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Purpose: To achieve automatic diabetic retinopathy (DR) detection in retinal fundus
photographs through the use of a deep transfer learning approach using the
Inception-v3 network.

Methods: A total of 19,233 eye fundus color numerical images were retrospectively
obtained from 5278 adult patients presenting for DR screening. The 8816 images
passed image-quality review and were graded as no apparent DR (1374 images), mild
nonproliferative DR (NPDR) (2152 images), moderate NPDR (2370 images), severe
NPDR (1984 images), and proliferative DR (PDR) (936 images) by eight retinal experts
according to the International Clinical Diabetic Retinopathy severity scale. After image
preprocessing, 7935 DR images were selected from the above categories as a training
dataset, while the rest of the images were used as validation dataset. We introduced a
10-fold cross-validation strategy to assess and optimize our model. We also selected
the publicly independent Messidor-2 dataset to test the performance of our model.
For discrimination between no referral (no apparent DR and mild NPDR) and referral
(moderate NPDR, severe NPDR, and PDR), we also computed prediction accuracy,
sensitivity, specificity, area under the receiver operating characteristic curve (AUC),
and j value.

Results: The proposed approach achieved a high classification accuracy of 93.49%
(95% confidence interval [CI], 93.13%–93.85%), with a 96.93% sensitivity (95% CI,
96.35%–97.51%) and a 93.45% specificity (95% CI, 93.12%–93.79%), while the AUC was
up to 0.9905 (95% CI, 0.9887–0.9923) on the independent test dataset. The j value of
our best model was 0.919, while the three experts had j values of 0.906, 0.931, and
0.914, independently.

Conclusions: This approach could automatically detect DR with excellent sensitivity,
accuracy, and specificity and could aid in making a referral recommendation for
further evaluation and treatment with high reliability.

Translational Relevance: This approach has great value in early DR screening using
retinal fundus photographs.

Introduction

The main complication of diabetes is diabetic
retinopathy (DR), a retinal vascular disease, which
can lead to visual impairment or permanent blindness
if not discovered in its initial stages.1,2 Early
diagnostic and regular eye examinations3–5 could
prevent vision loss and blindness and played a crucial
role in optimal treatment of DR. Retinal screening as
a conventional and efficient solution is performed for
the early diagnosis of DR using retinal fundus

photographs obtained with a mydriatic or nonmydri-
atic camera by experienced optometrists or special-
ized, highly trained eye technicians.6,7 However,
traditional manual DR screening remains challenging
and is subject to substantial inter- and intraobserver
variability, even among experienced ophthalmolo-
gists, which can result in making inconsistent
interpretation, delaying accurate diagnosis and creat-
ing a drain on health-care resources.8,9 Hence, the
importance of automated detection for DR on
screened color fundus images has been recognized.
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In recent years, many previous studies have
mentioned state-of-the art applications of deep
learning algorithms10–13 in automated detection of
retinal diseases from a large number of fundus
images. Mookiah et al.14 applied discrete wavelet
transform and stationary wavelet transform coeffi-
cients to extract features from retinal fundus images,
and the optimum features were selected for distin-
guishing normal from DR by means of top-rank and
AdaBoost machine learning methods. Akram et al.15

presented a hybrid classifier integrating a Gaussian
mixture model with a classifier based on the m-
Mediods to detect dark and bright regions for
recognizing DR-related lesions. Haloi et al.16 devel-
oped a pixel-level microaneurysm classification ap-
proach based on deep learning for early DR screening
in color fundus images, which was barely affected by
luminance, contrast changes, and artifacts. Abràmoff
et al.17 investigated performance of a hybrid deep
learning model with multiple convolutional neural
networks (CNNs) trained as lesion detectors on the
free Messidor-2 dataset to automatically detect retinal
lesions and normal anatomy. Gulshan et al.18 applied
a transfer learning method to detect referable DR and
gradable images in retinal color fundus images,
generating high sensitivity and specificity. Zeng et
al.19 utilized a Siamese-like CNN based on binocular
retinal fundus images trained with a transfer learning
technique for automated DR detection, which
achieved high performance.

Although the abovementioned studies released
superior performance in controlled experimental
circumstances, there were some limitations. These
classification approaches introduced above14,15 relied
on handcrafted features, which required abundant
professional knowledge and resulted in a time-
consuming process, poor generalization, and even
unfeasibility in large datasets. These deep learning
methods16–18 utilized the raw images to train a blank
CNN, which required an extremely large labeled
training data and could be a very time-consuming
task. The transfer learning approach19 had no further
optimization, leading to a decline of predictive power.
Moreover, the constructions of these models with
data-driven feature quantifiers on inadequate
amounts of data led to overfitting, which had a
negative impact on performance during testing. In
addition, some studies made only binary classifica-
tion. In real clinical circumstances, patients often
suffered from a variety of retinal disorders, which
employing the binary classification difficult in reality.
As such, multicategorical classification emphasizing

detecting various ocular disorders was more suitable
for the actual clinical setting. However, the imple-
mentation of multiclass classification had significant
challenges.

In order to address the above limitations and
maximize the clinical utility of automated detection,
in this study the deep transfer learning method using
the Inception-v3 network was explored for automat-
ically categorizing any DR present in retinal fundus
photographs as no apparent DR, mild/moderate/
severe nonproliferative DR (NPDR), and prolifera-
tive DR (PDR) to assign the level of DR progression.
The proposed approach, with its high accuracy, high
sensitivity, and high specificity, could assist in making
automated screening for early DR based on retinal
fundus photographs and potentially alleviate the
demand for the resource-intensive manual analysis
of retinal fundus photographs from diverse clinical
circumstances so that high-risk patients could be
effectively referred for further evaluation and treat-
ment.

Methods

The analysis of the proposed deep transfer learning
approach with the Inception-v3 network was per-
formed to classify retinal fundus photographs as no
apparent DR, mild NPDR, moderate NPDR, severe
NPDR, and PDR. The flowchart of the main
sequential steps for categorizing DR images in the
proposed approach is displayed in Figure 1. First, DR
images were obtained, graded, and labeled. The
proper image preprocessing technology then was
applied to acquire images for better training for the
Inception-v3 network using deep transfer learning.
After image preprocessing, with the aim of assessing
and optimizing our model, we randomly separated the
developed image dataset into multiple folds and
conducted a 10-fold cross validation. The resulting
dataset within each fold was split into two indepen-
dent training and validation datasets in a 9:1 ratio.
Our model parameters were fitted and optimized on
the corresponding training dataset and validation
dataset, respectively. The performance of our model
was investigated using the independent test dataset
consisting of 800 images (272 no apparent DR; 264
mild NPDR; 211 moderate NPDR; 28 severe NPDR;
25 PDR) selected from the publically available
Messidor-2 dataset. The proposed approach auto-
matically extracted features from many example
images with ground truth labels and adjusted its
hyperparameters so that the best classification accu-
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racy could be achieved. The identification outcome
could assist ophthalmologists in determining whether
referral is required. In DR screening, a small number
of microaneurysms located in a retinal safe area could
be regarded as mild NPDR and would not need
referral. However, any patient with moderate NPDR,
severe NPDR, or PDR was considered suitable for
the referral.

Dataset

This work was carried out in a compliance with the
tenets of the Declaration of Helsinki. In addition, it
adhered to the regulation of local ethics committees.
The requirement of informed consent was waived as a
result of the retrospective nature of this work. A total
of 19,233 completely anonymous eye fundus color
numerical images were retrospectively collected from
a cohort of 5278 adult patients with all stages of DR
from Shanghai Zhongshan Hospital and Shanghai
First People’s Hospital between April 2013 and
October 2018. These fundus photographs were taken
by multiple color cameras and stored as JPEG files at

different resolutions ranging from 1396 3 1396 to
3168 3 4752.

According to the existence and severity of the
diverse DR lesions in the fundus images, the gold
standard annotation, namely image labeling, was
implemented by retinal experts on the basis of the
International Clinical Diabetic Retinopathy severity
scale.20 The current study invited eight ophthalmol-
ogists to grade 19,233 DR images. All images were
reviewed masking other clinical information, and each
ophthalmologist made a diagnosis independent of
other ophthalmologists. In the first round, we
randomly assigned these images to five junior retinal
experts with 5 to 10 years of experience for screening
and labeling. Each expert reviewed about 3847 DR
images. During the second review, we invited three
senior retinal specialists with 10 to 15 years of
experience to verify and rectify the labeling results.
Each expert reviewed about 6411 DR images. In the
case of discrepancy between retinal experts regarding
image labels, labels were adjudicated by an expert
committee composed of three senior ophthalmolo-
gists, each of whom had more than 20 years of clinical

Figure 1. The overall workflow diagram illustrating the main sequential steps for categorizing fundus images in the proposed approach.
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experience. The grading process was carried out using
high-resolution 27-inch full-screen monitors. Fundus
photographs contained only one of the four abnor-
malities (mild NPDR, moderate NPDR, severe
NPDR, and PDR), and no apparent DR images were
included. All images meeting the following criteria
were excluded: (1) poor quality image or (2) existence
of abnormalities other than the four abnormalities
studied. Each fundus photograph was assigned with a
diagnostic label of 0, 1, 2, 3, or 4, standing for no
apparent DR, mild NPDR, moderate NPDR, severe
NPDR, and PDR, as shown in Figure 2. Images with
the presence of moderate NPDR or higher were
considered as a ‘‘refer,’’ whereas a ‘‘no refer’’ was
defined as images with no apparent signs of DR or
mild NPDR without clinically significant macular
edema (CSME).21,22

Eventually, the fundus image dataset for the
experiment included 8816 images from 5278 adult
patients, of whom 1374 were diagnosed as having no
apparent DR, 2152 were affected by mild NPDR,
2370 were moderate NPDR patients, 1984 were
severe NPDR patients, and the others were PDR
patients. For testing, 800 images (272 no apparent
DR, 264 mild NPDR, 211 moderate NPDR, 28
severe NPDR, 25 PDR) selected from the publicly
available Messidor-2 dataset were used to assess the
performance of the trained algorithm. Additionally,

we also performed four constituent binary classifiers
in the corresponding datasets to distinguish mild
NPDR/moderate NPDR/severe NPDR/PDR from
no apparent DR to verify the breakdown ability of
our model. Moreover, for the purpose of comparing
the performance of a deep transfer learning ap-
proach on a limited dataset to results obtained on a
large dataset, a limited model was also trained to
discriminate the same five classifications. During
training, 4000 images consisting of 800 images from
each category were selected as limited training and
validation datasets, while the same test dataset was
applied to evaluate the classification performance of
the limited model.

Preprocessing

Prior to training the deep learning network,
multiple preprocessing steps for original images
within our dataset were implemented. First, the image
pixel values were scaled to range from 0 to 1, and all
images were downsized to a uniform 299 3 299 pixel
size through properly cropping the inner retinal circle
and padding it to a square. In this way, the
environmental artifacts in the images that were not
related to the diagnosis of DR were also eliminated.
Then, considering various image illumination and
contrast in retinal images from mass screening, the

Figure 2. Representation of DR with increasing severity: (a) no apparent DR image; (b) mild NPDR image; (c) moderate NPDR image; (d)
severe NPDR image; (e) PDR image.
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contrast-limited adaptive histogram equalization
(CLAHE) approach23 was utilized to enhance the
contrast between four DR pathologic signs and
background, as shown in Figure 3. Finally, we
employed nonlocal means denoising24 to remove
image noise. The resulting images were presented as
the input of Inception-v3 network.

Deep Transfer Learning Based on Inception-
v3 Network

In this study, we selected the Inception-v3
network as the base CNN. This architecture
consisted of five convolutional (conv) layers, two
max-pooling layers, 11 inception modules, one
average pooling layer and one fully connected (fc)
layer, which produced an image-wise categoriza-
tion. The Inception-v3 network clustered the similar
sparse nodes into a dense structure to increase both
the depth and width of the network and reduce the
computation process efficiently. Such a network
from scratch had been trained on the ImageNet
dataset25 with the known ground truth labels, which
could identify 1000 categories. In the training
process, the pixel intensities of each image and the
associated known label were fed into this network
so that the parameters in the network were
automatically adjusted to make a more accurate
prediction based on the performance error defined
by the difference between the generated output of
the model and the ground truth labels. For each
sample image, this process could be repeated
multiple times until the network was optimally
trained.

Considering a relatively small amount of retinal
images within our dataset in this study, we trans-
ferred the Inception-v3 network, which was pre-
trained using the ImageNet dataset, and further fine-

tuned it for categorization of retinal fundus images
in order to reduce training time and to achieve high
accuracy. The corresponding schematic of the
proposed approach is illustrated in Figure 4.
Namely, a deep transfer learning approach with
Inception-v3 network was utilized for classifying
retinal fundus images. First, we initialized the
convolutional layers with the pretrained weights,
which were initially calculated from the ImageNet
dataset and stored to accelerate training process and
reduce redundancy. The last fully connected layers in
the Inception-v3 network were initialized with
random weights so that the discriminative feature
space shifts from ImageNet images to retinal fundus
photographs could be learned. Meanwhile, we
altered the last fully connected layer to five output
categories corresponding to no apparent DR, mild
NPDR, moderate NPDR, severe NPDR, and PDR,
instead of the 1000 output categories of the Image-
Net. Then, all weight parameters of the convolu-
tional layers and corresponding max-pooling layers
were frozen to extract features relevant to identifi-
cation of DR, which meant that the fixed weights
would not be changed while the randomly initialized
weights would be updated during training. On the
development fundus image dataset, each training
and validation image was passed through feature
extractors, and the resulting output values were used
for retraining the newly initialized network to detect
our specific five categories. During retraining, an
attempt was made to further fine-tune the network
by unfreezing frozen layers and updating the
corresponding pretrained weights on the develop-
ment DR image dataset using a back propagation
approach until the performance of the validation
dataset could not be further improved.

Figure 3. Example of the preprocessing of fundus images: (a) original fundus photograph; (b) fundus photograph after CLAHE
application.
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Statistical Analysis of Performance

For the purpose of evaluating the performance of
the proposed deep transfer learning approach for
identifying DR, overall classification accuracy (Acc),
classification sensitivity (Sen), and specificity (Spe),
j value, and area under the curve (AUC) metrics
with 95% CI in the test dataset were calculated, and
the performance of the best model was further
compared to results obtained by retinal specialists.
The statistical analysis was implemented using
statistical software (Python ver. 2.7.9) integrating
numpy, scipy, statsmodels, and scikit.learn modules.
Acc was defined as the ratio of the number of
correctly labeled images to the overall number of test
images. Sen was calculated by dividing the number
of true positive (correctly detected referral cases) by
the total number of true positive and false negatives
(referral cases incorrectly identified as no referral
cases), which showed the percentage of referral cases
correctly classified by the algorithm. Spe was defined
as a ratio of the number of true negatives (correctly
detected no referral cases) to the sum of the number
of true negatives and false positives (no referral cases
incorrectly identified as referral cases), describing the
ratio of no referral cases correctly categorized by the
algorithm. Receiver operating characteristic (ROC)
curves plotted with respect to the varying operating
threshold were used to assess the ability of our model
on DR images in discriminating referral from no
referral. It provided the tradeoff between the
sensitivity and 1-specificity. AUC was utilized for
summarizing the classification accuracy of the
model. The AUC of effective model ranging between
0.5 and 1 was higher, the performance of model was
better. We also calculated a j value to quantify the

degree of agreement between the best performance
model and three retinal specialists for each diagnos-
tic category. The larger j value ranging from 0 to 1
meant better reliability. The Sen, Spe, and Acc were
calculated, respectively, as follows:

Sen ¼ TP

TPþ FN
ð1Þ

Spe ¼ TN

TNþ FP
ð2Þ

Acc ¼ TPþ TN

TPþ TNþ FPþ FN
ð3Þ

where, TP (true positive) is defined as the overall
number of correctly detected referral; FP (false
positive) is the total number of no referral detected
as referral; FN (false negative) denotes the overall
number of referral detected as no referral; and TN
(true negative) is the total number of correctly
detected no referral.

Results

The proposed deep transfer learning approach
with the Inception v3 network was trained and tested
on a personal computer (PC) with an Ubuntu 16.04
operation system. The hardware configuration of the
PC included Intel Core i7-2700K 4.6-GHz CPU (Intel
Corp., Santa Clara, CA), NVIDIA GTX 1080 8-Gb
GPU (Santa Clara, CA), Dual AMD Filepro 512-GB
PCIe-based flash storage (AMD Corp, Sunnyvale,
CA), and 32-GB RAM. For training, the SGD
optimizer was utilized with a momentum of 0.95, an
initial learning rate of 0.001, weight decay of 0.0005, a

Figure 4. Schematic of deep transfer learning approach with Inception-v3 network.
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batch size of 100 images, and the categorical cross
entropy loss function. After 50,000 steps, training on
all classifications was stopped as a result of the
absence of further improvement in both accuracy and
cross entropy loss from then on, as seen in Figure 5.

We measured the time consumed for our model
with the configuration previously described. The five-
class holdout model trained with our approach spent
only about 2 hours in finishing fine-tuning the
corresponding datasets, while each binary classifica-
tion could yield a high accuracy in under 1 hour. Once
the model was fine-tuned, 16 milliseconds were
needed to assign a DR probability for each retinal
image.

The algorithm performance in triaging images with
multiclass DR (no apparent DR, mild NPDR,
moderate NPDR, severe NPDR, and PDR) was
evaluated using the independent Messidor-2 test
dataset. The distribution of images over the referral
and no referral groups at the stage of training,

validation, and testing are in Table 1. Table 2 presents
the performance metrics of our model for detecting
referral cases. For discrimination between no referral
(no apparent DR, mild NPDR) and referral (moder-
ate NPDR, severe NPDR, and PDR), our model
obtained an accuracy of 93.49% (95% CI, 93.13%–
93.85%) with a sensitivity of 96.93% (95% CI,
96.35%–97.51%), and a specificity of 93.45% (95%
CI, 93.12%–93.79%). A ROC curve was generated to
evaluate its ability to discriminate no referrals from
referrals. The AUC was 0.9905 (95% CI, 0.9887–
0.9923). In addition, we further made a performance
comparison between the best model and three experts.
The best model generated an accuracy of 94.25%,
with a sensitivity of 98.11% and a specificity of
94.22%. A confusion matrix of the best model is
shown in Figure 6(a). Expert 1 had 93.38% accuracy,
96.21% sensitivity, and 94.59% specificity, while
expert 2 and expert 3 had accuracies of 95.13% and
93.87%, a sensitivity of 98.48% and 97.35%, and a

Figure 5. Accuracy and loss on the training and validation datasets with TensorBoard: (a) accuracy versus the training steps; (b) cross
entropy loss against the training steps; (c) accuracy versus the validation steps; (d) cross entropy loss against the validation steps.

Table 1. Distribution of DR Images Over the Referral and No Referral Groups

Number of DR Images

Referral Group No Referral Group

TotalModerate NPDR Severe NPDR PDR No Apparent DR Mild NPDR

Training dataset 2133 1786 842 1237 1937 7935
Validation dataset 237 198 94 137 215 881
Test dataset 211 28 25 272 264 800

7 TVST j 2019 j Vol. 8 j No. 6 j Article 4

Li et al.



specificity of 94.41% and 93.84%, respectively (see
Table 3). The j value for the best model was 0.919,
slightly higher than those for the three experts (0.906,
0.931, and 0.914). The ROC curve for referral case
identification with human expert performance was
plotted to make a comparison as displayed in Figure
6(b). The ROC curve differentiating referral cases
from no referral cases had an AUC of 0.9921. It was
demonstrated from Figure 6(b) that our best model
achieved a performance matching that of human
experts.

In the following, we performed four constituent
binary classifications in detecting the corresponding
retinal fundus images to determine a breakdown
ability of our model using the corresponding test
dataset. Additional analyses were conducted for
several subcategories: (1) distinguishing mild NPDR
from no apparent DR; (2) discriminating moderate
NPDR from no apparent DR; (3) detecting severe
NPDR and no apparent DR; (4) separating PDR
from no apparent DR. Table 4 lists a summary of
these results, which showed the algorithm yielded high
accuracy, sensitivity, and specificity. The classifier
discriminating mild NPDR from no apparent DR
achieved 95.15% (95% CI, 0.9479–0.9551) accuracy,
97.72% (95% CI, 0.9714–0.9827) sensitivity, 92.65%
(95% CI, 0.9232–0.9298) specificity, and an AUC of
0.9893 (95% CI, 0.9885–0.9902). The classifier distin-
guishing moderate NPDR from no apparent DR
yielded an accuracy of 94.41% (95% CI, 0.9407–

0.9475) with a 97.64% (95% CI, 0.9706–0.9822)
sensitivity and 91.91% (95% CI, 0.9161–0.9221)
specificity, and an AUC of 0.9904 (95% CI, 0.9898–
0.9910). The classifier differentiating between severe
NPDR and no apparent DR obtained an accuracy of
92.67% (95% CI, 0.9236–0.9298), a 97.43% (95% CI,
0.9688–0.9798) sensitivity, and a 92.28% (95% CI,
0.9196–0.9260) specificity, while the value of AUC
reached up to 0.9912 (95% CI, 0.9905–0.9918). The
classifier separating PDR from no apparent DR
achieved an accuracy of 98.65% (95% CI, 0.9835–
0.9895), with a 99.26% (95% CI, 0.9873–0.9979)
sensitivity and 98.53% (95% CI, 0.9800–0.9884)
specificity, while the AUC score was 0.9977 (95%
CI, 0.9971–0.9983). The ROC curves for discriminat-
ing referral from no referral with the best four binary
classifiers were depicted in Figure 7.

In the following, the limited model was also further
trained based on a transfer learning approach on
limited data in order to compare with results obtained
using a large dataset. We selected a total of only 4000
images (800 images extracted randomly from each
category) as a limited training dataset to train our
model to identify the same five categories. On the
same test dataset, the limited model achieved a
relatively good performance of 93.16% (95% CI,
0.9275–0.9357) accuracy with a sensitivity of 96.75%
(95% CI, 0.9613–0.9737) and specificity of 93.18%
(95% CI, 0.9276–0.9360), while the AUC was 0.9864
(95% CI, 0.9846–0.9886), which is shown in Table 5.

Table 2. Performance Metrics of Model for Detection of Referrals

Acc, % (95% CI) Sen, % (95% CI) Spe, % (95% CI) AUC (95% CI)

93.49 (0.9313–0.9385) 96.93 (0.9635–0.9751) 93.45 (0.9312–0.9379) 0.9905 (0.9887–0.9923)

Figure 6. Multiclass comparison between no apparent DR, mild NPDR, moderate NPDR, severe NPDR, and PDR.
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This illustrated that the proposed approach had great
performance and could detect DR automatically and
accurately.

Discussion

In the present work, a deep transfer learning
approach with Inception-v3 network was presented to
identify the level of DR from retinal fundus photo-
graphs automatically that achieved high accuracy,
sensitivity, and specificity. This approach avoided a
great deal of example images for convergence of the
model via fine-tuning the weights of the Inception-v3
network, which was pretrained using the ImageNet
dataset and yielded a matching or exceeding perfor-
mance to that of retinal specialists in detecting DR
images.26,27 The results attained indicated that our
approach could provide better consistent predictions
and highly reliable detection without having to specify
lesion-based features, and it could serve as an
automated screening tool for early DR by using
retinal fundus images in addition to assisting oph-
thalmologists in making a referral decision.

Retinal fundus image interpretation is often
subjective and liable to significant inter- and intra-
observer variability, even among experienced oph-
thalmologists. Considering these limitations,
automated DR detection methods would be of
enormous value. The proposed approach for DR

detection offered consistency of interpretation on a
specific image. The performance of the proposed
approach was yielded directly by the results of the
training data, with a human expert grading decisions,
without the need to focus on underlying process of
DR. In addition, when performing a large-scale
screening for DR, it was critical to improve sensitivity
and specificity for minimizing misdiagnosed cases.
Our approach offered good results in the sensitivity
and specificity, while a near instantaneous reporting
ability of results could also be achieved. In this study,
93.49% (95% CI, 93.13%–93.85%) accuracy, 96.93%
(95% CI, 96.35%–97.51%) sensitivity, and 93.45%
(95% CI, 93.12%–93.79%) specificity were generated,
while the AUC was up to 0.9905 (95% CI, 0.9887–
0.9923), manifesting a comparable or slightly better
performance than the previous studies.17,18,28 More-
over, the most significant merit of our approach was
possibly the endeavor to simultaneously predict five
levels of DR with improved performance compared to
previous studies where only four DR grades were
considered,29 which was suitable for more timely and
reliable detection of DR.

Most artificial intelligence studies using retinal
fundus images concentrated on explicit handcrafted
feature engineering involving computing and extract-
ing complex features,30 which was time-consuming,
required considerable skill and professional knowl-
edge for annotating the imaging data, and easily
resulted in misclassification due to a minor error in
handcrafted engineering features. However, the key
advantage of our approach was that it could learn
automatically richer and more distinctive image
features from the retinal fundus image data to achieve
more accurate identification, without manual feature
extraction or feature optimization. This autonomous
behavior could present a potential opportunity for
capturing subtle characteristics or patterns of DR in
clinical settings, which may not be identified by

Table 3. Performance of the Best Model and Human
Experts for Detection of the Four Abnormalities

Method Acc, % Sen, % Spe, % j

The best model 94.25 98.11 94.22 0.919
Expert 1 93.38 96.21 94.59 0.906
Expert 2 95.13 98.48 94.41 0.931
Expert 3 93.87 97.35 93.84 0.914

Table 4. Performance Comparisons of Our Model for Binary Classification

Method Acc, % (95% CI) Sen, % (95% CI) Spe, % (95% CI) AUC (95% CI)

Mild NPDR vs no apparent DR 95.15
(0.9479–0.9551)

97.72
(0.9714–0.9827)

92.65
(0.9232–0.9298)

0.9893
(0.9885–0.9902)

Moderate NPDR vs no apparent DR 94.41
(0.9407–0.9475)

97.64
(0.9706–0.9822)

91.91
(0.9161–0.9221)

0.9904
(0.9898–0.9910)

Severe NPDR vs no apparent DR 92.67
(0.9236–0.9298)

97.43
(0.9688–0.9798)

92.28
(0.9196–0.9260)

0.9912
(0.9905–0.9918)

PDR vs no apparent DR 98.65
(0.9835–0.9895)

99.26
(0.9873–0.9979)

98.53
(0.9800–0.9884)

0.9977
(0.9971–0.9983)
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retinal experts. Additionally, the approach developed
in this study did not require any specialized or
advanced computer equipment to classify fundus
photographs, and it could be deployed on standard
low-cost computing equipment to offer reproducible
evaluation of DR images in patients with suspected
DR diseases.

In our system, we transferred the pretrained
Inception-v3 model and adjusted the last fully
connected layer to five output categories exactly
corresponding to our multiclass identification task
instead of the 1000 output categories of the Image-
Net. Subsequently, weights of the pretrained Incep-
tion-v3 model were placed into the transferred model,
while weight parameters in the last fully connected
layer were randomly initialized. During the fine-
tuning, the strategies for the hyperparameter setting
and searching were different from that in the training
process. First, the initial learning rate was set to much
less than 0.1 through the optimization algorithm for

training the model well during the fine-tuning.
Moreover, there was no need to update all weight
parameters of the model due to limited training data.
The most effective way to fine-tune the pretrained
weight parameters of the CNN model was to adjust
only those parameters in the fully connected layer
most relevant to specific fundus photograph classifi-
cation, while fixing the weight parameters of convo-
lutional layers and the corresponding pooling layers.
In our system, the fine-tuning process was performed
for 50,000 steps using the SGD optimizer with a batch
size of 100. The learning rate was initially set to 0.001
and was then decreased linearly from 0.001 to 0.0001
over 150 epochs in the training process. The
categorical cross entropy loss function was utilized,
whereas the values of weight decay and momentum
were set to 0.0005 and 0.95, respectively. During
retraining, the frozen layers were attempted to further
fine-tune through unfreezing and adjusting the
corresponding pretrained weight parameters on the

Figure 7. ROC curves of the best four binary classifiers: (a) mild NPDR versus no apparent DR; (b) moderate NPDR versus no apparent
DR; (c) severe NPDR versus no apparent DR; (d) PDR versus no apparent DR.

Table 5. Performance Metrics of Limited Model for Detection of Referrals

Acc, % (95% CI) Sen, % (95% CI) Spe, % (95% CI) AUC (95% CI)

93.16 (0.9275–0.9357) 96.75 (0.9613–0.9737) 93.18 (0.9276–0.9360) 0.9864 (0.9846–0.9886)
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developed DR photograph dataset using a back
propagation approach until the performance of the
validation dataset could not be further improved.
Once the optimal learned weights were determined,
the work procedure of our system was in according
with that of the conventional CNN.

Limitations of transfer learning approach must be
considered. First, although the transfer learning
approach achieved satisfactory results in detection of
DR and decreased the training time for model
convergence on a relatively small training dataset, it
exhibited slightly inferior classification power in
contrast to that of the model trained from scratch on
a huge training dataset. The reason was mainly due to
the fact that the weight parameters of the model
trained from scratch could be directly updated and
optimized for DR feature identification. Second, when
source and target domains have little relevance to each
other in some sense, transfer learning may lead to a
decline of performance. Also, the performance of the
developed model was determined by weight parameters
of the pretrained Inception-v3 model to a large extent,
which could be further improved by testing with a
larger ImageNet dataset. Also, when an attempt to
fine-tune the network via unfreezing and updating
pretrained weight parameters on the developed DR
image dataset with the back propagation method,
overfitting was prone to occur, resulting in a decline of
model performance. However, transfer learning accel-
erated the training of the model, reduced memory
complexity, and yielded a high classification accuracy
between no apparent DR, mild NPDR, moderate
NPDR, severe NPDR, and PDR on a relatively small
DR photograph dataset. The deep transfer learning
approach with Inception-v3 network could accurately
capture features of DR images; as a result the relative
high performance in automated DR identification
could be generated. Unfortunately, it could be
extremely expensive or unfeasible to collect a large
amount of DR images as the underlying datasets with
the gold standard qualified by ophthalmologists.
However, even if they could be collected, the training
of a deep CNN would also require extensive memory,
computational resources, and several weeks to update
the substantial hyperparameters of the model to
converge to a high accuracy. In contrast, a multiclass
holdout model trained through the use of a deep
transfer learning approach could save memory, reduce
computational resources, and only take approximately
2 hours to finish training, validating, and testing in the
corresponding datasets. We also trained four constit-
uent binary classifications identifying mild NPDR/

moderate NPDR/severe NPDR/PDR from no appar-
ent DR and the limited model independently. Each
binary classification and the limited model showed
excellent performance and could also generate a
relatively high accuracy in about 1 hour. Thus, the
initializations of models with the deep transfer learning
approach should be regarded as a critical method when
a CNN was trained for performing a new task,
especially with limited data.

Nevertheless, there also exists several limitations to
our approach in the current study. First, we selected
the retinal fundus images from only two hospitals.
Various device settings, camera systems, and popula-
tion characteristics had impacts on DR images and
further affected the model’s performance. In order to
further evaluate our approach, we need to collect more
retinal fundus image data from different hospitals and
use larger patient cohorts in future studies. Second,
since the deep learning model was referred to as black
boxes, it was difficult to know how the algorithm
analyzes features and makes predictions for DR
images. In particular, when difficult and ambiguous
cases occurred, it was very useful to make an objective
interpretation. Thereby, the visualization of the
decision-making process of the model needs to be
studied further. This raised the possibility that
visualizing model decisions could potentially aid both
patients and physicians in real-time clinical verifica-
tion. Third, our approach learned the features based
only on the fundus images and their associated grades,
rather than explicit, defined features. Therefore, it is
possible that the algorithm was using some features
ignored by humans to predict classification results. In
subsequent studies, we need to gain insight into how
the deeply neural network analyzes patterns and makes
an image-wise prediction.

Conclusions

In our present study, a novel deep transfer learning
approach with the Inception-v3 network was devel-
oped to automatically detect DR in retinal fundus
images. The proposed approach had high accuracy,
high sensitivity, and high specificity for classifying
DR images; offered consistency of interpretation on
the specific DR image; and could assist ophthalmol-
ogists in making a referral decision. Moreover, this
approach did not need to extract engineered features
from the retinal fundus photograph dataset for DR
detection. In addition, the process of DR detection in
the proposed approach was fully autonomous. Thus,
it could serve as an important role in making
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automated screening for early DR based on retinal
fundus photographs. In future studies, it will be
necessary to determine the decision-making process of
the model and validate the generalization of our
approach. Additionally, in order to extend the deep
transfer learning approach with the Inception-v3
network to real clinical applications, there is need to
turn the proposed method into applied software so
that it could act as a DR screening tool and provide
decision-making support for ophthalmologists.
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