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Abstract

Purpose

To understand what clinical presenting features of sepsis patients are historically associated

with rapid treatment involving antibiotics and fluids, as appropriate.

Design

This was a retrospective, observational cohort study using a machine-learning model with

an embedded feature selection mechanism (gradient boosting machine).

Methods

For adult patients (age� 18 years) who were admitted through Emergency Department

(ED) meeting clinical criteria of severe sepsis from 11/2007 to 05/2018 at an urban tertiary

academic medical center, we developed gradient boosting models (GBMs) using a total of

760 original and derived variables, including demographic variables, laboratory values, vital

signs, infection diagnosis present on admission, and historical comorbidities. We identified

the most impactful factors having strong association with rapid treatment, and further

applied the Shapley Additive exPlanation (SHAP) values to examine the marginal effects for

each factor.

Results

For the subgroups with or without fluid bolus treatment component, the models achieved

high accuracy of area-under-receiver-operating-curve of 0.91 [95% CI, 0.86–0.95] and 0.84

[95% CI, 0.81–0.86], and sensitivity of 0.81[95% CI, 0.72–0.87] and 0.91 [95% CI, 0.81–

0.97], respectively. We identified the 20 most impactful factors associated with rapid treat-

ment for each subgroup. In the non-hypotensive subgroup, initial physiological values were

the most impactful to the model, while in the fluid bolus subgroup, value minima and maxima

tended to be the most impactful.
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Conclusion

These machine learning methods identified factors associated with rapid treatment of

severe sepsis patients from a large volume of high-dimensional clinical data. The results

provide insight into differences in the rapid provision of treatment among patients with

sepsis.

Introduction

Sepsis is an important public health problem in the United States and is the leading cause of

death among hospitalized patients. Current estimates suggest that sepsis afflicts over 1.7 mil-

lion Americans each year and is responsible for over 270,000 deaths [1]. In 2012 the Surviving

Sepsis Campaign (SSC) first published 3-hour and 6-hour care bundles for reducing mortality

due to sepsis [2]. Based on these recommendations, hospitals implement the guidelines differ-

ently, adapted to local standards of care, and clinicians behave differently, based on patients’

manifestations of illness. Education of healthcare workers and attention to quality improve-

ment have aided in reducing mortality from sepsis [1, 2]. To that end, numerous efforts have

used alerting mechanisms within the electronic medical record (EMR) to attempt early warn-

ing of the signs of sepsis, whether based on systemic inflammatory response syndrome (SIRS)

or organ dysfunction, with varying degrees of success [3–5]. One weakness of EMR-based

alerting has been its inability to detect when infection is suspected or present, while the

strengths of the approach lie in identifying objective data, such as respiratory rate, blood pres-

sure, or specific criteria of organ dysfunction in sepsis [6].

EMRs have revolutionized the curation and presentation of clinical data; in the current

state, medicine is far better served than it has ever been, in terms of having data readily avail-

able for clinical use. However, the mode of presentation of data to end users (physicians,

nurses, etc.) remains steadfastly in a 20th century paradigm, in that EMRs predominantly exist

as information storehouses, and their potential to guide efficient diagnosis and treatment deci-

sions for various conditions is unrealized, as is their potential to facilitate quality improvement

efforts. EMRs currently provide users with static patient data; the values are displayed in the

manner of the specific EMR and are displayed in essentially the same fashion, regardless of the

identity of the user. The physician user mostly sees only the data that they have specifically

sought, and frequently this data is sought principally to confirm prior beliefs about the patient.

We envision an EMR that is adaptive to the patient’s data, the location or facility, and the user,

much as the consumer-oriented products Amazon and Google are. In other words, the envi-

sioned EMR presents the data to an individual user in a fashion intended to promote specific

behaviors and based on adaptive algorithms determined by users’ collective previous desired

behavior. For Amazon or Google, those desired behaviors involve product purchases or the

viewing of specific web pages. For the EMR, such behaviors could include rapid treatment of

sepsis.

Development of such an EMR requires several steps: a) understanding which conditions

can benefit from it, b) within those conditions, determining the features that are associated

with efficient diagnosis and care delivery that alter patient outcomes, c) understanding which

of those features are promoters of efficient diagnosis and treatment, rather than simply covari-

ates, d) testing putative promoters by altering modes of EMR display to individual users and

monitoring subsequent diagnostic and therapeutic activity, along with patient outcomes. We
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chose to study sepsis, as it is a high morbidity and mortality condition that is also the most

expensive condition treated in American hospitals [7].

Numerous efforts have been made to improve prognostic accuracy and efficiency for sepsis

and its complications via machine learning techniques. For example, Yang et al. [8], Komor-

owski et al. [9] and Reyna et al. [10] developed artificial intelligence models to predict sepsis in

intensive care; while Mao et al. [11] and Lauritsen et al. [12] extended the prediction applica-

tion to ED and general ward. Itzhak et al. [13] and Cherifa et al. [14] developed models to pre-

dict acute hypertensive or hypotensive episodes among ICU admissions. However, few, if any

studies have been designed to understand specific clinical features that patients exhibit at the

time that physicians initiate rapid treatment of sepsis. Without assuming causality, one could

evaluate from a situational awareness perspective which clinical features are most closely asso-

ciated with rapid, thorough treatment. We believed that data from such a study could provide

novel information that could be used to prompt rapid sepsis treatment for appropriate

patients, regardless of the extant diagnostic criteria. We performed a retrospective, machine

learning analysis of patients presenting to our ED over a ten-year period to identify all patients

meeting clinical criteria for severe sepsis, and to determine which of their clinical characteris-

tics were associated with rapid initiation of antibiotics, fluids, and other sepsis treatments.

Methods

We collected a retrospective, observational cohort of adult patients (age� 18 years) who were

admitted through the University of Kansas Hospital ED from 11/2007 through 05/2018. The

de-identified data were obtained from the Healthcare Enterprise Resource for Ontological

Narration (HERON), an i2b2-based clinical integrated data repository [15, 16]. The operation

of HERON as an honest broker research repository was approved by the University of Kansas

Medical Center Institutional Review Board (Human Subject Committee) as an expedited pro-

tocol and is renewed and reviewed annually (HSC #12337).

Because of the date range and the nature of these studies, we used the definitions of sepsis,

severe sepsis, and septic shock according to the American College of Chest Physicians/Society

of Critical Care Medicine (Sepsis-1) definitions, including the SIRS and the laboratory thresh-

olds for organ dysfunction [17]. Patients were included by satisfying all of the following criteria:

• presence of a suspected infection is based on clinicians’ actions to diagnose and treat infec-

tion, defined as a body fluid culture ordered and anti-infective administered within four

hours of one another;

• presence of two or more SIRS criteria;

• at least one site of acute organ dysfunction, which was defined by the first instance of an

abnormal laboratory or examination value and based on organ dysfunction criteria from the

first and second international consensus definitions [2, 6].

To further exclude patients who were admitted through the ED but developed sepsis later

in their hospitalization, i.e., to include only sepsis present on admission, we inferred an hour

boundary based on the timing distribution of patients with infection present on admission,

which was 13 hours since triage.

The outcome of interest was timely completion of the SSC 3-hour bundle components [17].

We chose the SSC bundles not as an endorsement, but as quantifiable, time-stamped, and

recorded actions that are representative of rapid treatment and that are widely known to critical

care and emergency practitioners. The specific treatment bundles were not proposed until 2012,

but the components of the 3-hour bundle represent standard elements of excellent sepsis care
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and have always been present in well-treated patients. However, during the entire study time

period Sepsis-2 definitions were the hospital standard and SSC bundles were promoted via con-

tinuous quality improvement. No specific sepsis treatments are initiated in our region by Emer-

gency Medical Service (EMS) personnel. In the ED, only physicians may order antibiotics or

fluids, though blood cultures may be initiated by nursing personnel. We defined the responses

separately for two subgroups, based on the SSC bundle recommendations: Group 1- if a fluid

bolus was never triggered by hypotension (systolic blood pressure< 90 mm/Hg, mean arterial

pressure< 70 mm Hg, or documented drop in systolic blood pressure� 40 mm Hg) or

lactate� 4 mmol/L was not present, we defined rapid treatment as completion of the remaining

bundle components within 3 hours of triage; Group 2—if a fluid bolus was triggered, we defined

rapid treatment as Group 1 actions, plus completion of a 2-liter bolus within 2 hours of bolus

initiation. Thus, separate feature selection models were developed for each subgroup.

We adopted a gradient boosting machine (GBM), an embedded feature selection technique

which performed feature selection while constructing and optimizing a prediction model, on

the two subgroups separately [18]. GBM is an ensemble learning technique that generates a

sequence of decision trees, each of which is designed to further improve prediction accuracy

from the previous trees [19, 20]. We randomly partitioned the data into a training set (70% of

patients) for model development and a testing set (30% of patients) used for measuring predic-

tion accuracy. To control overfitting, we carefully tuned the model hyper-parameters (i.e.

depth of each tree, number of trees, learning rate, and minimum-child-weight) within the

training set using 10-fold cross validation. At each iteration during the training stage, we per-

formed “down-sampling”, a common technique of sampling positive and negative cases in

equal proportion at each node of each tree to avoid overweighting by negative cases [21]. Miss-

ing values were handled in the following fashion: for categorical data, a value of 0 was set for

missing whereas for numerical data, a missing value split was always accounted for, and the

best imputation value can be adaptively learned based on improvement in training AUROC, at

each tree node within the ensemble. For example, if a variable X takes values (0, 1, 2, 3, NA,

and NA), where “NA” stands for missing, the following 2 decisions will be made automatically

at each split for each tree: (a) should we split based on missing or not; (b) if we split based on

values, for example, > 1 or� 0, should we merge the missing cases with the bin of> 1 or� 0.

We used the R package “xgboost” and SHAP value derivation used the “xgboostExplainer”

package for model development [22, 23]. Additionally, because the data encompass a crucial

decade in the development of sepsis diagnosis and treatment, we evaluated whether treatment

year was a significant feature of the data, by stratifying the validation set by year.

Seven hundred sixty distinct predictors were fed into the model, including demographics,

vital signs, routine laboratory values, a variety of statistics that summarize vital sign and labo-

ratory trends when multiple observations were made, clinical manifestations of Systemic

Inflammatory Response Syndrome (SIRS) and acute organ dysfunction, as well as infection

diagnosis present on admission and comorbidity diagnoses before admission (Table 1). To

include factors that were more likely to induce rapid treatment, rather than being an outcome

of it, we sampled values that occurred strictly before IV fluid initiation for Group 2 patients.

For Group 1 patients, we sampled values until all sepsis-defining values were present or until

completion of the bundle when that occurred before all sepsis-defining values were present,

which we called the prediction point. Factors were selected based on their collective discrimi-

nant power, measured by area under the receiver operator characteristic curve (AUROC), and

the optimal sensitivity and specificity determined by the point closest to the top-left corner of

ROC curve by Euclidean distance. We also evaluated area under the precision recall curve

(AUPRC) and the positive predictive value (PPV) when optimal sensitivity was achieved, as

well as calibration score measured by Brier score and the Hosmer-Lemeshow test (HL).
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The importance of factors was ranked based on “gain”, or the cumulative improvement in

AUROC attributed to all splits involving the predictor across all decision trees [20]. The mar-

ginal effects were measured by the SHAP (Shapley Additive exPlanations) values [23], which

evaluated how the odds ratio changed by including a particular factor of certain value for each

individual patient (S1 Appendix). The SHAP value not only captured the global patterns of

effects of each factor but demonstrated the patient-level variations of the effects. For each

model, we reported the 20 factors that provided the most individual “gain” (i.e. cumulatively

accounting for at least 50% “gain”). To interpolate the non-linear factorial effects as well as the

uncertainties, we fit cubic splines across with 6 knots over the SHAP values and constructed a

bootstrapped confidence interval for each factor [24]. Since the XGBoost implementation of the

GBM model incorporated missing value branches for each split of each tree, we were also able

to identify if the “missing pattern” of certain factors could have meaningful implications [22].

Results

The initial cohort contained 25,427 encounters identified as suspected infection, of which

11,590 developed markers of two SIRS and at least one site of organ dysfunction within 48

hours of triage (Fig 1). The mean age of the final cohort was 57 (±17) years, evenly distributed

Table 1. Complete list of variables included in the full model.

Demographics Age, Sex, Race, Ethnicity Continuous

• age

Binary

• sex, race,

ethnicity.

(4)

Vital signs Temperature, Heart Rate, Respiratory Rate, Systolic Blood

Pressure (SBP), Diastolic Blood Pressure (DBP), Mean Arterial

Pressure (MAP), Glasgow Coma Scale (GCS), LOC, O2 Saturation,

FiO2, SpO2/FiO2 ratio, SpO2, PaO2, PaCO2,

Continuous

(20)

Laboratory values Basic Metabolic Panel [BMP]: Sodium, Potassium, Bicarbonate

(CO2), Anion Gap, Glucose, Calcium, Blood Urea Nitrogen

(BUN), Serum Creatinine (SCr) baseline, SCr change, Phosphate

Continuous

Liver Function Test [LFT]: Albumin, Bilirubin baseline, Bilirubin

change

(23)

Complete Blood Count [CBC]: White Blood Cells (WBC) and

percentage band, Hemoglobin, Platelet Count

Other labs: D-Dimer, INR, PTT, Fibrinogen, Lactate, pH

Vital signs and Laboratory

value trends

Initial value of variable vital signs and labs before prediction pointa Continuous

Highest value of variable vital signs and labs before prediction

pointa

Lowest value of variable vital signs and labs before prediction

pointa
(172)

Average value of variable vital signs and labs before prediction

pointa

Diagnostics present or

before admission

Infection diagnosis codes (present on admission) (538),

comorbidities (16), Charlson comorbidities index, Chronic

Conditions (on problem list or medical history) (7)

Binary

(561)

Critical Events Identifiers of first occurrence of 2 SIRS (12), first occurrence of

distinct sites of organ dysfunctions (7), Triage time of the day (4)

Binary

(23)

aprediction point is defined as the time of 3-hour bundle initiation (first occurrence of blood culture order, first

antibiotics administration, initial lactate, and fluid bolus) if applicable, or sepsis onset (last occurrent of 2 SIRS,

suspected infection and first site of organ dysfunction) if not.

https://doi.org/10.1371/journal.pone.0250923.t001
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between males and females, with the majority being Caucasian. Group 1 included 6,855 (59%)

encounters, with 47% women; Group 2 comprised 4,735 (41%) encounters with 55% women.

The Logistic Organ Dysfunction Score (LODS) of Group 2 was slightly higher than that of

Group 1 (Table 2).

Times of the bundle components with respect to triage are shown in Table 3 and Fig 1. Bun-

dle completion rates were lower (17% vs. 42% for completion, 2.2% vs. 10.7% for rapid com-

pletion) and time for completion of the bundle longer (27.5 [IQR: 10.4–80.0] hours vs 4.7

Fig 1. Consort diagram for cohort inclusion and exclusion.

https://doi.org/10.1371/journal.pone.0250923.g001

PLOS ONE Clinical factors associated with rapid treatment of sepsis

PLOS ONE | https://doi.org/10.1371/journal.pone.0250923 May 6, 2021 6 / 16

https://doi.org/10.1371/journal.pone.0250923.g001
https://doi.org/10.1371/journal.pone.0250923


[IQR: 3.3–8.0] hours from triage), in Group 1 than in Group 2. Low bundle completion was

principally associated with prolonged time to IV fluid completion; 57% of Group 2 patients

completed the other three bundle components (blood culture, antibiotics administration, and

initial lactate) within 3 hours after triage.

Model 1 was built on Group 1 patients, and ultimately selected 142 discriminant factors.

Model 2 was developed for Group 2 patients and selected 158 important factors. As shown in

Fig 2, both models showed good predictive ability for rapid completion of sepsis bundles based

on AUROC in the validation cohort; 0.84 [95% CI, 0.81–0.86] for Model 1 and 0.91 [95% CI,

0.86–0.95] for Model 2. The optimal sensitivity and specificity for Model 1 were 81% [95% CI,

72% - 87%] and 74% [95% CI, 70% - 83%], and were 91% [95% CI, 81% - 97%] and 83% [95%

CI, 79% - 87%] for Model 2. At the points of optimal sensitivity, Model 1 achieved a PPV of 40%

[95% CI, 36% - 42%], and Model 2 achieved a PPV of 44% [95% CI, 40% - 47%]. Both models

achieved competitive AUPRCs (0.41 [95% CI, 0.37–0.43] for Model 1 and 0.29 [95% CI, 0.20–

0.41] for Model 2) in comparison to the baseline rates of 10.7% and 2.2%. Both models show

good calibrations with p-value> 0.1 for the HL test. The Lift Curves for both models suggest

good discriminative power as the higher the risk decile, the more rapid treatment cases the risk

decile includes. In addition, the model performance was consistent across calendar years (Fig 3).

Table 2. Demographic and physiological characteristics.

Demographic Characteristic Overall Group 1 Group 2

(n = 4,735) (n = 6,855)

Age, mean (sd) 57 (17) 57 (16) 58 (18)

Sex, n (%)
Female 6,068 (52) 2,202 (47) 3,773 (55)

Male 5,522 (48) 2,533 (53) 3,062 (45)

Race, n (%)
White 7,633 (66) 2,917 (62) 4,573 (67)

Black 2,570 (22) 1,278 (27) 1,367 (20)

Asian 166 (1) 52 (1.1) 109 (1.6)

Othera 1,223 (11) 469 (9.9) 787 (11.4)

Ethnicity, n (%)
Non-Hispanic 10,640 (92) 4,385 (93) 6,281 (92)

Hispanic 918 (8) 350 (7) 574 (8)

Physiological Characteristics

Initial Temperature (˚C) mean (sd) 37.3 (1.20) 37.3 (1.15) 37.3 (1.22)

Initial Hear Rate (/min) mean (sd) 108 (19.7) 108 (17.8) 108 (20.4)

Initial Respiratory Rate (/min) mean (sd) 22 (6.7) 22 (6.2) 22 (7.0)

Initial WBC counts (K/uL) median (IQR) 14 (9.4, 19) 13 (8.6, 17.9) 14 (9.7, 19.7)

Temperature�38˚C or�36˚Cb n (%) 5,126 (44) 1,772 (37) 3,213 (47)

Heart Rate�90/minb n (%) 10,792 (93) 4,403 (93) 6,386 (93)

Respiratory Rate�20/minb n (%) 9,518 (82) 3,731 (79) 5,718 (83)

WBC counts >12K/uL or <4K/uL n (%) 9,623 (83) 3,782 (80) 5,776 (84)

Logistic Organ Dysfunction Score

LODS within first 3hr since triage mean (sd) 1.9 (1.80) 1.9 (1.59) 2.5 (2.12)

LODS prior to initial antibiotics mean (sd) 2.5 (2.05) 2.1 (1.62) 2.6 (2.17)

aThe catch-all “Other” category includes: American Ind/Pac Islander/Two Races, Other and Unknown.
bAll the SIRS events are captured within first 48 hours during ED stay.

https://doi.org/10.1371/journal.pone.0250923.t002
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The middle point of each bar represents the corresponding performance metric over valida-

tion set within certain calendar year group. Upper and lower bounds of each bar correspond

to 95% bootstrapping confidence interval for each metric. The model performance was consis-

tent across calendar years.

A Spearman correlation test (0.6 [0.43–0.76]) suggested that the feature rankings of the two

models were statistically different. However, both models identified 8 common risk factors

among the top 20 factors: maximum Glasgow Coma Scale (GCS), minimum heart rate, initial

temperature, initial WBC count, initial serum creatinine (SCr), minimum diastolic blood pres-

sure (DBP), initial platelet count and age (Fig 4). Among Group 1 patients, the majority of the

top 20 most impactful factors to the model were components of the initial physiological pro-

files, such as: increased bilirubin on first measure or bilirubin increase from pre-hospitaliza-

tion baseline, arterial pH, blood pressure, heart rate, respiratory rate, SpO2, and INR. The

most impactful factors specific to Group 2 patients were more likely to represent the mini-

mum, maximum, or mean of values before the prediction point: minimum and maximum

mean arterial pressure, minimum and maximum systolic blood pressure (SBP), mean heart

rate, and maxima of respiratory rate, temperature, or total CO2.

Fig 5 further depicts the full details of marginal effects of top 12 most impactful features for

both models (for better resolution, we reported the remaining marginal effects for next top

13–20 most impactful features in S2 Appendix), which can be used to identify specific value

ranges that have strong positive or negative association with rapid treatment. For both Group

1 and Group 2 patients, the presence of a recorded GCS was associated with a reduction in

odds ratio of rapid treatment by a factor of 0.3 to 0.6, while the absence of a recorded GCS was

associated with an increase of odds ratio by a factor of 1.2 to 1.3. A more rapid minimum heart

rate was associated with increasing likelihood of rapid treatment. The odds ratio for rapid

treatment was significantly increased among both Group 1 and Group 2 patients when the

minimum heart rate was�100 beats/min. Initial temperature showed a U-shaped relationship,

Table 3. Bundle component timing.

Bundle Components Group 1 (n = 4,735) Group 2 (n = 6,855)

n (%, median hours since
triage

n (%, median hours since triage

[IQR]) [IQR])

Blood Culture 3,923 (83%, 1.3 [0.8, 4.3]) 5,857 (85%, 1.3 [0.6, 4.5])

Antibiotic Administration 4,032 (85%, 3.2 [2.1, 5.4]) 6,098 (89%, 2.9 [1.7, 4.6])

Initial Lactate 2,533 (53%, 2.9 [2.1, 5.8]) 4,387 (64%, 3.4 [2.7, 6.0])

IV Fluid Bolus Begin NA 5,402 (79%, 7.4 [2.7, 27.4])

IV Fluid Bolus Complete NA 3,150 (46%, 28.4 [10.2, 79.2])

Bundle Completeness

At least initiated 4,573 (97%, 1.2 [0.4, 3.4]) 6,855 (100%, 0.9 [0.4, 2.4])

At least initiated therapeutic components 2,013 (42%, 4.2 [3.1, 6.4]) 3,068 (26%, 3.6 [2.3, 5.2])

Completion of bundle components (except for IV

Fluid Bolus)

1,393 (29%, 4.7 [3.3, 8.0]) 3,920 (57%, 4.4 [3.0, 7.2])

Completion of all bundle components 1,393 (29%, 4.7 [3.3, 8.0]) 1,925 (17%, 27.5 [10.4, 80.0])

Rapid completion of bundle components 506 (10.7%, 2.0 [1.4, 2.6]) 148 (2.2%, 1.8 [1.3, 2.3], 1.0 [0.4,

1.4]a)

aThe first time is the completion of bundle components since triage (except for IV fluid bolus); the second time is the

completion of 2 L bolus since fluid initiation.

https://doi.org/10.1371/journal.pone.0250923.t003
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with significant increase of odds ratio when� 36˚C or� 39˚C for the non-hypotensive

patients. However, the relationship of temperature to rapid treatment was more monotonic

among Group 2 patients, with significant increases in odds ratio for rapid treatment when ini-

tial temperature was� 39˚C. The odds ratio for rapid treatment was increased by a factor of

1.5 by an initial SCr� 1.5 mg/dL among Group 2 patients; however, the magnitude of this

effect was substantially lower and less consistent among Group 1 patients.

Other features associated with significant increases in odds ratio for rapid treatment were

specific to either group. For Group 1 patients (Fig 5A), an initial bilirubin increase from base-

line by� 1.0 mg/dL, initial arterial pH value� 7.4, initial WBC count� 20,000/mm3, or an

initial heart rate� 120 beats/min were associated with significant increased odds ratios for

rapid treatment. For Group 2 patients (Fig 5B), multiple representations of blood-pressure-

related factors were shown to be important, such as minimum SBP, DBP and MAP, maximum

Fig 2. Prediction performance metrics.

https://doi.org/10.1371/journal.pone.0250923.g002
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SBP and MAP, and mean SBP. However, these values were not necessarily correlated with one

another (Fig 6). A minimum SBP or MAP� 90 mmHg, or a mean SBP� 100 mmHG was sig-

nificantly associated with increased likelihood of rapid treatment, while a minimum DBP� 60

mmHg was associated with moderately higher chance of rapid treatment. Additionally, a

mean heart rate� 120/min, and/or an initial SCr increase�1 mg/dL, and/or missing maxi-

mum total CO2 or temperature were associated with significantly increased odds ratios for

rapid treatment (S2 Appendix).

Discussion

Early and aggressive treatment of sepsis with antibiotics and fluids can be lifesaving [25–28].

Yet, in spite of educational efforts, reporting measures, and even regulations mandating hospi-

tal protocols for sepsis diagnosis and treatment, many patients who should be rapidly treated

are not [2, 29, 30]. An understanding of what patient factors are associated with rapid treat-

ment (or slow treatment) may allow for beneficial changes in education, individualized presen-

tation of data in the EMR, or consistency in approach to septic patients.

We used a data-driven machine learning approach to evaluate which clinical features that

are present early in a patient’s hospital course have been associated with rapid sepsis treatment

by physicians in our institution. Our initial investigations began with logistic regression

modeling. However, this modeling was limited in two important ways. First, the variables to

input into the model were based upon prior clinical knowledge and did not allow for discovery

of latent variables that may be important but that were not already intuitive. Second, logistic

regression forces linear and independent behavior of variables that, themselves, may be non-

linear and highly correlated.

Fig 3. Model performance comparisons over calendar years.

https://doi.org/10.1371/journal.pone.0250923.g003
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Our study spanned more than a decade of care that encompassed both Sepsis-2 and Sepsis-

3 diagnostic criteria, as well as continuous quality improvement efforts to speed care delivery

for sepsis. Because the elements of the treatment bundle are relatively basic—antibiotics and

intravenous fluids—it is likely that the specific bundle recommendation and the timing recom-

mended by the bundle play only a small role in the rapidity with which physicians treat septic

patients. We believe that we have identified patient features that may well promote rapid deliv-

ery of basic resuscitative therapies, regardless of the timing recommendations by the SSC

guidelines. We developed two models for subgroups, determined by the presence or absence

of hypotension or lactate� 4. Both models demonstrated good performance. Model 2 demon-

strated better predictive ability, indicating that rapid delivery of treatment bundles is more

uniform in these patients.

Although each model identifies more than 100 factors associated with rapid treatment,

some general patterns based on the most impactful clinical features emerge. For example,

instead of specific values of the SIRS criteria or counts of SIRS criteria met, we identified that

ranges of values for temperature, WBC count, heart rate and respiratory rate were associated

with rapid 3-hour bundle treatment. This suggests that physicians rely on ranges of findings,

rather than on specific thresholds when making treatment decisions. Some findings were intu-

itive and predictable, such as that minimal blood pressure among hypotensive patients was

associated with more rapid treatment. Other findings are less intuitive, such as that the pres-

ence of any recorded GCS was associated with slower treatment. GCS was less likely to be fre-

quently recorded when it was normal. We hypothesize that patients with abnormal GCS may

slow sepsis treatment, because they first receive CT scans or other evaluations to evaluate other

Fig 4. Variable importance plot for Model 1 and Model 2. The importance score of each variable has been scaled to a maximum value of 100. The colors

indicate marginal associations of variables with rapid treatment, which are abstractions calculated by comparing SHAP values at 25th, 50th and 75th percentiles

of the variable values.

https://doi.org/10.1371/journal.pone.0250923.g004
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causes of abnormal mental status. Age is also an important feature for rapidity of treatment,

such that patients over 60 years of age who were not hypotensive received treatment more rap-

idly than younger patients. However, among hypotensive patients age over 70 was associated

with slower treatment (S2 Appendix).

Rather than focusing on features that predict the diagnosis of sepsis, these studies focus on

features that predict more rapid treatment of sepsis. To the extent that more rapid treatment is

associated with improved sepsis outcomes, the data could be of use in designing more effective

Fig 5. Marginal effects of variables ranked top 12 for Model 1 (Panel A) and Model 2 (Panel B) based on SHAP values, i.e. exponential of the SHAP value. Each dot

represents an average change of odds ratio for a variable, taking certain values within a bootstrapped sample. Each colored vertical line depicts a 95% bootstrap confidence

interval based on 100 bootstrapped samples. A brown line suggests an odds ratio change significantly higher than 1.0; a blue line suggests an odds ratio change significantly

lower than 1.0; a yellow line suggests an odds ratio not significantly different from 1.0. Orange dots represent the odds ratio effect of not having the particular data point

recorded for the model. The dashed horizontal line shows an odds ratio of 1.

https://doi.org/10.1371/journal.pone.0250923.g005
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EMR presentations that provide physicians with improved situational awareness and promote

desired behavior. These studies cannot establish causality, but they may provide insights into

factors that motivate physicians to treat faster when sepsis is present. Much as Amazon pro-

motes specific products or Google promotes specific advertisements based on modeling of pre-

vious behavior, alerting mechanisms that highlight the appropriate features when they are

present, i.e. those features historically associated with more rapid treatment, could more effec-

tively stimulate providers to speed therapy than do simple alerts based on the presence or

absence of sepsis. Because physician behavior varies from one hospital to another, incorpo-

ration of these findings in the EMR would require local model implementation and continu-

ous learning within each hospital, which could be accomplished either by local servers or by a

cloud implementation that could be informed by data from many hospitals. As discussed in

[31], awareness and compliance with protocols can be difficult to maintain in the absence of

an effective clinical pathway, which requires careful planning and dedicated resources. A better

understanding of alerting features associated with rapid treatment would provide useful and

evidence-based insights to a better design for creating such clinical pathways and continuous

education.

The majority of the most impactful patient features involve vital signs data. Although that

information might have been anecdotally predicted, we believe this to be the first study dem-

onstrating associations of vital signs data with rapidity of treatment for sepsis. Certain features

are machine generated, such as mean respiratory rate over time, which is not a known diag-

nostic or prognostic parameter in sepsis. However, it seems possible, even likely that

Fig 6. The correlation heatmap among different abstractions of the same clinical variable with repeated measurement. Note that the “Initial” values are

not always very different from the other types of summaries.

https://doi.org/10.1371/journal.pone.0250923.g006
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physicians may, in fact, consciously or unconsciously make judgements and take actions

related to it. Though it would be of interest, it is not necessary to understand exactly why or

how the clinical features promote the desired behavior, which is to say that our studies do not

predict the physician thought process, only the outcome of that process.

Our study has several limitations. Since we used only structured EMR data, the definition

of suspected infection was based on clinicians’ perceptions of infection, as evidenced by the

actions of obtaining blood cultures and initiating antibiotics; we are unable to ascertain more

detail about how and why infection was suspected. The actual indication that a physician has

diagnosed infection is routinely captured in free-text clinical notes; to further this research,

one would need to incorporate free-text nursing and physician notes using natural language

processing tools. The diagnostic criteria we used were those of the Sepsis-1 and 2 consensus

conferences, chosen because they were the extant diagnostic criteria throughout the vast

majority of the study period, and physicians and other providers would have been familiar

with them. Lactate value was not used in the learning even though it may be a strong predictor,

because of the need to prevent “label leakage”, since the prediction targets for both models

under the Sepsis 1 and 2 criteria are partially defined by initial lactate. This factor would be

mitigated in Model 1, if Sepsis 3 diagnostic criteria were applied to the cohort, since lactate is

not a defining feature of sepsis in those criteria. Our data sources do not include social factors

that may impact rapidity of treatment, such as presenting symptoms [32], income level, educa-

tional level, occupation, or zip code, nor were we able to capture such features as staffing ratios,

pharmacy volumes, or ER wait times; these factors could well affect clinician recognition of

sepsis and treatment decision making. We did find that time of day did not significantly affect

rapid sepsis treatment (Table 1). Data are analyzed on an encounter level, and it is possible

that a given patient could exist in both the training data and the validation data. Finally, we

have demonstrated association, not causation, and it is impossible to determine whether we

have described overt patient characteristics or latent provider characteristics. However, we

have no record of individual provider characteristics that could inform the models. Further,

the data provide no insights into how providers arrived at decisions to treat patients with the

associated features, only that they did, i.e. the models do not replicate physician thought pro-

cesses in any way, but are predictive of physician behavior.

Conclusion

We developed machine-learning models for accurately predicting rapid treatment of patients

with sepsis in the emergency department and identified clinical factors that are commonly

available and that physicians may recognize and use but that are not a part of standard thresh-

olds. These studies may be useful to inform a new generation of EMR sepsis alerting tools.
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