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Simple Summary: A worldwide trend amongst zoos is to replacesmall, barren enclosures with large,
naturalistic ones intended to provide animals with environments which cater to their behavioural
and psychological needs. Evidence suggests that naturalistic enclosures are effective but most studies
focus on welfare-related behaviour or human perceptions of the enclosures. To date, little attention
has been given to how animals use space in naturalistic enclosures. Our study investigated how a
group of chimpanzees at the Johannesburg Zoo used space in a naturalistic enclosure by recording
behaviour and space use every 5 min for an hour at a time. We found that the chimpanzees showed
a preference for locations within the enclosure which coincided with their previous housing and
that the chimpanzees form subgroups which conform to the space of their previous housing (i.e.,
small, barren enclosure). We suggest that the chimpanzees’ perception of space has been altered by
their experience of the previous, smaller barren housing and that this limits their space use in the
naturalistic enclosure through what appears to be a self-imposed ‘invisible cage’ around subgroups.
Exactly how the ‘invisible cage’ works is unclear but our findings have implications for animal
welfare, husbandry and broader conservation of endangered species.

Abstract: Background: Appropriate space is considered paramount for good captive animal welfare.
There has been a concerted effort by captive institutions, particularly zoos, to provide captive
animals with relatively large, naturalistic enclosures which havehad demonstrated welfare benefits
for animals. However, post-occupancy assessments of these enclosures tend to focus on short-term
welfare-centredbehavioural effects or human perceptions of the enclosures and their effects and
seldom consider spaceuse. We examined the space use of a group of eight captive chimpanzees
5 years after large-scale enclosure modification at the Johannesburg Zoo, South Africa. Methods:
Instantaneous scan sampling was used to record behaviour and location of each chimpanzee at 5 min
intervals in the new enclosure. From these 6.8 h of data, space-use patterns and subgroup (two or
more chimpanzees within 10 m of each other) spacing were considered relative to local environmental
variables, social conditions and the location and size of the previous smaller enclosures in which
they had been kept. Results: Space use was heterogeneous, with some enclosure zones being used
more than others, and 97.5% of subgroups restricted their spacing to the dimensions of the previous
housing (10 m × 10 m). Conclusions: This pattern was not explained by individual behaviour,
time of day, location, available space, weather, temperature or shade availability, inter-individual
spacing or subgroup composition. We suggest the learned helplessness phenomenon may explain
these observations and discuss the implications for both animal welfare and endangered species
conservation.Regardless of the mechanism, we suggest that such effects could be avoided through
the provision of large enclosures for captive animals.
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1. Introduction

Spatial restriction is the hallmark of captivity. Most animals in captivity are housed in
spaces that are orders of magnitude smaller than the home ranges of their free-living con-
specifics [1]. Shettel-Neuber [2] describes zoo enclosure designs as falling into three distinct
stages of design, based on the ideas put forward by Campbell [3]: first-generation enclo-
sures (characterised by barred cages or steep-walled pits), second-generation enclosures
(cement enclosures surrounded by wet or dry moats) and third-generation, or naturalistic,
enclosures. Naturalistic enclosures have proliferated in zoos [4] and have a reputation as
the most effective housing systems for zoo animals [5] as well as the most popular amongst
zoo visitors [6]. Within the bounds set by practical limitations such as available space
and financial costs [7], these designs seek to recreate both aesthetic and functional aspects
of the natural environment [8,9] and the beneficial impacts of such enclosures are well
documented across a wide range of species from amphibians [10] to apes [11]. Through the
provision of appropriate behavioural opportunities mirroring the native environment of the
species [12], naturalistic environments promote species-typical behaviour [13–15], increase
overall activity and novel behaviour [16,17] and reduce abnormal [18] and potentially
undesirable behaviour, such as aggression(while aggression, a natural behaviour, is not
inherently problematic, it may be viewed as undesirable in captivity given the welfare risks
associated with fighting and injury, as well as the potential for damage to infrastructure
and harm to caregivers [8]). Given the evidence in their favour, naturalistic enclosures are
becoming a standard housing system for zoo animals.

The provision of an appropriate housing space is essential for good animal welfare [19],
particularly for non-human primates (hereafter ‘primates’) [20], and over time, many zoos
have replaced traditional first- and second-generation enclosures with naturalistic designs.
However, additional space alone is unlikely to have a meaningful impact on captive
animals unless that space is used appropriately by the occupants [7]. There is a need to
rigorously examine enclosure design and efficacy [21] and post-occupancy evaluations are
often used to assess how appropriate new enclosures are for captive animals by identifying
which aspects of enclosure designs are suitable or functional and those which may require
improvement [22]. Most post-occupancy studies have focused on the behavioural impact
of enclosure change, specifically on abnormal or pathological behaviour (e.g., [8]), on the
perceptions of caregivers or the public of the design (e.g., [23]) or the functionality of the
designs for caregivers [21] and the consequent animal welfare impact thereof [6].

By contrast, the relative impact of large-scale enclosure changes on the space use of the
animals has received far less attention. It stands to reason that the substantial qualitative
and quantitative modification of the physical environment involved when relatively small
‘barren’ enclosures are upgraded to large naturalistic designs renders direct comparison
of the space use of subjects in the old and new environments difficult unless the original
enclosure is maintained and supplemented with novel spaces and features. The type of
enclosure in which an animal is housed will determine the space use of the animal [24] but
there is a prevailing assumption that animals will use enclosure spaces homogenously [25].
As a general rule, heterogeneity in the physical environment acts as a determining factor of
movement patterns and space use in animals [26] and space use varies both spatially and
temporally according to an animal’s physiological and behavioural needs [1]. Free-ranging
animal movements are affected by the distribution and encounter rate of key resources,
such as food or social partners, and the quantity and quality of shelter [27] as well as factors
such as relative predation [28], parasitism and disease transmission risk [29,30], energetic
considerations [31] and territoriality [32]; these factors play a lesser role in determining
space use in captivity, given that captive environments typically provide an adequate diet,
a relatively static social and physically limited environment, an absence of predators and
limited opportunities for disease and parasite transmission. Moreover, captive animal
space use is affected by the size, structure and complexity of their physical housing and
social context [33] and factors such as the overt presence of humans [34,35] also influence
captive animal space use.
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Post-occupancy evaluations to date have considered various measures of space use
in new enclosures based on dividing enclosures into zones and recording the relative
frequency of occupation by animals (reviewed by [36]). Based on these data, the spread of
participation indices (relative use of predefined zones in an enclosure) or electivity indices
(frequency of use of specific features or areas of an enclosure) can be calculated as measures
of space use, or zone-use patterns can be related to behavioural expression of animals to
qualify space usage [36]. Ross and colleagues applied these measures of space use to two
captive ape groups, chimpanzees Pan troglodytes and lowland gorillas Gorilla gorillagorilla,
through a period of a change of enclosure. Both ape groups showed distinct preferences
for specific vertical tiers as well as particular physical features of their respective enclo-
sures, including doorways and enclosure corners [37]. Ross et al. [38] compared these
enclosure feature preferences in the same ape groups between the two housing conditions
using electivity indices and found enclosure-specific preferences in both groups. Despite
demonstrable long-term beneficial behavioural outcomes for both ape groups [11], a later
quantitative study on the same subjects found the chimpanzees and gorillas used only 3.2%
and 1.5% of the available space in an indoor-outdoor enclosure [39]. Studies such as these
provide valuable insight into the space-use preferences of captive animals.

While the spread of participation and electivity indices provide broad measures of
space use patterns and preferences for environmental features, for social species there is
a further consideration which impacts space use patterns—the presence and proximity
of other individuals within the group. Inter-individual spacing is governed by the dis-
tances between individuals in relation to fields of personal space and may depend on the
familiarity, relative social rank, age and sex of the individuals involved, season, spatial
location and the behaviour being expressed by individuals [40]. Social behaviours such
as allogrooming and aggression regulate inter-individual spacing patterns [40] and are
of particular importance in the context of primates and crowding in captivity [41–43]. In
the context of enclosure use, it may be that individuals are drawn to a location because
other individuals are present (i.e., through local enhancement) rather than due to a location
preference per se or may have a high preference for a specific environmental feature or lo-
cation but may be precluded from access due to limits on inter-individual spacing or visual
access to other individuals [44]. Indeed, lowland gorillas use areas within an enclosure
based on proximity to familiar individuals and avoidance of dominant individuals [45].
Thus post-occupancy evaluations should consider the role of social spacing and subgroup
composition in evaluating space-use patterns for social species in order to generate a more
holistic understanding of the effects of enclosure change.

With the above in mind, we investigated the space use of a group of zoo-housed chim-
panzees introduced into a large naturalistic enclosure by examining both broad patterns of
space use and group spacing. We quantify the daily spatio-temporal patterns of space use
of the chimpanzees through zonation and a modified spread of participation index, relating
these to local environmental features and the previous housing, and examine the formation
and spacing of subgroups within the enclosure, relating these patterns to behaviour, local
environmental variables and subgroup composition. Novelty effects are likely to impact on
behaviour and space use [11,46] but the space use patterns of the chimpanzees in this study
were examined 5 years following the transfer into a new enclosure and compared to the
spatial characteristics of the previous small, barren enclosure. Thus, this study represents
one of a handful of studies to describe long-term effects of enclosure change on space use
and the first to include effects on social spacing patterns.

2. Materials and Methods
2.1. Study Subjects, Housing and Husbandry

The study subjects were a stable group of chimpanzees, comprising four males (Thabu:
26 years; Yoda: 17 years; Amber: 10 years; Charles: 2 years) and four females (Daisy:
25 years; Zoe: 14 years; Lilly: 12 years; Joyce: 6 years). All the individuals in the group
were the offspring of Thabu and Daisy and the group had been housed at the Johannesburg
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Zoo Ape House (26◦10′06′′ S, 28◦01′35′′ E) since birth, with the exception of one female,
Lilly, who was originally part of a group of rescued orphan chimpanzees from central
Africa housed at the Johannesburg Zoo [41]. Lilly was introduced into the existing family
group in 2005. Given that this study was conducted in 2009, the group had been together
in excess of four years and exhibited no notable social instability. Both groups were housed
in a pair of identical 100 m2 enclosures with adjoining indoor night rooms prior to the
change of enclosure in 2004; these enclosures were reconstructed and replaced by a large
outdoor enclosure with a total area of approximately 2500 m2 [41]. The new enclosure was
constructed directly over the location of the previous enclosures and retained the major
structural features (i.e., barrier walls, doorways) of the previous housing (Figure 1) but was
otherwise completely altered.Following the construction of the new enclosure, the group of
rescued orphan chimpanzees (excluding Lilly, who was incorporated into the focal group
as described above) were relocated to Chimp Eden, a sanctuary affiliated with the Jane
Goodall Institute, located outside of Barberton, Mpumalanga, South Africa and thus were
not subjects of this study.
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Figure 1. Outdoor housing area of the chimpanzee exhibit at the Johannesburg Zoo Ape House in
2009 drawn to scale. Blue lines and shading denote the location and size of the original housing
areas. Red lines and large red letters denote zonation into eight unequally sized zones based on
environmental elements, generalized patterns of shade availability, access to water and proximity to
zoo visitors.
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The outdoor enclosure comprised two sections, approximately 1000 m2 and 1500 m2,
respectively, divided by a wall with a connecting doorway and surrounded by 8 m high
walls, capped with electrified fencing, or 4–5 m wide moats with 1 m high electrified fencing
along the edge of the moat and 30 cm high electrified fencing extending out of the water
approximately 2 m from the inner moat edge. Throughout the study, the chimpanzees
had full access to both sections of the enclosure when they were outdoors. Several large
living and felled trees(all of which, apart from those in zones B and E which were too
small to climb, were fully accessible to the chimpanzees in their outdoor enclosures), other
vegetation, many large rocks and logs were located in both outdoor sections. The smaller
enclosure had a three-paneled reinforced glass viewing window, which allowed visual
access for both chimpanzees and visitors alike, opposite the night room entrances as well as
a large plastic barrel and tube chained to trees. The larger enclosure had a pair of artificial
termite mounds. However, throughout the two years preceding this study and during this
study, neither of the mounds were baited with food as enrichment.Both outdoor enclosures
offered free access to water at all times. Access to two indoor night rooms was provided
through passages located in the rear walls of the outdoor enclosures which corresponded
to the doorways in zone B and zone E.

The feeding and husbandry regimes of the chimpanzees remained constant throughout
the study. The chimpanzees were fed an assortment of foods twice daily, with morning
and evening feeds comprising a similar assortment of foods which varied from day to
day. Their morning feed was scattered randomly throughout their outdoor enclosures to
encourage them to leave the night rooms and use the full available outdoor space. The
chimpanzees had access to their outdoor enclosure between 10 h00 and 15 h00 (16 h00 on
weekends), during which time keepers and animal attendants cleaned the night rooms
(typically from 10 h00 to 11 h00). Similarly, their afternoon feed was spread throughout
the night rooms to encourage the chimpanzees to return indoors for the night. Thus the
chimpanzees were necessarily limited to either outdoor or indoor access at any given time.

2.2. Sampling Technique

Observation sessions were carried out on 47 randomly selected days from March 2009
throughJuly 2009. Observations were conducted between 10 h00 and 16 h00 in the outdoor
enclosure only and for days where the chimpanzees only had access to the outdoor enclo-
sures. During each sampling session, the behaviour of the chimpanzees was sampled for
60 min, using an instantaneous scan behaviour and spatial sampling technique (modified
after [47]). Samples were taken every five minutes and behaviour and space-use data were
recorded simultaneously. The resulting data consisted of 12 behavioural and 12 spatial
records per observation session.All behavioural data were recorded according to the cate-
gories described in Table 1.Observation sessions were classified into three time categories:
morning (10 h00–11 h59), midday (12 h00–13 h59) and afternoon (14 h00–16 h00).

2.2.1. Spatial Sampling

The location of the chimpanzees in the enclosure was recorded at each 5 minbe-
havioural sampling time point. The relative positions of the chimpanzees were plotted on a
scale map of the enclosure. Due to inaccuracies in the plotting of environmental features on
the maps, the distances between fixed landmarks in the enclosure were measured directly
in the enclosure once data collection was completed and these measurements were used to
correct recorded chimpanzee positional information. Only corrected points plotted on the
maps were used in later analyses. During the mapping, photographs of the chimpanzees
were taken, using a Kodak C613 set at 3× optical zoom, which were used to confirm
individual identities and to help ground-truth the mapping technique.
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Table 1. Definitions of behaviours sampled in the chimpanzee group at the Johannesburg Zoo.

Behaviour Definition

Locomotion Movement from one location to another, not involving searching for food.
Included walking, running and climbing

Foraging Activity related to the searching for, manipulation or consumption of
food or drink

Socio-negative
Chasing aggressively (characterised by sneering, open and closed grins and
compressed lip faces. Usually associated with screams, barks and “wraaa”

calls [48]) or overt fighting. Included aggressive gesturing or signalling

Socio-positive Affiliative behaviours such as social grooming and embracing directed at
other chimpanzees

Play

Social play (wrestling, playful biting and playful chasing characterised by a
relaxed face, possibly with a drooping lower lip, or a full play face. Usually
silent but may include soft grunts or hoots [48]), object play (play directed

at or involving an inanimate object) and locomotor play (solitary active
play. Included running, rolling, swinging or somersaulting)

Inactivity Resting, either standing or sitting down, or sleeping

Abnormal

Coprophagia/urophagia, self-mutilation, faeces throwing and hair
plucking. Other behaviours were scored as abnormal based on the context
in which they occurred and whether they occurred repetitively (>3 times in

succession [49]). These included nipple pulling, abnormal gait and
posturing and chronic masturbation

Public Interaction Attempts by the chimpanzees to engage with the public through the
viewing windows or fences

Hidden Chimpanzees were obscured from view or behaviour was not identifiable
according to the other categories listed

The mapping sampling technique was used to assess chimpanzee subgroups, defined
as any congregation of two or more chimpanzees, each within 10 m of another chimpanzee.
The influence of visual barriers wasconsidered when deciding on the limits of subgroups
and possible interactions with the public, based on the findings of Bettingeret al. (visual
separation was found to be important in managing aggression and spacing in captive
female chimpanzees [44]). Thus, individuals outside of visual range of one another were
not considered to be part of the same subgroup, regardless of the relative distances between
the individuals concerned.

Excursions of individuals from subgroups were also recorded as any movement of
an individual from and returning to the same subgroup that resulted in the individual
exceeding a distance of 10 m from another subgroup member for no more than five minutes.
If the excursion exceeded five minutes (the time to the next sampling point), the individual
was no longer considered to be part of its original subgroup. However, excursions occurred
rarely (<3% of all observations) and were not considered for further analysis.

2.2.2. Enclosure Space-Use Patterns

Plowman [50] suggests that in order to meaningfully assess space use in captivity,
division of the physical space into zones must be done with salient environmental features
in mind, rather than using arbitrary equal-sized zones, a practice used in studies of animal
space use in zoos (e.g., [51]). Thus, to assess the enclosure space-use patterns, the enclosure
was divided into eight unequally sized zones based on environmental features (e.g., the
presence of living or felled trees or rocks), gross patterns of shade distribution, access to
water and relative distances to the public. The zonation is shown in Figure 1. Only for
time slots where the locations of all eight individuals, regardless of whether they were in a
subgroup or moving independently, were marked on the map or could be determined by
examining the photographs, were zone-use patterns recorded. If two or more consecutive
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time slots within an observation session provided locations for all eight individuals, every
second time slot was discarded, to minimize interdependence between time slots.

The resulting dataset of 82 time slots (approximately 6.8 h of data) was then used to
calculate the spread of participation index (SPI) using a modified equation for unequal zone
size (as described by [50]). The index provides an estimate of space-use bias by generating
a value between 0 and 1, with 0 indicative of no space-use bias (all zones used equally) and
1 suggesting extreme bias (all observations in one zone). The SPI value for the chimpanzee
group data was 0.43, suggesting a moderate degree of space-use bias, and so space-use was
interrogated further (see Data analysis).

2.2.3. Subgroup Spacing Patterns

Very few, and inconsistent, data exist regarding subgroup spacing patterns for chim-
panzees in nature [52,53] and the subgroup spacing of the chimpanzees in this study was
therefore compared to the dimensions of their previous housing. At the simplest level,
subgroups could be expected to use either a similar amount of space or more space than
their previous housing. On this basis, the subgroup formations were classified according to
whether they were within or exceeded the original dimensions of their former enclosure (a
10 m × 10 m square; refer to Figure 1) with a 1 m edge effect, resulting in an 11 m × 11 m
square, against which subgroups were compared. All classifications were based on the two-
dimensional space occupied by the subgroups, such that individuals in elevated positions,
such as trees, were still considered part of subgroups on the ground below them, provided
they were in visual contact. If the subgroup fell within the 11 m × 11 m square it was
labeled as a ‘small subgroup’, otherwise if a subgroup extended beyond the 11 m × 11 m
square, it was labeled as a ‘large subgroup’.

For all subgroups, we recorded the sum of the inter-individual distances of chim-
panzees on the periphery of the group, with an additional 1 m edge effect (referred to
as the ‘subgroup polygon’). Other factors, such as proximity to the visiting public [54]
may influence subgroup spacing patterns. Many animals also appear to have a ‘personal
space’ which determines aspects of group spacing patterns [40,55,56] and chimpanzees
may use inter-individual distances to determine group spacing. Thus, for all subgroups,
the minimum distance to the public, the minimum inter-individual distance and maximum
inter-individual distance were recorded. In addition, we recorded in which of the sections
of the enclosure the subgroup occurred and the relative proportion of available space of
that enclosure section (with a 1 m edge effect) the subgroup occupied.

Shade availability had a significant effect on the behaviour of this chimpanzee group [57]
and thus may influence subgroup spacing. Thus, the weather conditions (sunny: <50% cloud
cover; cloudy: 50–90% cloud cover; overcast: 90–100% cloud cover), the time of day when
behaviours were sampled (in the morning, midday or afternoon sampling) and the maxi-
mum temperature for that day wasrecorded. The degree of available shade in the enclosure
was recorded at the start of the observation session by visually estimating the percentage
of the enclosure that was shaded at the start of the session and classifying the degree of
shade according to a 5-point scale (1: 0–25% shade; 2: 25–50% shade; 3: 50–75% shade;
4: 75–99% shade; 5: overcast). Furthermore, to estimate the potential thermal experience of
each subgroup, a value was assigned according to the following index:

Is =
S

D + S

where S is the number of individuals in the shade and D is the number of individuals in
sunlight. Individuals were considered to be in shade if any part of their trunk was shaded.
These measures of shade and sun utilization were then compared to the subgroup size
categories for each time slot. Overcast days were excluded from this analysis so as to
minimize bias toward shade utilization, resulting in the omission of four days from the
final analyses.
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2.2.4. Social Influences on Subgroup Spacing

In order to determine whether social factors might be governing subgroup spacing,
the individual composition of subgroups was assessed and recorded using photographs to
identify individuals wherever possible to generate a record of subgroup composition. We
also recorded which individuals were not part of the respective subgroups. All possible
pair associations and non-associations were scored per subgroup, such that each subgroup
composition was summarised as a number of pair-wise inter-individual associations. Thus,
for every observation session a matrix was generated with the number of times that every
possible pair combination of individuals occurred or did not occur within a subgroup.

2.3. Data Analysis

All analyses were conducted using Statistica 7 [58] unless otherwise stated. All tests
were two-tailed and test significance was set at 0.05. We used generalized linear model
(GLZ) analyses in which the response variable states were mutually exclusive (e.g., a
subgroup either fits within a 11 m × 11 m space or did not; therefore, it was either a large
subgroup, or a small one, but cannot be both simultaneously), and as such were coded
as counts of the two states (e.g., small or large subgroups) of the variable in question.
This resulted in a binomial presence/absence count for each variable. This binomial
presence/absence structure was then used as the response variable in the GLZ analyses.

2.3.1. Enclosure Space Use

Following calculation of the spread of participation index (SPI), space-use patterns
were examined by comparing the observed and expected frequencies of zone use for the
three time periods (morning, midday, afternoon). Because the perceived relative value of
specific environmental features for the chimpanzees is unknown, expected frequencies
were calculated based on the area of each zone, assuming homogenous space use. Zone
size was calculated using the scale map and SimplePCI software [59]. For both observed
and expected frequencies, the number of hits (number of times an individual was present
in the zone) and misses (number of times an individual was not present in the zone) were
calculated. In addition to the statistical analysis described below, zone bias was calculated,
for all the data pooled and for individual time periods, by subtracting the expected hits
from the observed hits and was plotted graphically.

Space-use records were analysed using a GLZ with a binomial error structure and logit
link function. The time of day (morning, midday, afternoon), zone (A–H; Figure 1) and
frequency type (observed, expected) were used as categorical predictors, while the binomial
counts of hits and misses per zone wereused as the response variable. In order to directly
address the aims of the study, only the appropriate second-order and third-order interaction
effects were examined in detail. Significant differences within the second-order and third-
order effects were identified through β-estimate coefficients and confidence intervals.

2.3.2. Subgroup Spacing Null Model

To determine whether the number of small subgroups was random, a randomized
null model using Monte Carlo sequences was compared to the number of observed small
subgroups through a 1000 iteration randomization test. The outcome of the randomization
test suggested that the observed subgroups formation was not random. In addition, a
χ2 test was run to analyse whether the occurrence of small and large subgroups differed
from chance.

2.3.3. Behavioural Effects on Subgroup Spacing

The behaviour of individuals may influence the formation of subgroups of a particular
size. For example, behaviours such as allo-grooming necessitate direct physical contact
and close spacing and thus a small subgroup formation is more likely to occur when
subgroup members engage in such activities. Alternatively, behaviours such as travelling
are not likely to encourage tight spacing as this might hinder movement. Thus, in order
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to establish whether particular behaviours were driving the formation of small and large
subgroups, we used a GLZ with a logit link function and binomial error structure. The
behaviour (Table 1) was used as the categorical predictor and the counts of occurrences
of that behaviour in small and large subgroups was coded as the binomial dependent
(absent/present) response variable. β-estimate coefficients and confidence limits were used
to assess specific differences between first order (behaviour) effects.

2.3.4. Environmental Effects on Subgroup Spacing

The effects of environmental and spatial factors on subgroup spacing patterns were
examined using a backward-stepwise GLZ with a logit link function and binomial error
structure. The variables examined were assigned according to Table 2. β-estimate coeffi-
cients and confidence limits were used to assess specific differences between first-order
(time of day, section of enclosure, subgroup type) and second-order (time of day × section
of enclosure, section of enclosure × subgroup type, time of day × subgroup type) effects.
Significant continuous predictors were correlated to subgroup size using a Spearman’s
Rank Order Correlation.

Table 2. The output of a generalised linear model analysis (Wald χ2), showing the effects of predictors
listed for the assessment of subgroup size for chimpanzees at the Johannesburg Zoo. Variables and
test statistics in bold indicate significant predictors of subgroup type. For significant continuous
predictors, the Spearman’s rank order correlation (ρ) is shown.

Parameters Wald χ2 Statistics Spearman’s rho (ρ)

Time of day χ2
2 = 0.128; p = 0.938

Section of enclosure χ2
1 = 0.01; p = 0.997

Time of day × Section of enclosure χ2
2 = 0.931; p = 0.628

Weather conditions at start of session χ2
1 = 3.240; p = 0.072

Maximum daily temperature χ2
1 = 0.993; p = 0.319

Percentage available shade in enclosure
at start of session χ2

1 = 0.604; p = 0.437

Shade index χ2
1 = 0.541; p = 0.462

Subgroup polygon (with 1 m edge effect) χ2
1 = 3.963; p = 0.047 R = 0.218; p < 0.05

Minimum distance to the public χ2
1 = 5.114; p = 0.024 R = −0.114; p < 0.05

Maximum inter-individual distance χ2
1 = 1.137; p = 0.286

Minimum inter-individual distance χ2
1 = 0.040; p = 0.841

Proportion of enclosure section area used χ2
1 = 1.232; p = 0.267

2.3.5. Social Effects on Subgroup Spacing

To assess social pair associations and non-associations which might influence sub-
group spacing, a cellwise comparison using adjusted residuals was run to identify social
associations in MatManTM [60]. Following this, five significant social pair associations
(i.e., individuals that participated in subgroups more frequently than expected by chance
alone; Daisy and Joyce; Daisy and Zoe; Daisy and Lilly; Zoe and Charles; Zoe and Joyce;
hereafter referred to as ‘key associations’) and 14 social pair non-associations (i.e., individu-
als that participated together in subgroups less frequently than expected by chance alone;
Thabuand Daisy; Thabuand Joyce; Thabuand Charles; Daisy and Yoda; Yoda and Joyce;
Yoda and Charles; Yoda and Lilly; Yoda and Amber; Yoda and Zoe; Zoe and Lilly; Zoe and
Amber; Lilly and Amber; Amber and Joyce; Amber and Charles) were identified. Based
on the identified key associations, we investigated whether key associations predicted
the formation of subgroups, regardless of size. This was done by performing a series of
two-tailed χ2 tests to assess the number of times a pair was part of any-sized subgroup
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compared to; (i) the number of times they could have been part of a subgroup (it is possible
for more than one subgroup to form simultaneously), and (ii) the times subgroups formed.

In order to determine whether key associations might predict the formation of small
subgroups specifically, we then ran a series of two-tailed χ2 tests to examine the follow-
ing relationship:

Key Association (Small Subgroups:LargeSubgroups)
All subgroup formations (Small Subgroups:LargeSubgroups)

For example, if a total of 14 small subgroups and 3 large subgroups are recorded, while
6 of the small subgroups and 2 of the large subgroup formations involve key associations,
a comparison of the 6:2 key association subgroups and the 14:3 total subgroups was then
analysed using a χ2 test. This would suggest whether the proportion of small: large
subgroups involving key associations differed to the overall proportion of small: large
subgroups, regardless of which individuals participated.

3. Results
3.1. Space Use

Time of day (Wald χ2
2 = 15.13; p < 0.001), enclosure zone (Wald χ2

7 = 230.05; p < 0.001)
and frequency type (i.e., observed VS expected: Wald χ2

1 = 38.97; p < 0.001) were all
significant predictors of zone-use counts. In addition, the time of day × enclosure zone
(Wald χ2

14 = 112.88; p < 0.001), time of day × frequency type (Wald χ2
2 = 15.11; p < 0.001)

and enclosure zone × frequency type (Wald χ2
7 = 221.23; p < 0.001; Figure 2) interaction

effects were significant predictors of the zone-use patterns. Zones A and B were significantly
overutilised while zones D–H were significantly underutilised in relation to the expected
patterns of zone use based on the area of each zone (Figure 2). The time of day × enclosure
zone × frequency type (Wald χ2

14 = 111.6; p < 0.001; Figure 3) was also a significant
predictor of the model outcomes with zones E, G and H significantly underutilised in the
morning, zones E and H significantly underutilised around midday and zones C, D, F,
G and H significantly underutilised in the afternoon. Zones A and B were significantly
overutilised both at midday and in the afternoon (Figure 3).
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Figure 2. Observed and expected frequencies of zone use for eight zones in the chimpanzee enclosure
at the Johannesburg Zoo Ape House. Bars denote predicted means proportions while whiskers
denote confidence limits. Stars and brackets above bars denote significant (p < 0.05) differences
between observed and expected zone use.
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Figure 3. Zone-use patterns for the chimpanzees at the Johannesburg Zoo Ape House. Patterns
of space use are represented for three time periods. Bars denote predicted means proportions for
hits and misses in each zone while whiskers denote confidence intervals. Stars and brackets denote
significant differences (p < 0.05) between observed and expected counts.

3.2. Subgroup Formation

A total of 1285 subgroups were recorded with an average of 21.4 ± 4.6 subgroups
recorded per observation session (60 min, 12 time slots) and 1.8 ± 0.7 subgroups recorded
per time slot.The average number of individuals per subgroup was 3.2 ± 1.4 individuals.
The results of the Monte Carlo sequence null model randomization test showed that the
observed patterns of subgroup formation were not random (p < 0.0001). The resulting
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p-value is considered significant because it is not greater than the level of significance
(α = 0.050) of the model [61], and thus the null hypothesis of no difference between the
treatments (small, <11 m × 11 m, and large, >11 m × 11 m, subgroups) is rejected. In
addition, significantly more small subgroups (1254 small subgroups) formed than large
subgroups (31 large subgroups; χ2

1 = 752.26; p < 0.0001).

3.2.1. Behaviour

Behaviour was not a significant predictor of subgroup type (Wald χ2
7 = 0.059; p = 1.000),

indicating that behaviours that encouraged or required smaller inter-individual distances,
such as allogrooming, were not likely to influence subgroup spacing.

3.2.2. Environmental and Space Factors

Time of day, section of enclosure and the time of day × section of enclosure interaction
were not good predictors of subgroup size (Table 2). None of the continuous predictor
variables were significant predictors of subgroup size with the exception of subgroup poly-
gon, which was weakly positively associated with increasing subgroup size (Table 2) and
minimum distance to the public, which was weakly negatively associated with increasing
subgroup size (Table 2).

3.2.3. Social Influences on Subgroup Formation and Spacing

Five significant pair associations and 14 significant pair non-associations were identi-
fied (χ2

41 = 1437.33; Table 3). For the five key associations, the proportion of total subgroups
that formed was significantly different to the proportion of subgroups in which the pair
participated (Daisy and Joyce χ2

1 = 44.54, p < 0.001; Daisy and Zoe χ2
1 = 39.54, p < 0.001;

Daisy and Lilly χ2
1 = 29.16, p < 0.001; Zoe and Charles χ2

1 = 34.97, p < 0.001; Zoe and Joyce
χ2

1 = 31.84, p < 0.001). Thus, the frequency of participation in small subgroups by key
associations did not match the frequency of small subgroup formations generally, indicating
that key association pair participation was not a good predictor of subgroup formation.

Table 3. Z-statistics for a χ2 using adjusted residuals used to examine associations between specific
pairs of chimpanzees at the Johannesburg Zoo. Bold Z values within grey cells denote significant
interactions and superscripts denote level of significance (1 p < 0.05; 2 p < 0.01; 3 p < 0.001).

Non-Associations (Pairs That Formed Less Frequently than Expected by Chance)

Daisy Thabu Joyce Charles Yoda Amber Lilly Zoe
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) Daisy - 14.41 3 −1.29 0.10 2.94 2 −0.48 −3.51 −8.61

Thabu −9.85 - 11.07 3 9.42 3 −0.76 −2.54 −2.60 −3.49

Joyce 4.15 3 −9.46 - 1.98 4.90 3 2.55 1 −0.90 −3.76

Charles 1.55 −8.57 −1.10 - 6.43 3 3.34 2 1.35 −4.24

Yoda −4.63 0.47 −6.83 −8.28 - 7.86 3 3.15 2 5.11 3

Amber −1.33 1.69 −5.08 −5.61 −8.47 - 7.79 3 8.55 3

Lilly 2.15 2 0.18 −1.24 −3.90 −2.79 −6.02 - 10.70 3

Zoe 10.75 3 1.51 3.24 2 4.63 3 −5.23 −6.77 −4.86

With the exception of one pair (Zoe and Charles; χ2
1 = 3.61, p = 0.057), the proportion

of small to large subgroups involving key associations was significantly different from the
overall small to large subgroup formations (Daisy and Joyce χ2

1 = 5.53, p = 0.019; Daisy and
Zoe χ2

1 = 8.53, p = 0.004; Daisy and Lilly χ2
1 = 25.7, p < 0.001; Zoe and Joyce χ2

1 = 10.96,
p < 0.001). This suggests that the proportion of small to large subgroups that involved Zoe:
Charles was similar to the overall proportion of small to large subgroup formations.
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4. Discussion

Our study sought to quantify the space use of a group of captive chimpanzees 5 years
following the reconstruction of their outdoor enclosure, from a small (100 m2), barren
enclosure to a large (2500 m2), naturalistic enclosure, at the Johannesburg Zoo. Firstly, the
study described the space use of the chimpanzees in eight unequally-sized zones of the
enclosure and compared the observations to expected frequencies of zone use based on
zone size. Previous studies of chimpanzee space use have suggested that chimpanzees
will not underuse enclosures [25] but, in agreement with other findings [39], we found
that space use was not homogenous, with zones A and B being used more frequently than
expected based on zone size. A pattern of temporal bias in space use emerged with all
zones, apart from A and B, being underused during the midday and afternoon periods
while morning space use was most evenly distributed.

An obvious explanation for the observed temporal patterns of space is the feeding
regime of the chimpanzees. The scattering of food randomly throughout the enclosure
appears to have successfully encouraged the chimpanzees to move throughout the available
space. Scatter feeding is a relatively common, easy and effective environmental enrichment
strategy employed for captive primates [62–64]. However, satiety and fooddepletion are
pitfalls of feeding-based enrichment [65] and it appears that the effect of scatter feeding
on the space use of the chimpanzees in our study lasts only as long as the food does, as
evidenced by the more even space use in the morning when food is available and the more
biased space use throughout the rest of the day. Thus the scatter feeding does appear to
influence the space use of the chimpanzees but for a limited duration only.Nonetheless,
the chimpanzees may have benefited from further scatter feeding throughout the day or
through the baiting of the artificial termite mounds.

The occupancy of most zones was variable with zones being used at expected levels
(morning: C, D, F; midday: C, D, F, G; afternoon: E) or levels lower than expected based
on zone size (morning: E, G, H; midday: E, H; afternoon: C, D, F, G, H). Aside from the
apparent preference for zones A and B (see below), there was no clear pattern in the use of
these zones apart from the consistent avoidance of zone H. Zone H offered no vegetative
cover, constant visual access to zoo visitors and only the un-baited artificial termite mound
for climbing, suggesting little to attract the chimpanzees to this zone. Cover [44] and
shade [57] are known to be important for captive chimpanzees and the presence of zoo
visitors may have variable effects (see below). Zones C and D offered vegetative cover
and climbing opportunities and, while our study did not consider three dimensional
space use due to a relative lack of climbing opportunities, the presence of trees may offer
apossible explanation for the patterns of use of these zones. These patterns support the
idea that vegetative and visual cover are important for captive chimpanzees and should
be considered in the captive management of primates [66]. The relative importance of
climbing structures and vegetation, as well as the three dimensional space they provide,
should be considered in future studies of space use. Furthermore, zoo managers should
consider the use of enrichment to increase and homogenize space use in captive animals.

Further to the above, zones F, G and H also provided visual access to the adjacent
orangutan enclosure. Previous studies have indicated that noise from neighbouring con-
specifics influences chimpanzee behaviour [67,68] and auditory and olfactory contact with
potential predators can influence behaviour and urinary corticosteroid levels in felids [69].
However, the orangutans never vocalized during our study and the chimpanzees appeared
to ignore them. Moreover, habituation is also possible in such scenarios [70] and the
two species had been neighbours for more than five years following the construction of
the new enclosures, suggesting habituation to each other’s presence is likely. While visual
contact with the orangutans may have influenced the chimpanzees’ use of these zones, the
apparent lack of interest by the chimpanzees in the orangutans suggests that the neighbour-
ing primates had little effect on the space use of the chimpanzees.Even so, it is still possible
that the chimpanzees exhibit a learned avoidance of the orangutans.
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The apparent preference of the chimpanzees for zones A and B is less straight forward.
By contrast, zones A and B were used at expected levels in the morning or at levels higher
than expected based on zone size in the midday and afternoon periods. Previous studies
have reported that chimpanzees exhibit a preference for areas with doorways and cor-
ners [37,38], and zone B had two doorways: a night room entrance and the interconnecting
doorway between the two enclosure sections. Zone E had a similar structure to zones A and
B but had three doorways (two night room and one interconnecting), but was consistently
underused, suggesting that perhaps the attraction to doorways and corners did not fully
explain the relatively higher frequency of use of zones A and B in our study.

It is also possible that anticipation of their evening feed may have caused the chim-
panzees to congregate in zones A and B, given that anticipatory behaviour prior to op-
portunities to feed and play occurs in other species [71–73]. We did not explicitly test for
zone-specific behaviour patterns and thus we cannot say with certainty that anticipatory
behaviour was evident. Anticipatory behaviour typically involves relatively brief periods
of increased activity and locomotion [71–74], a behavioural pattern which might increase
variation in zone use rather than limit the chimpanzees to a relatively small area of their
enclosure. Further study would be required to investigate the role of anticipatory behaviour
in space use patterns.

Captive apes may prefer areas with opportunities for human interaction [37], which
they may experience as enriching [75], a view which is not universally held [76,77]. If
visitor presence was enriching (as suggested by previous findings with this chimpanzee
group [78]), the chimpanzees may have been attracted to zone A due to the large windows
in the wall at that location which provided opportunity for close visual interactions with
both zoo visitors and workers. However, were this the case, one would predict that zones
D, F, G and H, zones with more extensive interactive and visual access to humans across the
moats, would have been used more often than was observed. Furthermore, this does not
explain the relative overuse of zone B. Alternatively, if visitor interactions were perceived as
stressful, one would expect that neither A nor B would be overused as both zones provided
open, constant visual access to zoo visitors at relatively close quarters and chimpanzees
are known to avoid open areas [38]. Similarly, one might expect that the chimpanzees
may have been attracted to zone B by keeper activity in the night rooms during cleaning.
However, cleaning was typically brief and limited to the morning period and zone E would
have offered equal if not more auditory cues of keeper activity, suggesting that it does not
offer a good explanation for the preference for zones A and B throughout the day.

Together, the arguments above suggest that some other factors contributed to the
observed pattern of space-use bias. While novelty may influence behaviour and space use
in captive primates [11,46], it seems highly unlikely that neophobia is limited the space
use of the chimpanzees several years after the enclosure change and they readily moved
throughout the enclosure, suggesting that the space was not perceived as aversive. It is
curious that the zones used most frequently coincided with the location of the original
10 m × 10 m enclosures (Figure 1). Following their initial release into the new enclosures,
the current chimpanzee group was housed on the side of the enclosure abutting zones A-D
and this may explain why the chimpanzees preferentially used A and B over E. Familiarity
with the structural elements of the old housing incorporated into the new enclosures may
have attracted the chimpanzees to this location. Common marmosets Callithrix jucchus and
cotton-top tamarins Saguinusoedipus moved to open outdoor environments limited their
space use to those areas around the entrances to their previous, indoor cage housing and
the latter typically ventured no more than 3 m from the indoor cage entrance, an effect
which apparently was due to a lack of cover in the environment [16]. The response of the
chimpanzees appeared to be similar to these other primates but cannot be explained by
lack of cover given that zones C–H provided far more cover than zones A and B.

It is also important to recognize that our study covered a short period over the austral
autumn-winter seasons. Previous studies have reported seasonal effects on chimpanzee
behaviour [11] and the chimpanzees in this study are known to use space according to their
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thermal needs [57]. Thus, while this study took place over a period of relative seasonal
stability, there is the possibility that season may influence space use patterns and warrants
further examination in future studies.

The second aspect of the space use of the chimpanzees which we investigated was
the subgroup spacing of the chimpanzees. The chimpanzees appeared to consistently
form tightly spaced, small subgroups (<11 m × 11 m) rather than large (>11 m × 11 m)
subgroups in the outdoor enclosure. The formation of small subgroups was non-random,
with significantly more small (97.5%) than large (2.5%) subgroups, which was not predicted
by observed behaviour, time of day, enclosure section, maximum daily temperature, shade
availability, the proportion of the total available space being used or the maximum and
minimum inter-individual distances. However, two significant predictors of small subgroup
formation were identified: subgroup polygon and minimum distance to the public.

While subgroup polygon and minimum distance to the public emerged as significant
predictors of subgroup spacing patterns, neither appeared to explain the observed patterns
of subgroup spacing. The relationship between subgroup polygon with subgroup size was
weakly positive. However, logically, as subgroups form over a small area, they are more
inclined to have a smaller polygon. Thus, the relationship between these factors does little
to clarify the causality of small subgroup formation.

A weakly negative association emerged between subgroup size and minimum distance
to the public, such that subgroups formed over a larger area in relatively closer proximity
to the public. Interactions with zoo visitors are vital to further interests of zoos [79] but
evidence from a variety of studies suggests that public interactions may be stressful for
non-human primates [80]. Yet, chimpanzees will voluntarily interact with the public for
extended periods [81] and readily exchange objects with humans [82], suggesting that these
interactions are not necessarily as stressful for chimpanzees as for other captive primates.
However, direct public interactions by the chimpanzees were limited to zones D, G and H
and usually through begging behaviour, which was occasionally successful, and it appears
that the formation of larger subgroups during such interactions could function to reduce
inter-individual competition for food.Widely distributed resources are associated with less
aggression [83] whereas restricted access to food can cause increased aggression [84].Thus
the chimpanzees may increase their inter-individual spacing as a means of minimizing
potential conflict. Spacing and territoriality in free-living chimpanzees appear to be driven
by food dispersal and resource competition [85] with subgroups forming in response to
dispersed [86] but not abundant [87] resources. Regardless, public interactions occurred
infrequently (2.5% of all observed behaviour), suggesting that this behaviour is not a likely
driver of subgroup spacing.

Local enhancement constitutes the most basic form of social behaviour by causing
aggregations of individuals at a location [88], and it is possible that one or more individuals
might have attracted other group members to form small subgroups through this social
process.When social factors were examined, none of the social pair associations of chim-
panzees were good predictors of subgroup formations and only one pair of individuals
(Zoe and Charles) participated in small:large subgroup formations at a similar proportion
as overall small:large subgroup formations. While at first this suggests that the presence
of this pair might drive small subgroup spacing, the fact that no pairs were associated at
levels above chance with overall patterns of subgroup formation precludes this possibility.
In addition, the Zoe and Charles subgroups (small = 228: large = 11) occurred at similar
proportions to overall small:large subgroup formations (small = 1 254: large = 31), but more
small subgroups formed in the absence of this pair than when they were present. Primate
biology predicts that sociality might determine spacing patterns since primate societies are
maintained through complex dominance hierarchies [89] and primates generally ascribe
great value to their social relationships [42]. In addition, animal spacing patterns tend
to be governed by individual-specific rules regarding personal space [40] and a study of
macaques Macaca mulatta found that social factors accounted for the spacing patterns of
first- to second-nearest neighbours [24]. The chimpanzees in this study were all closely



Animals 2022, 12, 2207 16 of 22

related and it is possible that kin relationships may have influenced the spacing patterns of
the group. However, kin effects were not evident from our analyses.Thus it is curious that
social factors did not explain the subgroup spacing of the chimpanzees.

Data on the spacing patterns of free-ranging chimpanzees are sparse but free-ranging
chimpanzees typically have large inter-individual distances (Jane Goodall, Pers. Comm.).
Studies of free-ranging chimpanzees have considered individuals to be in the same sub-
group with inter-individual distances of between 35 m [52] and 100 m [53], considerably
larger than the observed patterns in our captive study. When comparing the space use
of individuals, Hedeen [90] reported limited space use in a captive-born gorilla when
compared with the space use of group-mates captured from nature and captive chim-
panzees travel shorter daily distances than their free-ranging conspecifics [91]. These data
suggest that captivity alters space use in apes and that the pattern observed was likely a
consequence of some aspect of captivity. Unfortunately, while many studies of the space
use of chimpanzeesand other apes describe patterns of zone occupancy or preferences
for specific features of their enclosures [11,37–39,45,90], no studies have quantified the
inter-individual spacing patterns of captive chimpanzees. Thus it is difficult to ascertain
whether the observed pattern is common to all chimpanzees or an outcome of the past
experience of our study population specifically.

It seems unlikely to be coincidental that the chimpanzees showed a preference for the
areas of the previous housing and formed subgroups which almost always conformed to
the dimensions of the previous housing. One potential explanation is that the observed
patterns of space use resemble a form of spatial learned helplessness. Learned helplessness
is the inability of a subject to overcome a deferred controllable stressor following exposure
to an uncontrollable stressor [92]. The learned helplessness hypothesis suggests that when
the reaction of an individual to a stimulus fails to generate an effect, it learns that the
resulting outcomes are independent of its actions [93,94] which then impedes learning
that the response and outcomes are linked [95] when an influence over the outcomes is
possible [96]. The emergence of learned helplessness appears to be contingent upon the
initial stimulus being uncontrollable [94], regardless of whether the initial stimulus is
benign, neutral or noxious [95–98].

Three criteria characterise learned helplessness: (1) a failure to react appropriately
to a stimulus, (2) difficulty learning that the individual’s responses to future stimuli may
influence the events, and (3) that these two effects arise only under conditions where the
initial stimulus is uncontrollable and not when the stimulus is controllable [97,99]. With
regard to the first criterion, the chimpanzees in our study displayed consistently tight
subgroup spacing as well as a tendency to use the zones in the vicinity of the original
enclosure, despite the availability of a large space, similar to the escape failures described
for dogs [100] and rats [101]. This type of reaction suggests an inability to learn that the
previous experience, limited available space and associated restrictions on space use and
subgroup spacing in this case, no longer applied in the larger enclosure, fulfilling the
second criterion. Controllability of the initial stimulus is crucial to the onset of learned
helplessness [93,94,96,97,100,102,103] but it was not possible to generate a ‘controllable’
spatial change of this type for the chimpanzee group, and thus, the third criterion for
learned helplessness cannot be explicitly confirmed for the chimpanzee group. However,
the enclosure change was uncontrollable for the chimpanzees and thus, based on the
existing evidence, the behaviour of the chimpanzees appeared to meet the criteria for
learned helplessness (Martin Seligman, Pers. Comm.). Moreover, the spacing patterns
described here in the chimpanzees mirror anecdotal descriptions of learned helplessness
in pike (pike placed into a tank with guppies, but separated from the guppies by a glass
barrier, failed to move through the full tank when the barrier was removed [104]) and fleas
(fleas placed into a closed jar initially jump but soon stop, even once the lid is removed,
having learned the physical limits on their locomotion due to the jar lid [105]). Similarly,
such an effect can also be experimentally induced in common woodlice Porcellio scaber and
African striped mice Rhabdomys dilectus dilectus [106] and experimental work on jumping
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spiders Phidippus audax demonstrated similar effects of rearing enclosure size on various
aspects of spider spatial behaviour [107].

Curiously, the space-use bias and tight spacing patterns of the chimpanzees occurred
despite the fact that the larger enclosure was not necessarily a deferred noxious stimulus.
It is possible that the large space of the new enclosure is perceived as stressful, but the
chimpanzees readily travelled independently of one another throughout the enclosure and
the new enclosure had persistent ameliorating effects on various stress-related behaviours
immediately after, and 10 weeks following, the release into the new enclosures [41], suggest-
ing that this is not the case. Instead, we would argue that the experience of the chimpanzees
in the previous restricted housing influenced their perception of the space available to
them, resulting in a spatio-perceptual deficit, manifesting as a self-imposed ‘invisible cage’
which limited their space use.

The idea that past experience and learning may have lasting effects on future behaviour,
a long-term effect which has been demonstrated in chimpanzees [108], is not novel, and is
a mechanism for the manifestation of many stereotypic behaviours in captive animals [109].
We are not suggesting that learned helplessness is present in all captive populations or that
it definitively explains the patterns we report in our study; rather we are suggesting that,
given that alternative explanations appear not to explain the observed patternsadequately,
learned helplessness provides a potential explanation for these patterns of space use and
subgroup spacing which warrants further study. To the best of our knowledge, ours would
constitute the first formal quantification of this effect in a spatial context. The role of past
experience on later space use requires further investigation under controlled experimental
conditions but, if our proposed learned helplessness interpretation has merit, this raises
several important questions. In the context of our study specifically, how persistent is
the “invisible cage effect” likely to be? Might cultural transmission effects perpetuate the
observed pattern of self-imposed spatial restriction? Our study suggests that the effect
persists in the long-term but further work is needed to determine the extent and mechanism
of this. It also raises important questions around animal husbandry practice and enclosure
design. Do animals housed in small enclosures necessarily gain welfare benefits from
large enclosures per se, or is simply enriching a small enclosure sufficient? Visitor and
animal caregiver perceptions aside, is it necessary for institutions to invest resources into
the design and construction of large naturalistic enclosures if animals are unlikely to use the
entire space? Controllability and choice is paramount to good animal welfare and one of
the primary aims of enrichment of captive environments is to provide this [110]. We argue
that even if animals do not use the entire available space or all available enrichment, the
choice for a captive animal to use the space/enrichment or not affords the animal valuable
control in an environment which is otherwise largely uncontrollable [111].

Chimpanzees are endangered [112] and, given the threats facing free-living popu-
lations of the species [113,114], their conservation through the maintenance of captive
populations is paramount. While a learned helplessness effect may only occur in indi-
viduals which experience restrictive environments, what might the impact of learned
helplessness be when captive individuals are reintroduced into nature?It is not difficult to
imagine scenarios where natural behaviour might be compromised by learned helplessness
effects. For example, long-term spatial memory is important for free-living chimpanzees
to locate fruiting trees [115] and chimpanzees actively patrol and defend large home
ranges in nature [116] but if the movements and spacing of individuals are limited by past
spatial conditions, how might this impact on processes such as foraging or home range
defence? Evidence already exists for these effects on free-ranging animals; African ele-
phants Loxodonta africana exhibited a similar self-restricted space use following the removal
of boundary fences in Phinda Private Game Reserve, South Africa, which persisted for at
least a year [117]. This report, coupled with the findings of D’Egidio [106] and Carducci
and Jakob [107] and the anecdotal reports of Beasor [104] and Ziglar [105], suggests that
the effects of previous spatial restriction on space use are also not limited to chimpanzees
and may have important implications for species ecology and conservation more broadly.
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5. Conclusions

In conclusion, the chimpanzees at the Johannesburg Zoo limited their space use in their
large, naturalistic, outdoor enclosure to those areas making up their former housing and
chimpanzee subgroups conformed to the dimensions of the previous housing condition.
This pattern of space use was not explained by several candidate predictors and appears to
resemble a form of spatial learned helplessness. Our study is the first to describe such a
pattern of space use and, because no studies have quantified the inter-individual spacing
patterns of other captive chimpanzees, it is difficult to know whether the observed pattern
is common to other captive populations or is an outcome of the past experience of our
study group specifically; hence further research is warranted. Our study has identified
many avenues for future research into the effects of spatial restriction on animals which
may have important implications for captive animal welfare and conservation, particularly
when animals are transferred to larger cages for enrichment or relocated into nature, as
occurs in many rehabilitation and re-release programmes. Future studies should also focus
on expanding the existing understanding of space use in captivity, those factors which
influence it and how it can be manipulated to enhance the welfare of captive animals.
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