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Introduction

Heart diseases are the first cause of  death worldwide.[1] According 
to the statistics of  the World Health Organization (WHO), 
17.9 million people die every year due to heart disease. Heart 
failure is the final stage of  many heart diseases and is associated 
with a high prevalence.[2‑4] Abnormal serum levels of  potassium 
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Abstract

Background: Hyperkalemia is a potentially life‑threatening electrolyte disturbance that if not diagnosed on time may lead to 
devastating conditions and sudden cardiac death. Blood sampling for potassium level checks is time‑consuming and can delay the 
treatment of severe hyperkalemia on time. So, we propose a non‑invasive method for correct and rapid hyperkalemia detection. 
Methods: The cardiac signal of patients referred to the Pediatrics Emergency room of Shahid Rejaee Hospital was measured by 
a 12‑lead Philips electrocardiogram (ECG) device. Immediately, the blood samples of the patients were sent to the laboratory for 
potassium serum level determination. We defined 16 features for each cardiac signal at lead 2 and extracted them automatically 
using the algorithm developed. With the help of the principal component analysis (PCA) algorithm, the dimension reduction operation 
was performed. The algorithms of decision tree (DT), random forest (RF), logistic regression, and support vector machine (SVM) 
were used to classify serum potassium levels. Finally, we used the receiver operation characteristic  (ROC) curve to display the 
results. Results: In the period of 5 months, 126 patients with a serum level above 4.5 (hyperkalemia) and 152 patients with a serum 
potassium level below 4.5 (normal potassium) were included in the study. Classification with the help of a RF algorithm has the 
best result. Accuracy, Precision, Recall, F1, and area under the curve (AUC) of this algorithm are 0.71, 0.87, 0.53, 0.66, and 0.69, 
respectively. Conclusions: A lead2‑based RF classification model may help clinicians to rapidly detect severe dyskalemias as a 
non‑invasive method and prevent life‑threatening cardiac conditions due to hyperkalemia.
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lead to changes in myocardial cell action potentials which are 
associated with an increased risk of  ventricular arrhythmias.[5‑8] 
However, it also increases mortality in patients with myocardial 
infarction and plays an important role in the outcome of  
cardiovascular patients. Potassium disorder causes cardiovascular, 
neuromuscular, renal, and metabolic diseases.[9]

In the pediatric group, hyperkalemia is more common in 
children with cardiac and kidney disease, especially in patients 
who need intensive care unit. As a potassium disorder, 
hyperkalemia is a common electrolyte abnormality associated 
with cardiovascular complications and increased mortality. About 
2–5% of  hospitalized patients have hyperkalemia. Traditionally, 
hyperkalemia is diagnosed with a blood sampling test. 
Electrocardiogram (ECG) as a fast, non‑invasive, and accessible 
method may show changes in serum potassium indicating 
electrical changes associated with ECG.[9,10] Hyperkalemia causes 
ECG changes not only through its direct myocardial effects 
but also indirectly through other mechanisms including anoxia, 
acid‑base abnormalities, and other systemic disorders.[11]

Prediction of  hyperkalemia is challenging as it is affected by many 
parameters. Previous work employed machine learning (ML) to 
predict hyperkalemia. For example, in 2020, 66321 cardiac signals 
were analyzed to determine the potassium level.[9] In this study, 
with the help of  deep learning, hyperkalemia was distinguished 
from normal potassium with high accuracy (84.5%). Similarly, 
a group of  researchers using lead I and II succeeded in 
diagnosing hyperkalemia with the help of  a deep convolutional 
neural network.[12] Conner D. Galloway managed to classify the 
potassium level into two groups, normal and hyperkalemia, using 
the information of  two leads I and II.[13] In 2019, Giuseppe 
Regolisti and his colleagues investigated the determination 
of  potassium levels with the help of  ECG using T‑wave 
characteristics.[14]

Until now, the methods that have been presented to measure 
the different analytes such as drug derivatives, amino acids, 
food additives, and especially potassium levels have been based 
entirely on the technology of  sensor design[15‑17] and laboratory 
kits. Laboratory tests are expensive and require specialized 
equipment and infrastructure, such as trained medical staff  
for blood sampling and hematology analyzers for biochemical 
reagent evaluation. The use of  these methods, while requiring a 
blood sample, is invasive, expensive, and time‑consuming to get 
the test results. Many studies have shown that the imbalance of  
electrolytes changes the shape of  the ECG.[8] In this study, we 
will develop and present a method for non‑invasive and real‑time 
diagnosis of  hyperkalemia in patients with myocardial failure.

Methods

This study was conducted over a period of  12 months at Shahid 
Rajaei Hospital. During this time, patients referred to pediatric 
emergency were studied. The cardiac signal is measured by a 
12‑lead device (Phillips) with 25 mm/ss sampling. Blood sampling 

for potassium levels was also carried out at the same time. 
Patients whose ECG had noise and artifacts for any reason were 
excluded from the study. The information of  the eligible subjects, 
including the basic demographic information, has been collected 
through interviews and questionnaires. We divided patients into 
two groups: patients with a normal level of  serum potassium 
mean potassium level less than 4.5 (mmol/L) and patients with 
a potassium level more than 4.5 (mmol/L) as hyperkalemia. In 
this study, we only used the lead II signal. An algorithm based 
on Python programming language was designed and developed 
to automatically extract the features of  the heart signal. Patients 
with any electrolyte disturbance or other systemic conditions that 
had a major effect on ECG signals were excluded from the study.

Feature extraction
The heart signal of  lead 2 of  each patient was recorded for a 
period of  2.8 s. We developed a program in Python (with the 
help of  scipy.signal library[18]) to extract the amplitude and time 
values of  P, Q, R, S, and T.

As shown in Figure 1, 16 features for each ECG signal were 
then calculated (P‑Width, PQ, PR, PS, PT, QR, QRS, QT, RS, 
RT, ST, T‑Width, P‑Amplitude, R‑  Amplitude, S‑Amplitude, 
T‑Amplitude).

Dimension reduction
All analysis was performed using Python 3.10 in the visual studio 
code 1.78.2.0 (microsoft/vscode) (VSCode) environment. Data 
were normalized by the following formula  (by using Sklearns 
min‑max‑scaler[13]):

−
=

−
 
m a x  

x m i nx
m i n

In each data set, there is a possibility of  having two highly 
correlated features. Two identical features naturally create 
additional redundancy. To avoid this, dimensionality reduction 
algorithms can be used. We used the most important dimensionality 
reduction algorithms, linear and non‑linear  (principal 
component analysis (PCA), linear discriminant analysis (LDA), 
multi‑dimensional scal ing  (MDS), isometric feature 
mapping (Isomap), locally linear embedding (LLE), Kernel PCA). 
The best result was obtained by adopting the PCA algorithm.

Figure 1: Display of features extracted from cardiac signal
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Classification
We used support vector machine  (SVM), decision tree  (DT), 
random forest  (RF), and logistic regression algorithms to 
classify this group of  data. We optimized the parameters of  each 
algorithm with the help of  the GridSearchCV method from the 
Sklearn Python library  [13]. To better evaluate the model, we 
used the Monte Carlo cross‑validation algorithm. The data set is 
randomly divided into two parts, training and validation. Then, the 
parameters of  the model are estimated based on the training data, 
and the error or accuracy of  the model is also calculated with the 
help of  the validation data. In each iteration, 20 cases were assigned 
to the validation group. This operation was repeated 13 times.

In Figure 2, the general chart of  the study steps is shown.

Results

In 12 months, 126 patients with hyperkalemia and 152 patients 
with serum potassium levels below 4.5 were selected. The choice 
of  this number of  subjects is to ensure balance between the two 
groups. About 52% of  the community was boys and 48% were 
girls. These people were between 1 and 14 years old.

In PCA, the key parameter that is considered to decide the 
number of  basis vectors is variance. According to Figure  3, 
by reducing the input set to four, 95.1% of  the input variance 
is guaranteed, so the value of  k (amount of  eigenvectors) was 
considered to be 4.

The definition of  precision, accuracy, recall, and F1 is as follows[12]:

Precision = 
T P

T P FP+ �
Recall =

T P
T P FN+

F1 = 2
p r e c i s i o n * r e c a l l

*
p r e c i s i o n r e c a l l+

Accuracy =
T P T N

T P T N FP FN
+

+ + +

The results of  applying each of  the classification algorithms are 
shown in Table 1. As shown, the SVM method has the lowest 
accuracy and the RF has the highest measurement accuracy.

The F1 score comprehensively includes both precision and recall 
and is equal to the harmonic mean of  the two. Therefore, the F1 
score is considered more valid than precision or recall alone. F1 
score in DT and RF algorithms is better than other algorithms. 
In this situation, the area under the curve (AUC) of  the receiver 
operation characteristic  (ROC) is a unified measurement 
criterion that is often used in binary classification.[12] ROC is a 
measurement of  the tradeoff  between a True Positive Rate and 
a False Positive Rate at different classification thresholds. The 
evaluation of  the classification algorithms is shown in Figure 4 
with the help of  the ROC diagram. The highest value of  AUC is 
obtained by using the RF algorithm. Therefore, if  the selection 
criterion is based on the ROC curve and AUC, the RF algorithm 
has the best result. Confusion Matrices of  RF, the best algorithm 
in this study, are shown in Figure 5.

Discussion

The normal function of  cardiac myocardium depends on 
many factors including normal serum electrolytes. In critically 
ill patients, on‑time diagnosis and treatment of  hyperkalemia 
is necessary. In the past, serial serum potassium level check 
with blood sampling was a practical method for potassium 
monitoring. Currently, the trend is to monitor potassium levels 
with rapid non‑invasive techniques. However, there is always 
doubt about the accuracy of  these methods for the true diagnosis 
of  hyperkalemia. Through this work, we have developed and 
presented a non‑invasive model that can predict hyperkalemia 
in this group of  patients with acceptable accuracy.[3,14]

Classifying normal potassium from hyperkalemia  (one of  the 
most common electrolyte disorders in patients) accurately 
and quickly using biomarkers has a profound impact on many 
patients’ lives. This issue is especially very important in children 
with critical conditions in the intensive care unit because the 
burden of  systemic illness leads to hyperkalemia which can affect 
cardiac function very rapidly. Therefore, improving the accuracy 
of  early diagnosis of  hyperkalemia is very important. We applied Record ECG

&
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Figure 2: General chart of the study steps
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several ML classification methods to systematically examine a list 
of  cardiac signal variables to select the most relevant features for 
predicting hyperkalemia. Then, a model was deduced with the 
help of  a RF algorithm by training it. As shown in the results, 
the combination of  several DTs and the subsequent creation of  
the RF algorithm is effective in improving the results.

So far, many attempts have been made in the field of  
hyperkalemia detection with the help of  ML algorithms. Most of  
these efforts have been performed on the ECG signal. In 2022, 
Lin, Chin, and colleagues succeeded in diagnosing hyperkalemia 
with 84.5% accuracy with the help of  deep learning.[9] One of  
the reasons for the high accuracy in this study is the definition 
of  potassium above 6.5 as hyperkalemia. In this range, the effect 
of  high potassium in the cardiac waveform is quite evident. 
Consequently, it may be too late for on‑time management and 
effective therapy of  hyperkalemia. However, in our work, this 
number was considered 4.5. Using the information of  two leads (I 
and II) and defining a potassium level of  5 as the threshold of  
hyperkalemia, a sensitivity of  85% and specificity of  72 was 
reported, in 2018.[14] Similar to our findings, they acknowledged 
the ability of  artificial intelligence to detect hyperkalemia.

Connor D. Galloway and his colleagues extended their work 
using a deep convolutional neural network algorithm.[19] They 
considered serum potassium levels above 5.5 as hyperkalemia. 
The effects of  serum potassium on the cardiac signal are more 
evident at this level than potassium.

Giuseppe Regolisti and his colleagues investigated hyperkalemia 
with the help of  ECG using T‑wave characteristics.[20] They 
considered a serum potassium level above 5.5 as hyperkalemia. 
Poor prediction accuracy of  potassium levels using T‑wave was 
the result of  their study.

We developed a RF model for hyperkalemia detection using 
the LEAD2 approach in the pediatric group. This model helps 
emergency physicians quickly diagnose hyperkalemia and severe 
hyperkalemia. This study has limitations such as a limited 

patient population. We hope to extend this work to include an 
internationally mixed‑race study with a high statistical population 
in the future.
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Table 1: Comparison between four classification algorithms
AUCF1RecallPrecisionAccuracyAlgorithm
0.650.660.70.630.65DT
0.610.550.450.70.6SVM
0.690.660.540.830.74RF
0.640.580.560.6250.65LR

Figure 4: Validation data set performance for Hyperkalemia from lead II Figure 5: Confusion matrix for RF classification algorithm: 260 testing 
samples by helping Monte Carlo cross‑validation algorithm
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