropagAtE was designed to meet the needs of these analy-
ses, such as those with many samples or large file sizes. PropagAtE is likewise scal-
able for smaller data sets. To show this, we estimated the total run time for various
isolate and metagenome samples. For isolate samples, run time for PropagAtE analy-
sis was 10 to 90 s with an alignment format file (i.e., BAM format) as the input. For
metagenomes, the run time was similar (5 to 45 s) (Table S6). The main factor affect-
ing run time is read alignment performed by Bowtie2, which had run times of 1 to 12
min, depending on input reads and reference genome sizes. It is important to note
that the run time for large-read data set inputs significantly improves when utilizing
the multithreading feature.

FIG 4 Percent of prophages by activity category in metagenomic samples. (A and B) Five sets of metagenomic
samples are compared with all activity categories (A) and only the active prophage category (B). For panel B,
each dot represents a single sample. Identifier labels a to f on the x-axis correspond to the final column,
“Label,” in Table 1.

FIG 5 Active prophages identified in infant gut samples. Each host (x-axis) is labeled with two points,
one for the total number of prophages identified in antibiotic treatment samples (blue) and one for
the total number of prophages identified in no-treatment samples (orange). Background highlighting
depicts hosts with proportionally more active prophages in antibiotic treatment samples (blue), more
active prophages in no-treatment samples (orange), or equivalent active prophages in both treatment
groups (green).
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DISCUSSION

Phages are key contributors to microbiome dynamics in essentially all environments
on Earth (6, 25–27, 61–64). With the availability of high-throughput sequencing and
newly developed software tools, we have the ability to identify and study these diverse
phages (32–35). This includes both strictly lytic phages as well as integrated pro-
phages. However, little emphasis has been placed on identifying which populations of
identified prophages are actively replicating as opposed to existing in a dormant or
cryptic stage of infection.

Here, we have presented the software tool PropagAtE for the estimation of activity of
integrated prophages using statistical analyses of read coverage. Although the concept of
using read coverage to predict prophage activity is not new (44), PropagAtE is the first
benchmarked implementation of the method into an automated software for use with
large data sets, such as metagenomes. PropagAtE functions by quantifying the relative ge-
nome copy ratio between a prophage region compared to a corresponding host region.
Only prophages that have activated and begun propagation (e.g., genome replication and
virion assembly) will yield prophage/host ratios sufficiently greater than 1:1. The prophage/
host genome copy ratio, estimated by using read coverage ratios, as well as the ratio’s
effect size, are used to classify a prophage as active or dormant. We provide evidence to
show that PropagAtE is fast, sensitive, and accurate in predicting prophages as active ver-
sus dormant and have applied the method to various metagenome samples.

Identifying which prophage sequences are active versus dormant in a sample provides
several benefits. Namely, assuming that all identified prophages are active is an overestima-
tion and will lead to a misrepresentation of the in situ dynamics of a microbial community.
For example, we show here that 11 unique prophages identified in human gut samples
from the same individual over time may not necessarily be active when identified. The most
accurate representation of the prophages is to conclude that their effect on the resident mi-
crobial communities likely occurred at a time point not sampled or that the prophages
were consistently dormant. Another benefit includes making accurate conclusions on the
role of host bacteria in a given sample. Foremost, prophages can be responsible for the viru-
lence of multiple human pathogens, such as Clostridioides difficile, Clostridium botulinum,
Staphylococcus aureus, and Corynebacterium diphtheria (65–70). Although some virulence
effects are present during prophage dormancy and expression of specific genes, many
require activation of the prophage. In addition to virulence, bacteria actively infected by a
phage can have a modified metabolic landscape compared to bacteria uninfected or har-
boring a dormant prophage. Several examples include the phage-directed regulation of sul-
fur, carbon, nitrogen, and phosphorus metabolism in various cyanobacteria and enterobac-
teria (23, 71–73). This distinction is vital when assessing the role of the microbial community
in an environment. Related to this, activity can provide context to any auxiliary metabolic
genes identified on the prophage genome, such as cysH for assimilatory sulfate reduction
described here. In the human gut specifically, identifying phage-encoded genes for sulfur
metabolism may have important implications for the health of the gastrointestinal tract and
a phage’s role in the manifestation or perturbation of diseases (63, 74). If a prophage encod-
ing an auxiliary metabolic gene is identified, determining the stage of infection of the pro-
phage can provide context to the effect of the auxiliary metabolic gene.

It is important to point out several unavoidable caveats to the implementation of
PropagAtE. First, accurate prophage/host genome copy ratio estimations are inhibited
if the sample is size fractionated before sequencing. For example, many aquatic sam-
ples are size fractionated by filtering onto a 0.2-mm filter. In these cases, only prelysis
infections will be picked up by read coverage because the genomic content present in
released virions will likely pass through the 0.2-mm filter. Second, not all prophages
exist as integrated sequences, such as those that are episomal. Prophages that are epi-
somal do not have attached host sequence and therefore cannot have prophage/host
read coverage compared in a one-to-one manner and, for metagenomes, cannot have
accurate host prediction. This also applies to prophages that do not assemble as inte-
grated components of a host scaffold. However, it is worth noting that for integrated
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prophages, PropagAtE functions whether the host region flanks the prophage on one
or both sides. Third, though not verified, is that inactive prophages may be more likely
to assemble with a host scaffold. Since active prophages lyse their host and potentially
degrade their host’s genome, more activity of a prophage may lead to a lower proba-
bility of assembling as an integrated prophage. Fourth, induction of prophages within
a host population may occur asynchronously and lead to consistent activity with low
prophage/host coverage ratios, causing activity to be missed. Fifth, some host popula-
tions may include some members that encode a prophage and some members that do
not. In the latter example, the prophage/host ratio is initially skewed to less than 1,
making it more likely for PropagAtE to miss activity. Due to the caveats presented,
PropagAtE is intended to be used for identifying active prophage sequences rather
than assessing the total number or fraction of prophages that are active in a sample. In
this context, PropagAtE performs with little to no observed error. Finally, PropagAtE
has been developed and tested using short-read sequencing data and is not yet suita-
ble for long-read analyses.

Overall, our results demonstrate that PropagAtE will facilitate the accurate charac-
terization and study of viruses in microbiomes and nature. Examples of future applica-
tions of PropagAtE include the exploration of prophages in human health and disease,
detection of environmental and chemical triggers for induction of prophages, phage
therapy research (for disqualifying prophages), and in environmental systems research.

MATERIALS ANDMETHODS
Data sets used for control tests. All data sets, genomes, and reads used for positive- and negative-

control tests were acquired from publicly available data sets on NCBI databases (75, 76). See Table S1 in
the supplemental material for details of studies and accession numbers. VIBRANT (v1.2.1) (32) and
PHASTER (accessed December 2021) were used for identification and annotation of all prophages. Only
VIBRANT was used for identification of prophages from metagenomes. For the mock metagenome,
reads were randomly subsampled using seqtk (v1.3-r106, sample) (https://github.com/lh3/seqtk).

Dependencies and equations. Bowtie2 (v2.3.4.1) (45) was used for read alignment. SAMtools
(v1.11) (46) and PySam (https://github.com/pysam-developers/pysam) were used for manipulation, con-
version, and reading of SAM and BAM alignment files. To calculate coverage, aligned reads are filtered
according to the percent identity alignment, as calculated by subtracting the number of gaps, g, and the
number of mismatches, m, in the alignment from the length of the alignment, l, and then dividing by l.

percent identity alignment ¼ l 2 g 2 m
l

� 100%

Cohen’s d metric is used to calculate the effect size of prophage/host coverage ratios. Cohen’s d (77)
is calculated using the following equation, where X host and X prophage are the average read coverages of
the host and prophage regions, and Shost and Sprophage are the standard deviations of the coverages:

d ¼ Xhost 2 Xprophageffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2
host

1 S2
prophage

2

q

Metagenome assembly and analyses.Metagenomes for the murine gut microbial fraction samples
were assembled in this study. Details of raw read sets from murine gut samples used for assembly can
be found in Table S1. SPAdes (v3.12.0) (78) was used for genome assembly (–meta -k 21,33,55), and the
resulting best scaffold assemblies were retained. The human infant gut and peatland soil metagenomes
were assembled previously in their respective studies (22, 55, 56). Both human adult gut metagenomes
were assembled by Pasolli et al. (79).

For the human gut time series samples, integrated prophages were predicted using VIBRANT (v1.2.1). To
check for integrated prophage sequences that were not assembled with a host scaffold, integrated pro-
phages were compared to all identified phages using dRep (v2.6.2, dereplicate –ignoreGenomeQuality -sa 90
-pa 90) (80). Identical, nonintegrated phage sequences were considered a part of the same prophage popula-
tion. Genome alignments were performed using progressive Mauve (v1.11, default settings) (81).

Visualization. Geneious Prime 2020.1.2 was used for visualization of example read coverage values. R
package ggplot2 and Python packages Matplotlib and Seaborn were used for visualization of graphs (82, 83).

Setting default thresholds for PropagAtE. PropagAtE has several variable settings and thresholds
that can be set by the user, percent identity of aligned reads, masking of coverage values at genome/
scaffold ends, minimum prophage/host coverage ratio, minimum Cohen’s d effect size, minimum aver-
age coverage of the prophage, and minimum breadth of coverage of the prophage. In addition,
PropagAtE requires that all prophage and host sequences must each be at least 1 kb in length.

Percent identity read alignment is used for more accurate read alignment processing. This setting is
meant to be sensitive for accurate read alignment while allowing for minor errors (default, 97%). Another
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coverage metric is masking of coverage values at genome/scaffold ends. This setting is particularly important
for metagenomic scaffolds that likely represent partial sequences. For this metric, a generalized length of 150
bp is used to mask (i.e., not consider for calculation) the respective number of coverage values from each
scaffold end in order to account for lower coverage values at partial scaffold ends.

The final four settings are used for determination of prophage activity and significance: The most im-
portant threshold is the prophage/host coverage ratio, which is set to 2.0 by default and can be reduced
to 1.75 for increased sensitivity. The default was selected to be as close to the minimum requirement for
designating true active prophages as active in control tests while maintaining a significant gap from
true dormant prophages in order to reduce false-positive identifications. Finally, Cohen’s d effect size
setting is set to 0.70, which falls in the general range of “medium” significance (77). This threshold is use-
ful for contextualizing prophage/host coverage ratios, especially for high-coverage genomes/scaffolds.
Again, the default was selected according to control tests for reducing false-positive identifications. The
thresholds for minimum coverage (default, 1.0) and minimum breadth (default, 0.50) of prophage
regions are used to ensure that only prophages that are likely to be present in the sample (i.e., sufficient
coverage) are considered in analyses.

Data access. The PropagAtE software and associated files are freely available as a Python package at
https://github.com/AnantharamanLab/PropagAtE. All isolate and metagenome genomic sequences and
reads used in this study are publicly available; see Table S1 for details. Additional details of relevant data
are available on request.
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