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Ethylenation of aldehydes 
to 3-propanal, propanol and 
propanoic acid derivatives
Daniel T. Payne  , Yiming Zhao   & John S. Fossey  

Methodology has been developed for the synthesis of 3-propanaldehydes through a five-step process 
in 11–67% yield from aldehydes. Aldehydes were reacted with Meldrum’s acid through a Knoevenagel 
condensation to give materials that upon reduction with sodium borohydride and subsequent 
hydrolysis decarboxylation generated the corresponding 3-propanoic acid derivatives. The -propanoic 
acid derivatives were reduced to give 3-propanol derivatives, which were readily oxidised to target 
3-propanal derivatives.

Aryl-3-propanaldehydes have demonstrated themselves as synthetically useful in the synthesis of natural prod-
ucts1, chiral tetrahydroquinolines2, 3 chemosensors4, 5 and in the perfume industry6. As such, facile synthesis of a 
range of these derivatives would be advantageous.

The chemoselective reduction of cinnamaldehydes to hydrocinnamaldehydes has been reported by Hashizume 
et al. and List et al. via either a palladium catalysed reduction7 or the organocatalysed Hantzsch’s ester reduction8, 
respectively. The synthesis of cinnamaldehydes has been reported utilising a range of conditions including the 
Wittig reaction7 from aryl aldehydes and the Heck cross-coupling of aryl halides7, 9–13. Alternatively, the products 
from the Knoevenagel condensation of aldehydes with Meldrum’s acid can be converted to hydrocinnamalde-
hydes. Frost et al. reported the hydrosilylation of Meldrum’s acid derivatives (3) either through a one-step14 or 
two-step15 process, using palladium or molybdenum catalysts and reagents.

A study by Andrews et al. (Glaxo-Smith-Kline (GSK)) reported a four-step synthesis of 3-(anthracen-9-yl)
propan-1-ol (6d) on a 20-gram scale. Upon oxidation, this material would give the corresponding aldehyde (7d)16. 
However, this route was reported to have been carried out on a single substrate, starting with 9-anthraldehyde 
(1d) affording 3-(anthracen-9-yl)propan-1-ol (6d) in an overall yield of 84% over four steps.

Herein we provide alternative methodology to the established literature and build on previous studies16 for 
the synthesis of 3-propanal derivatives (Fig. 1) utilising a Knoevenagel condensation, olefin reduction, decarbox-
ylation, carboxylic acid reduction and an alcohol oxidation. Substrate scope is expanded and a range of versatile 
hydrocinnamaldehyde derivatives are synthesised.

Results and Discussion
The synthesis of condensation products para-nitro (3a), para-dimethylamino (3b) and para-methoxy (3c) could 
be achieved via the literature reported Knoevenagel condensation of aldehydes 1a–c with Meldrum’s acid (2) 
in 74–87% yields14. Whilst this method successfully delivered 3a–c in our hands, the use of an aqueous solvent 
system prevented us from successfully applying the same conditions to substrates with low water solubility such 
as 9-anthryl (3d, Fig. 2, entry 7). The issue was overcome utilising the method reported by Andrews et al. (GSK) 
for the synthesis of 3d, where pyridine is used as the reaction solvent16. Pleasingly, in contrast to the aqueous 
solvent system the reaction proceeded smoothly with the 9-anthryl derivative 3d in 93% yield. We expanded the 
substrate scope of these conditions to include electron rich (3b,c,h,I, Fig. 2, entry 4,6,12,13), electron poor (3a, 
Fig. 2, entry 2), heterocyclic (3e,l, Fig. 2, entry 9,16), alkyl (3g, Fig. 2, entry 11) and hindered (3f,j,k,m, Fig. 2, 
entry 10,14,15,17) groups yielding the desired products in good to moderate yields (34–93%). On the other hand, 
extremely electron-deficient substrates such as para-trifluoromethyl (3n, Fig. 2, entry 18) were amenable to this 
procedure, e.g., decomposition of the starting material was observed.

A literature reported method for the synthesis of 3n was used17, for which we carried out minor solvent 
modifications to avoid the use of benzene (Fig. 2, entry 19) giving the desired Knoevenagel condensation 
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Figure 1. General route for the synthesis of hydrocinnamaldehydes.

Figure 2. Substrate scope for the Knoevenangel condensation of aldehydes with Meldrum’s acid.
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products. The same procedure also yielded the novel pentafluorophenyl derivative (3o, Fig. 2, entry 20), Both the 
para-trifluoromethyl (3n) and pentafluoro (3o) derivatives were not purified at this stage due to instability of the 
substrates during attempted purification protocol, which included recrystallisation and flash column chromatog-
raphy. Instead, when full conversion was determined to have been reached by 1H NMR spectroscopic analysis of 
the crude reaction mixtures for these reactions, they were taken forward to the next step18.

With alkene containing compounds 3a–o in hand, the next step was reduction of the conjugated double 
bonds introduced through the Knoevenagel condensation. This was successfully carried out according to the 
method reported for the synthesis of 4d by Andrews et al.16 giving high yields (87–99%) for 4a,c–h,j–l,n–o. The 
4-dimethylamino derivative (4b) gave a lower than expected yield of 75%, minor decomposition was observed. In 
the case of compounds 4c (Fig. 3, entry 3) and 4h (Fig. 3, entry 8) methanol led to ring opening of the Meldrum’s 
moiety to the dimethyl malonate, whereas under otherwise identical conditions the use of ethanol furnished the 
desired compounds. Therefore, ethanol was selected as the preferable solvent for manipulation of 3 to 4 from this 
point.

The hydrolysis and decarboxylation of derivatives 4 was required in order to synthesise 5, this was achieved 
with the method reported for the synthesis of 5d by Andrews et al.16 in acceptable to good yields (48–98%, Fig. 4) 
for 5a–h,j–l,n–o.

For the synthesis of the para-methyl (5h) and para-methoxy (5c) derivatives from 4h and 4c, respectively, 
undesired side-products were detected. In order to minimise the formation of the side-products, the reaction was 
run initially at room temperature for one hour, followed by heating to reflux for a further 4 hours. The desired 
compounds were obtained after work-up without requiring further purification. Furthermore, under the standard 
reaction conditions the synthesis of 2-furyl derivative 5e from 4e led to the formation of the desired compound 
alongside a minor undesired side-product, the desired compound was poorly soluble in common laboratory 
solvents and therefore this impurity was taken through to the LiAlH4 reduction. The low yield for the synthesis 

Figure 3. Reduction of Knoevenangel products to afford saturated Meldrum’s derivatives.
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of 3-indole derivative 5l was most likely due to product loss during reaction work-up because of the probable 
zwitterionic nature of 5l having some water solubility.

In order to synthesis 7, isolated 5a–h,j–l,n–o should first be converted to the corresponding primary alcohols 
6a–h,j–l,n–o before oxidation to aldehydes 7a–h,j–l,n–o. The reduction of 5b–d, f–h,j–l to 6b–d, f–h,j–l was 
carried out with lithium aluminium hydride (LiAlH4) in THF to give the primary alcohols in 83% to 99% yields 
(Fig. 5). The reduction of 5e to 6e was attempted with lithium aluminium hydride (LiAlH4) in THF led to the 
formation of a number of unidentified decomposition products.

The reduction of 5n and 5o to 6n and 6o was attempted with lithium aluminium hydride (LiAlH4) however 
partial fluorine displacement was observed. Pentafluoro derivative 5o underwent a nucleophilic aromatic sub-
stitution (SNAr) displacing one of the fluorine substituents to give 8o in an approximate 4:1 ratio 6o:8o (Fig. 6), 
similar observations are reported in the literature with related substrates19. When para-trifluoromethyl derivative 
6n was exposed to LiAlH4 it underwent a hydride-fluorine exchange to give the para-difluoromethyl compound 
8n (Fig. 6) in an approximate 1:1 ratio 6n:8n by 1H NMR spectroscopic analysis. Fluorine substitution by hydride 
within trifluoromethyl groups has been previously reported with related substrates20.

Figure 4. Decarboxylation to synthesise hydrocinnamic acid derivatives.
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Reduction of 5a and 5k to 6a and 6k was carried out using borane to give the desired compounds in 86% and 
74%, respectively (Fig. 7). This procedure provides an alternative, milder, method to reduce carboxylic acids when 
incompatible with LiAlH4. Thus, this procedure should also be applicable to fluorinated derivatives 5n and 5o and 
has previously been demonstrated in the literature21, 22.

Hydrocinnamyl alcohol derivatives 6 a,c,d,f–h,j,k,o were converted to aldehydes 7a,c,d,f–h,j,k,o using a 
Swern oxidation in 29–89% yield (Fig. 8). The oxidation of 4-dimethylamino derivative 6b to 7b and 3-indole 
derivative 6l to 7l was unsuccessful, a complex mixture of unidentifiable by-products alongside the desired com-
pound precluded satisfactory synthesis and isolation. Oxidation of a mixture of 6o and 8o led to the formation of 
the desired aldehyde 7o in acceptable yield (29%) and the by-product from the oxidation of 8o could be separated 
with column chromatography.

Figure 5. Reduction of carboxylic acids to afford hydrocinnamyl alcohol.

Figure 6. By-products formed during the lithium aluminium hydride reduction of fluorinated hydrocinnamic 
acids.
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Figure 7. Borane reduction of 4-nitro 5b and 2-bromo 5k derivatives.

Figure 8. Swern oxidation of cinnamoyl alcohols to give corresponding hydrocinnamaldehyde derivatives.
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The outlined five-step synthesis of aldehydes 7 was successful in providing a range of derivatives in acceptable 
yields (11–67%, Fig. 9). Our studies found that a single set of conditions were not applicable to all substrates but 
tailoring of reaction conditions can give a diverse range of derivatives. By-products were observed in the LiAlH4 
reduction of 6n and 6o, the decarboxylation of 4d and 4h but modifications to the synthetic procedure can mini-
mise their formation23. Experimental procedures are detailed in the Supplementary Information.
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