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Gene regulatory network (GRN) inference is an effective approach to understand the
molecular mechanisms underlying biological events. Generally, GRN inference mainly
targets intracellular regulatory relationships such as transcription factors and their
associated targets. In multicellular organisms, there are both intracellular and
intercellular regulatory mechanisms. Thus, we hypothesize that GRNs inferred from
time-course individual (whole embryo) RNA-Seq during development can reveal
intercellular regulatory relationships (signaling pathways) underlying the development.
Here, we conducted time-course bulk RNA-Seq of individual mouse embryos during
early development, followed by pseudo-time analysis and GRN inference. The results
demonstrated that GRN inference from RNA-Seq with pseudo-time can be applied for
individual bulk RNA-Seq similar to scRNA-Seq. Validation using an experimental-source-
based database showed that our approach could significantly infer GRN for all
transcription factors in the database. Furthermore, the inferred ligand-related and
receptor-related downstream genes were significantly overlapped. Thus, the inferred
GRN based on whole organism could include intercellular regulatory relationships,
which cannot be inferred from scRNA-Seq based only on gene expression data.
Overall, inferring GRN from time-course bulk RNA-Seq is an effective approach to
understand the regulatory relationships underlying biological events in multicellular
organisms.
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INTRODUCTION

Regulation of gene expression is a fundamental factor that controls cellular events such as
proliferation and differentiation. Understanding gene regulatory networks is important to
elucidate the molecular mechanisms underlying cellular events. Recently, gene regulatory
network (GRN) inference based on time-course data has garnered considerable attention in
single-cell RNA-Seq (scRNA-Seq). State-of-the-art scRNA-Seq analysis techniques can
generate transcriptome information from thousands of cells (Sasagawa et al., 2013; Klein
et al., 2015; Hayashi et al., 2018; Sasagawa et al., 2018; Gao et al., 2020). Transcriptomic
heterogeneity of cells due to asynchronous progression of cellular events enables us to infer
regulatory relationships of genes. During inference, first, dimensional reduction of scRNA-Seq
data provides a trajectory of cellular events such as differentiation and proliferation (Treutlein
et al., 2014; Haghverdi et al., 2016). Then, assignment of pseudo-time can place cells along the
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trajectory. As scRNA-Seq with pseudo-time is a dense time-
course observation of cellular events, gene regulatory
networks can be inferred by comparing the timing of gene
upregulation and downregulation along pseudo-time
(Matsumoto et al., 2017; Aalto et al., 2020).

Originally, GRN inference was applied for gene expression
data from tissue and pooled cells (bulk samples) generated
using DNA microarray and RNA-Seq (Fernandez-Valverde
et al., 2018; Ko and Brandizzi, 2020). Compared to steady-
state data, time-course data enables GRN inference by
comparing the timing of gene upregulation and
downregulation (Krouk et al., 2010; Ogami et al., 2012;
Iglesias-Martinez et al., 2016; Zhang et al., 2019).
However, GRN inference from time-course data of bulk
samples is not popular due to the following drawbacks: 1)
RNA extraction and library preparation of a large number of
bulk samples before sequencing are expensive and time-
consuming (Yoshino et al., 2020), and 2) biological
variances may result in inconsistencies between actual
sampling time and transcriptome status (Kilfoil et al.,
2009). Recent technical advances related to bulk RNA-Seq
have overcome these limitations. Advances in sequencing
platforms (Muir et al., 2016), RNA extraction method
(Yoshino et al., 2020; Ujibe et al., 2021), and bulk 3′ RNA-
Seq library preparation methods (Alpern et al., 2019;
Kamitani et al., 2019; Li et al., 2020) have enabled a cost-
effective time-course individual RNA-Seq (Kashima et al.,
2020) (a time-series RNA-Seq targeting an entire embryo or
tissue of each individual). Pseudo-time analysis for individual
RNA-Seq might capture individual differences in the
progression speed of biological events such as
development. Following the assignment of pseudo-time to
each individual RNA-Seq data, GRN can be inferred similar
to an inference based on scRNA-Seq.

Theoretically, GRN inferred from whole-body and tissue
RNA-Seq are different from those inferred from scRNA-Seq.
scRNA-Seq provides transcriptomic information at the
cellular level that enables inference of intracellular GRN
involved in proliferation and differentiation (Lam et al.,
2016). In contrast, bulk RNA-Seq of the entire body and
tissues could contain transcriptomic information at the cell
population level. Time course individual RNA-Seq during
development would enable inference of both intracellular and
intercellular GRN (cell–cell communications) involved in the
developmental process. For instance, during embryonic
development, the upregulation of ligand-related genes can
be followed by the upregulation of downstream genes in cells
expressing receptor genes (Basson, 2012).

Thus, we hypothesized that GRNs inferred from time-
course individual RNA-Seq during embryonic development
would include intercellular regulatory relationships between
ligand genes and downstream genes of related signaling
pathways. To test this hypothesis, we conducted time-
course bulk RNA-Seq of individual mouse embryos during
early development, followed by pseudo-time analysis and
GRN inference.

MATERIALS AND METHODS

Maintenance of Mice
Embryos were collected from pregnant female Institute of Cancer
Research (ICR) mice (CLEA, Tokyo, Japan) at different stages
(E7.5, E8.5, E9.5, E10.5, E11.5, E12.5, and E.13.5). The number of
replicates (embryos) was 10 at E7.5 and 11 in the remaining
stages. All sacrificed female mice were housed under a 12-h
dark–light cycle, with the light phase starting from 8 am. All
animal experiments were performed in accordance with the
guidelines of the Animal Care and Use Committee of Osaka
University Graduate School of Dentistry, Osaka, Japan. All
experimental protocols were approved by Animal Care and
Use Committee of Osaka University Graduate School of
Dentistry. All methods are reported in accordance with the
ARRIVE guidelines (Percie du Sert et al., 2020).

RNA-Seq Extraction
The total RNA was extracted using the RNeasy® kit (QIAGEN,
Hilden, Germany) according to manufacturer’s protocol. The
total RNA concentration was measured using the Qubit™ RNA
HS Assay Kit (Thermo Fisher Scientific, Waltham, MA,
United States) and was adjusted to 5 ng/μL and stored at
−80°C until the subsequent analysis.

RNA-Seq Library Preparation and
Sequencing
Non targeted RNA-Seq was conducted according to the Lasy-
Seq ver. 1.1 protocol (https://sites.google.com/view/lasy-seq/)
(Kamitani et al., 2019; Kashima et al., 2020). Briefly, 50 ng of
total RNA was reverse transcribed using an reverse
transcription (RT) primer with index and SuperScript IV
reverse transcriptase (Thermo Fisher Scientific). Thereafter,
all RT mixtures were pooled and purified using an equal
volume of AMpure XP beads (Beckman Coulter, Brea, CA,
United States) according to the manufacturer’s instructions.
Second strand synthesis was conducted with the pooled
samples using RNaseH (5 U/μL; Enzymatics, Beverly, MA,
United States) and DNA polymerase I (10 U/μL;
Enzymatics). To avoid the carryover of large amounts of
rRNAs, the mixture was subjected to RNase treatment using
RNase T1 (Thermo Fisher Scientific). Subsequently, the
samples were purified using 0.8× volume of AMpure XP
beads. Fragmentation, end-repair, and A-tailing were
conducted using 5× WGS Fragmentation Mix (Enzymatics,
Beverly, MA, United States). The Adapter for Lasy-Seq was
ligated using 5× Ligation Mix (Enzymatics, Beverly, MA,
United States), and the adapter-ligated DNA was purified
twice with 0.8× volume of AMpure XP beads. After
optimizing the PCR cycles for library amplification by
qPCR using EvaGreen, 20× in water (Biotium, Fremont,
CA, United States) and the QuantStudio5 Real-Time PCR
System (Applied Biosystems, Waltham, MA, United States),
the library was amplified using KAPA HiFi HotStart ReadyMix
(KAPA BIOSYSTEMS, Wilmington, MA, United States) on
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the ProFlex PCR System (Applied Biosystems, Waltham, MA,
United States). The amplified library was purified with an
equal volume of AMpure XP beads. One microliter of the
library was subjected to electrophoresis using Bioanalyzer
2,100 with the Agilent High Sensitivity DNA kit (Agilent
Technologies, Santa Clara, CA, United States) to assess
quality. Subsequently, sequencing of 150-bp paired-end
reads was performed using HiSeq X Ten (Illumina, San
Diego, CA, United States).

Mapping and Gene Quantification
Read 1 reads were processed with fastp (version 0.21.0) (Chen et
al., 2018) using the following parameters: --trim_poly_x -w 20 --
adapter_sequence � AGATCGGAAGAGCACACGTCTGAA
CTCCAGTCA --adapter_sequence_r2 � AGATCGGAAGAG
CGTCGTGTAGGGAAAGAGTGT -l 31. The trimmed reads
were then mapped to the mouse reference sequences of
Mus_musculus.GRCm38.cdna.all.fa, using BWA mem (version
0.7.17-r1188) (Li and Durbin, 2009) with the default parameters.
The read count for each gene was calculated with salmon using -l
IU, which specifies the library type (version v0.12.0) (Patro et al.,
2017). Thereafter, using R (version 4.0.1) (ore Team. R (2015). A,
2015), the sum of read counts per gene was calculated. Genes with
read counts greater than zero were used in the subsequent
analysis.

Pseudo-Time Analysis
Read counts were normalized using the “NormalizeData”
function with the default parameters in Seurat (version 4.0.0)
(Hao et al., 2020), which produces natural-log transformed (read
per 10,000 + 1). For principal component analysis (PCA), the
normalized read counts were centered but not scaled using the
“ScaleData” function with the default parameters except for
do.scale � F. PCA was then performed using the “RunPCA”
function for genes with high dispersion, which were selected
using the “FindVariableFeatures” function with default
parameters except for selection.method � “mvp”. Finally,
SingleCellExperiment (version 1.10.1) (Amezquita et al., 2020)
and slingshot (version 1.6.1) (Street et al., 2018) were used to
calculate the pseudo-time for each sample.

Evaluation Considering Pseudo-Time
Instead of Stage
The “smooth.spline” function in R (version 4.0.1) (ore Team. R
(2015). A, 2015) with the default parameters except for “all.knots
� T, lambda � 0.001” was used to obtain smoothed curve for
normalized expression of each gene in the “data” slot of the Seurat
object, and stage or pseudo-time. Then sum of squared residuals
(SSR) between the observed and fitted values was calculated for
each gene. The mean of SSRs was calculated against all genes and
the high variable genes obtained with the “FindVariableFeatures”
function.

Gene Regulatory Network Inference
In the SCODE algorithm (Matsumoto et al., 2017), normalized
expression data in the “data” slot of the Seurat object, and pseudo-

time were used to infer GRN. A was optimized 20 times with 100
iterations and D � 4. Pearson’s correlation coefficients between
values of each A from the 20 optimizations and the meanA (the
average of each value of A) were calculated. In the following
analysis, we used the average values of the top 10 A showing
higher correlations with the meanA from 20 optimizations. To
define the thresholds for downstream gene selection for each
gene, the linear function was regressed using the “nls” function in
R for the scatter plot of absolute values ofA for downstream genes
in the decreasing order; the X and Y axes represented the integers
from 1 to 28,117, and the absolute values of A, respectively. Genes
with larger absolute values of A than the Y values of the regressed
line were defined as the inferred gene downstream of each gene.

In the dynGENIE3 algorithm (Huynh-Thu and Geurts, 2018),
normalized expression data in the “data” slot of the Seurat object,
and samples stage were used to infer GRN. E7.5, E8.5, E9.5, E10.5,
E.11.5, E12.5, and E.13.5 were converted to 1, 2, 3, 4, 5, 6, and 7,
respectively. All parameters were used with the default values.
weight.matrix inferred by dynGENIE3 was used as inferred
regulatory relationships.

Evaluation of Inferred GRN by Comparing
With a TF-Downstream Gene Database and
Analyzing Downstream Genes of Ligand-
and Receptor-Related Genes
To validate the inferred GRN, information regarding the binding
motifs and targets for 438 mouse TFs in the TF2DNA database
was used (Berger et al., 2006; Matys et al., 2006; Berger et al., 2008;
Badis et al., 2009; Wei et al., 2010; Chen et al., 2011; Jolma et al.,
2013; Sebé-Pedrós et al., 2013; Weirauch et al., 2013; Mathelier
et al., 2014; Pujato et al., 2014; Weirauch et al., 2014). The Area
Under the Curve (AUC) values for downstream prediction based
on the absolute values of A were calculated using the
“performance” function in ROCR (version 1.0–11) (Sing et al.,
2005). Statistical analysis of enrichment of the validated target
genes among the inferred genes was conducted using the
“fisher.test” function in R. Statistical analysis of overlapping of
the inferred downstream genes of ligand- and receptor-related
genes was conducted using the “enrichment_test” function in
Rvenn (version 1.1.0) (Akyol, 2019). For all statistical tests,
Benjamini-Hochberg (BH) correction was performed using the
“p.adjust” function. The upset plots were drawn using the “upset”
function in UpSetR (version 1.4.0) (Conway et al., 2017).

Evaluation of Intracellular Co-Expression of
Upstream and Downstream Genes
Based on the batch-corrected scRNA-Seq data of approximately
60,000 cells of high quality (Han et al., 2018), the average
expression of each gene of 98 cell types was calculated with
the “AverageExpression” function in Seurat. Thereafter,
Pearson’s correlation coefficient (PCC) of normalized
expression levels of upstream and downstream genes was
calculated with the “cor” function in R. The inferred upstream
and downstream genes showing PCC more than 0.4 were defined
as co-expressed genes.
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RESULTS

Pseudo-Time Analysis of the Time-Course
Bulk RNA-Seq of Mouse Embryos
To determine whether GRN inference based on time-course
bulk RNA-Seq is effective, we conducted time-course bulk
RNA-Seq for individual mouse embryos. RNA was extracted
from each individual embryo (n � 10 or 11) at seven time
points: E7.5, E8.5, E9.5, E10.5, E11.5, E12.5, and E.13.5,
followed by 3′ RNA-Seq using the Lasy-Seq method
(Kamitani et al., 2019). As a result, we obtained 76 RNA-

Seq datasets with an average of 8.5 million reads per sample.
The reads were mapped onto the mouse reference sequence,
and then the read counts of each gene in each sample were
calculated. We then used Seurat (Stuart et al., 2019), an R
package for single cell omics analysis, for the normalization of
read counts, detection of highly variable genes, and
dimension reduction of omics date. On the PC1 and PC2
planes obtained with Seurat, samples in the same stage were
close to each other (Figure 1A). As expected, clusters of each
stage were ordered according to the developmental process
(Figure 1B). Using the R package “slingshot” (Street et al.,

FIGURE 1 | Pseudo-time analysis for time-course individual bulk RNA-Seq of mouse embryos in early development. (A) Transcriptomic trajectory of mouse
embryos from E7.5 to E13.5. Each point on the PC1-PC2 plane indicates each individual RNA-Seq result. The solid line indicates an inferred trajectory by slingshot. (B) A
scatterplot of pseudo-time and corresponding stage for each sample. Each point indicates each individual RNA-Seq result and is jittered along the Y-axis. (C) An
example (Fabp7) of difference in gene expression dynamics along stage and pseudo-time. The black lines indicate smoothing curves for each data. Sum of squared
residuals (SSRs) between the observed and fitted values were calculated. (D) A scatterplot of SSR of normalized gene expression of all genes along stage and pseudo-
time. The red line indicates the same value between stage and pseudo-time.
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2018), we inferred the developmental trajectory of mouse
embryos and calculated the pseudo-time for each sample
(Figures 1A,B). The pseudo-time analysis revealed
individual differences among embryos in the speed of their
developmental processes. For example, the pseudo-time of a
sample at E10.5 and that at E11.5 were close to each other
(Figures 1A,B). Using the pseudo-time analysis, the time-
course RNA-Seq data of the seven time points could be
converted into those of 76 time points. Using pseudo-time
as temporal information instead of stage (real sampling time)

improved the sum of squared residuals (SSRs) between the
observed and fitted values (Figures 1C,D). The SSRs along the
pseudo-time were decreased by 0.745% (all genes) and 3.835%
(high variable genes), on an average, compared with the SSRs
along stage. These results indicate that integrating pseudo-
time into the analysis, instead of the actual sampled stage,
could improve the capture of temporal expression dynamics,
by considering individual differences in the progression speed
of biological events during early embryonic development
in mice.

FIGURE 2 | Inference of downstream genes based on the values in (A). (A) Selection of a parameter D for SCODE. The sum of squared residuals (SSRs) for each D
(from 1 to 10 by 0.5) was calculated. We used D � 4. (B) Pearson’s correlation coefficients between the values of each A from 20 optimizations and the meanA, which is
the average of each value from all optimizations. (C) Calculation of Pearson’s correlations between the average expression level of each gene and the absolute values in
each row and column of A. (D) The violin plots of Pearson’s correlations. (E,F) Scatter plot of the average expression level of each gene and the absolute values in
the column (E) and row (F) of A for Sox8. (G) An example of the definition of thresholds for significant regulatory relationship between the regulator and downstream
genes. A scatter plot of the values of A for a regulator, Sox8, in decreasing order. The solid line indicates a regression for the scatter plot. The dashed lines indicate the
defined thresholds.
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Gene Regulatory Network Inference Based
on Individual RNA-Seq of Entire Mouse
Embryos
Next, we inferred a GRN from the dataset of time-course
individual RNA-Seq of entire mouse embryos. We used
SCODE, which solves linear ordinary differential equations to
infer GRN (Matsumoto et al., 2017). To avoid incorrect emphasis
on the technical noise of RNA-Seq, we used a non-scaled
normalized gene expression matrix as the input for SCODE.
Selection of the D size, a parameter that affects the number of
assumed basic patterns of expression dynamics of the dataset, is
important for robust GRN inference, as an unnecessarily large D
causes an unstable inferred GRN (Matsumoto et al., 2017). In this
study, we used D � 4 similar to that in a previous study
(Matsumoto et al., 2017), with which the SSR was relatively
small (Figure 2A). For 28,117 genes whose read counts were
greater than zero, SCODE produced A (28,117 × 28,117 matrix)
corresponding to the inferred gene regulatory network, in which
the value of Ai,j indicates regulatory effects on the downstream
gene i from the regulator j. Ai,j > 0 indicates that the regulator j
positively regulates gene i, whereas Ai,j < 0 indicates the opposite.
Because SCODE optimizes A by random sampling, we optimized
A 20 times to check for reproducibility. Thereafter, PCCs between
the values of each A from the 20 optimizations and the meanA
were calculated (Figure 2B). Almost all optimizations produced a
similar A with high correlation coefficients (Figure 2B). In the
subsequent analysis, we used the average values of the top 10 A
showing higher correlations with the meanA from 20
optimizations. We then tried to define the thresholds for
significant regulatory relationships between regulators and
downstream genes. Because the average expression level of the
downstream genes showed higher correlation with the absolute
values of A compared to the regulators (Figures 2C,D), we
independently defined the threshold for each regulator instead
of a constant threshold previously used (Matsumoto et al., 2017).
For example, the absolute values of A indicating regulatory
relationships between Sox8 and its regulators showed a
positive correlation (PCC � 0.76) (Figure 2E), whereas the
absolute values of A showing regulatory relationships between
Sox8 and its downstream genes showed smaller correlations (PCC
� 0.54) (Figure 2F). Although most of the inferred values of A for
regulatory relationships between Sox8 and its downstream genes
were around zero, some values were outliers (Figure 2G). To
define the threshold for the downstream genes of Sox8, we
regressed the linear function for the scatter plot of absolute A
values for the downstream genes in the decreasing order and
defined the threshold (Figure 2G). Finally, in the subsequent
analysis, genes with larger absolute values of A than threshold
were defined as the inferred genes downstream of Sox8
(Figure 2G).

Validation of the Inferred Network
Next, we evaluated the inferred GRN by comparing the inferred
genes downstream of the TFs with the information in the
TF2DNA database, which is an experimental-source-based
database of the binding motifs and downstream genes for 438

mouse TFs (Pujato et al., 2014; Badis et al., 2009; Wei et al., 2010;
Weirauch et al., 2013; Berger et al., 2006; Mathelier et al., 2014;
Matys et al., 2006; Weirauch et al., 2014; Berger et al., 2008; Chen
et al., 2011; Jolma et al., 2013; Sebé-Pedrós et al., 2013). First, we
evaluated the effectiveness of target prediction based on the
absolute values of A by calculating the AUC (Figure 3A), and
obtained an average AUC of 0.704, suggesting that the inferred
regulatory relationships could reflect the actual regulatory
network. Furthermore, we calculated the AUC for inferred
regulatory relationships using dynGENIE3 (Huynh-Thu and
Geurts, 2018), an algorithm that uses sampled stage
information as temporal information to infer GRN. The
average AUC was 0.50 (Figure 3A), suggesting the adequacy
of GRN inference based on time-course individual RNA-Seq.
Second, we examined the validity of the defined thresholds by
assessing the differences between the validated target gene rate
(number of validated target genes/number of all inferred
downstream genes) above the defined thresholds and the best
validated rate (Figure 3B and Supplementary Table S1). Below
the threshold, the validated target gene rates for the 438 TFs were
0.69% smaller than the best validated target gene rates on an
average. The validated target genes were 67.5% of the inferred
downstream genes on an average (Supplementary Table S1,
Figures 3C,D). Compared with the background rate (number
of known target genes/number of all genes), the validated target
gene rates of the inferred downstream genes of all TFs were
statistically high (adjusted p-value < 0.01) (Figure 3D). These
results suggest that our approach could infer the GRN underlying
early development in mice.

Inferred Network Contained Regulatory
Relationships Involved in Cell–Cell
Interaction
Our GRN inference was based on bulk RNA-Seq containing the
information of all cells in the body.We thus hypothesized that the
inferred GRN also included the intercellular regulatory network.
To examine this possibility, we checked the overlaps of inferred
downstream genes of genes related to the ligands and receptors of
nine major signaling pathways (Figure 4A): Wnt/βcatenin, TNF,
TGF-β, Hedgehog, FGF, EGF, Delta/Notch, BMP, and retinoic
acid (RA) signaling pathways (Supplementary Table S2). As
expected, the inferred downstream genes of all pairs of ligand and
receptor genes were significantly overlapped (adjusted p-value <
0.01) (Figure 4A). On an average, 94.2% of the inferred
downstream genes of the ligand- and receptor-related genes
were overlapped (Figure 4A). For example, 4,510 genes were
inferred as downstream of Wnt genes and 4,545 genes were
downstream of Fzd genes. However, 97.5% of the inferred
downstream of Wnt genes were also inferred as the
downstream of Fzd genes (Figure 4A). As SCODE can infer
whether each downstream gene is positively or negatively
regulated (Matsumoto et al., 2017), we assessed the overlaps of
positively and negatively regulated gene downstream of the
representative ligand-related and receptor-related genes of
each signaling pathway, that is, with the highest number of
inferred downstream genes among each gene family (Figures
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4B–D, and Supplementary Figures S1, S2). For six signaling
pathways (TNFβ, TGF, FGF, EGF, Delta/Notch, and BMP
signaling pathways), which activate the downstream genes
only when ligands bind to the receptors (Gilbert and Barresi,
2017), the regulatory directions of ligand- and receptor-related
genes for most inferred downstream genes were the same
(Figure 4B and Supplementary Figure S1). In contrast, in
case of the RA signaling pathway, wherein the RA receptors
function as transcriptional repressors without RA binding

(Supplementary Figure S2A) (Glass and Rosenfeld, 2000), the
regulatory directions of a ligand-related gene, Aldh1a3, which
encodes a protein involved in RA synthesis, and a receptor-
related gene, Rara, for the downstream genes were opposite
(Figure 4C). In case of the Hedgehog signaling pathway, the
regulatory directions of Ssh2 and Ptchd4 tended to be opposite
(Figure 4D). The regulatory directions of Ssh2 and Gli3 for the
downstream genes were also opposite (Figure 4D). In the absence
of Hedgehog ligands, the full-length Gli family proteins are

FIGURE 3 | Validation of the inferred regulatory network of transcription factors with the TF2DNA database. (A) Scatter plot of area under the curve (AUC) target
selection for each transcription factor (TF) based on the absolute values of A inferred using SCODE and weight.matrix inferred using dyGENIE3. (B) Scatter plots of the
validated inferred target gene rate of E2f3 and Arid5b in the TF2DNA database. Downstream genes of TFs were selected based on the absolute values of A in decreasing
order. Solid lines indicate genes at the thresholds. (C) Bar graph of validated and non-validated downstream genes of each TF in the TF2DNA database, in
decreasing order of the total number of inferred downstream genes. Only the top 30 TFs are shown. (D) Scatter plot of the validated target gene rate of the inferred
downstream genes of TFj and the background rate of target genes in the TF2DNA database. Histograms show the distribution of validated target gene rates of inferred
downstream genes and the background rates of downstream genes in the TF2DNA database.
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ubiquitinated and function as repressors (Supplementary Figure
S2B) (Skoda et al., 2018). With the binding of Hedgehog ligands,
PATCHED inhibits the degradation of the Gli family proteins
and allows them to function as transcriptional activators
(Supplementary Figure S2A) (Skoda et al., 2018). Thus, the
overlap of downstream genes that are positively and negatively
regulated by Ssh2, Ptchd4, and Gli3 is reasonable. In case of the
Wnt/βcatenin signaling pathway, the regulatory directions of
Wnt7a and Fzd5 for the downstream were opposite
(Supplementary Figure S3A). Our time-course RNA-Seq
revealed that among the Fzd and Wnt genes, Fzd5 and Wnt8a,
but not Wnt7a, were the only genes expressed dominantly in the
early developmental stage among the protein families
(Supplementary Figures S4, S5). Similar regulatory directions
were found for most of the inferred downstream genes ofWnt8a-
Fzd5, which could be a functional pair in the early developmental
stages. Furthermore, the regulatory directions for most of the
inferred downstream genes of Wnt7a-Fzd6 (Fzd genes with the
second most inferred downstream genes) were also the same
(Supplementary Figure S3).

Next, we evaluated the co-expression of inferred downstream
and upstream genes. Based on a publicly available mouse cell atlas
(Han et al., 2018), PCCs of normalized expression levels of
upstream and downstream genes were calculated
(Supplementary Figure S6A), and the pairs of PPC >0.4 was
defined as co-expressed genes. Although the ratios of co-
expression were overall low due to limited characteristic of
scRNA-Seq, the ratio of co-expression of ligand-related genes
and their inferred downstream was significantly lower than that
of receptor-related genes and TFs (Supplementary Figure S6B).
This suggests that the inferred downstream genes of ligand-

related genes tended to be expressed in cells that do not
express ligand-related genes.

Validation of Time-Course Individual RNA-
Seq-Based Gene Regulatory Network
InferenceWith a Publicly Available RNA-Seq
Data
Finally, we also inferred GRNs from a publicly available
dataset of time-course organ-level individual RNA-Seq of
mouse (Cardoso-Moreira et al., 2019). This dataset
contained data of five somatic tissues (brain, cerebellum,
hear, kidney, and liver) and two germline tissues (ovary
and testis). The inferred relationships between TFs and
downstream genes from each organ data tended to show
higher AUC values for the TF2DNA database than those
based on our time-course individual whole-embryo RNA-Seq
(Figures 3A, 5A). In addition, same as the inferred GRN
based on our whole-embryo RNA-Seq data, the inferred
downstream genes of all pairs of ligand- and receptor-
related genes were significantly overlapped (adjusted p <
0.01) (Supplementary Figure S7). The AUC values for
several TFs from organ-level RNA-Seq were considerably
worse than those from our RNA-Seq data (Figure 5A),
suggesting organ-specificity of GRNs. As expected,
hierarchical clustering revealed differences of the inferred
GRNs between somatic and germline organs (Figure 5B).

In conclusion, our approach would allow successful inference
of the intercellular regulatory relationships related to the major
signaling pathways as well as the intracellular pathways related
to TFs.

FIGURE 4 | Overlap of inferred genes downstream of ligand- and receptor-related genes. (A) Bar plot of the number of inferred downstream genes that are
common and unique for each ligand-receptor pair. (B–D) Upset plots of inferred downstream genes that are positively and negatively regulated by the representative
ligand- and receptor-related genes. (B) Retinoic acid signaling pathway. (C) Delta/Notch signaling pathway. (D) Hedgehog signaling pathway.
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DISCUSSION

Recently, GRN inference based on the combination of scRNA-
Seq and pseudo-time analysis has garnered considerable attention
(Dai et al., 2020). However, to our knowledge, this study is the
first to report GRN inference based on the combination of
individual bulk RNA-Seq and pseudo-time analysis. Here,
pseudo-time explained variances of gene expression during
early development in mice better than the actual sampled
stage (Figures 1C,D), suggesting that the variance of gene
expression observed using our time-course individual RNA-
Seq was not mere stochastic variability in gene expression but
individual difference in the progression speed of development.
Thus, pseudo-time uses the correlation of gene expression
dynamics more effectively than the actual temporal
information in time-course individual RNA-Seq.

Unlike scRNA-Seq, which can elucidate transcriptomic
dynamics in a certain cellular event such as proliferation and
differentiation, bulk RNA-Seq could provide a mixture of various
transcriptomic dynamics regarding the cellular events occurring
in an embryo (Chasman and Roy, 2017). Theoretically, GRN

inference based on bulk RNA-Seq cannot provide multiple
lineage-specific regulatory relationships. This may explain why
GRN inference based on bulk RNA-Seq has not been attempted
as with scRNA-Seq. In this study, we succeeded in inferring the
known regulatory relationships of the TFs in the TF2DNA
database with a high AUC compared with the GRN inferred
from scRNA-Seq (Chen and Mar, 2018) (Figure 3). This suggests
that GRN inference from bulk RNA-Seq provides insights into
the regulatory interconnections of genes, even though GRN
inferred from bulk RNA-Seq would have limitations in the
comprehensiveness of inferred regulatory relationships
compared with those from scRNA-Seq. Furthermore,
substantial changes in the cell population occur during early
development stages. It is possible that our GRN inferred from
bulk RNA-Seq merely reflects the changes in cell populations but
not the interconnections of genes. Considering the results of
inference for theWnt and Fzd genes (Supplementary Figure S2),
these points should be considered when interpreting the inferred
GRN based on the time-course bulk RNA-Seq.

Assignment of pseudo-time is an important step in GRN
inference from time-course data. In case of scRNA-Seq, the

FIGURE 5 | Validation of time-course individual RNA-Seq-based GRN inference with a public organ-level RNA-Seq data. (A) Scatter plots of area under the curve
(AUC) target selection for each transcription factor (TF) based on the absolute values of A inferred from public time-course organ-level RNA-Seq data using SCODE. (B)
Hierarchical clustering of the inferred GRNs from each organ-level RNA-Seq data.
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accuracy of pseudo-time assignment is controversial (Tritschler
et al., 2019). In contrast, in the case of time-course individual bulk
RNA-Seq, the accuracy of pseudo-time assignment could be
assured by the actual sampling time, which can be an
advantage compared with GRN inference from scRNA-Seq.

Herein, we proposed a new strategy for the threshold of
significant gene regulatory relationships inferred by SCODE
(Figure 2). In the case of E2f3, the number of predicted target
genes is only ∼10% of the actual targets with our strategy. Shifting
the threshold to approximately 17,000 targets for E2f3 may still
result in a validated target rate of approximately 80% (Figure 3B).
As decreasing the threshold may produce false positive inferred
relationships for some genes, the determination of the threshold
remains a challenge. Considering high AUCs for the TFs in the
database (Figure 3A), the threshold should change depending on
the aim of the study.

GRN indicates the intracellular interconnections of genes in a
narrow sense; intercellular regulation of genes via cell–cell
communication is also a key factor to understand the
regulatory mechanisms underlying multicellular organisms.
Several studies have attempted to systematically identify
cell–cell communications based on single cell gene expression
profiles and information regarding ligand–receptor pairs (Kumar
et al., 2018; Wang et al., 2019; Cabello-Aguilar et al., 2021; Jin
et al., 2021). As these approaches require prior knowledge, they
could only be applied for the major model organisms and cannot
reveal novel signaling pathways. We demonstrated that GRN
inference based on time-course individual RNA-Seq could infer
intercellular regulatory relationships related to cell–cell
communication via cell signaling pathways. This approach
only requires time-course RNA-Seq results and is applicable
for non-model organisms without ligand–receptor
information. Theoretically, the GRN inferred based on scRNA-
Seq cannot include intercellular interconnections of genes.
Intracellular co-expression knowledge of upstream and
downstream genes, which could be obtained form scRNA-Seq
experiments, would be useful for systematic identification of
genes involved in cell–cell communications during cellular
events of interest. Taken together, our approach is a powerful
tool to understand intracellular and intercellular regulatory
relationships of genes, which cannot be achieved using the
existing GRN inferences based on scRNA-Seq alone. As
discussed above, bulk RNA-Seq is limited in the
comprehensiveness of inferred regulatory relationship as
multiple lineage-specific regulatory relationships cannot be
deduced from GRN inference based on bulk RNA-Seq. Higher

AUC values of the inferred GRNs from organ-level RNA-Seq
than whole-embryo RNA-Seq would reflect this limitation
(Figures 3A, 5A). A future novel bioinformatic approach that
can deconvolute gene expression in each tissue and cell lineage
from bulk RNA-Seq will help overcome this limitation.
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