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Abstract

Individual differences in brain anatomy can be used to predict variations in cognitive ability. Most 

studies to date have focused on broad population-level trends, but the extent to which the observed 

predictive features are shared across sexes and age groups remains to be established. While it 

is standard practice to account for intracranial volume (ICV) using proportion correction in both 
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regional and whole-brain morphometric analyses, in the context of brain-behavior predictions 

the possible differential impact of ICV correction on anatomical features and subgroups within 

the population has yet to be systematically investigated. In this work, we evaluate the effect of 

proportional ICV correction on sex-independent and sex-specific predictive models of individual 

cognitive abilities across multiple anatomical properties (surface area, gray matter volume, and 

cortical thickness) in healthy young adults (Human Connectome Project; n = 1013, 548 females) 

and typically developing children (Adolescent Brain Cognitive Development study; n = 1823, 979 

females). We demonstrate that ICV correction generally reduces predictive accuracies derived 

from surface area and gray matter volume, while increasing predictive accuracies based on 

cortical thickness in both adults and children. Furthermore, the extent to which predictive models 

generalize across sexes and age groups depends on ICV correction: models based on surface 

area and gray matter volume are more generalizable without ICV correction, while models 

based on cortica thickness are more generalizable with ICV correction. Finally, the observed 

neuroanatomical features predictive of cognitive abilities are unique across age groups regardless 

of ICV correction, but whether they are shared or unique across sexes (within age groups) depends 

on ICV correction. These findings highlight the importance of considering individual differences 

in ICV, and show that proportional ICV correction does not remove the effects of cranial volume 

from anatomical measurements and can introduce ICV bias where previously there was none 

ICV correction choices affect not just the strength of the relationships captured, but also the 

conclusions drawn regarding the neuroanatomical features that underlie those relationships.
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1. Introduction

A primary goal of research in the brain sciences is to establish the relationship between 

neurobiological features and behavioral traits, allowing for both the understanding and 

prediction of individual differences across health and disease (Yarkoni and Westfall 2017; 

Kohoutová et al., 2020; Bzdok and Yeo 2017). While there is an extensive history of work 

linking specific neuroanatomical properties with focused areas of cognition and behavior, 

only recently have large-scale collaborative efforts begun to provide the power necessary 

for data-driven discovery science (Somerville et al., 2018; Van Essen et al. 2013; Casey et 

al., 2018; Alexander et al., 2017; Holmes et al., 2015; Sudlow et al., 2015; Satterthwaite et 

al., 2014). Mounting evidence suggests that core features of brain anatomy are predictive 

of human behavior, but vary widely across populations and change across development 

within individuals (Bethlehem et al., 2021). Although this work has traditionally taken a 

cross-sectional, group-level approach, there is a growing understanding of the importance 

of accurately translating predictive models across both adult and developmental populations 

(Rosenberg, Casey, and Holmes 2018). To date, however, there is little empirical data on 

how the choice of both anatomical features and associated covariates may impact predictive 

accuracy or model generalizability, particularly within distinct demographic groups.
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Across the cerebral cortex, individual variability in anatomical features, including surface 

area, gray matter volume, and cortical thickness, are predictive of a diverse set of behavioral 

traits, ranging from cognition (Seidlitz et al., 2018) to personality and mental health 

(Ooi et al., 2022). The establishment of meaningful imaging-based predictive models 

requires accurate and reliable measurements (Ge et al., 2017). Although, the within-sample 

predictions derived from brain anatomy generally account for less variance than those 

based on patterns of function and/or connectivity (Mansour et al., 2021; Dhamala et al., 

2021; Ooi et al., 2022), anatomical estimates are highly reliable (Holmes et al., 2015), 

highlighting their potential utility for brain-behavior predictive modeling. Relationships 

between neuroanatomical properties and cognitive abilities vary across the sexes (Gur et 

al., 1999; Gur and Gur 2016) and between healthy and clinical populations (Ehrlich et al., 

2012; Hartberg et al., 2011) throughout the lifespan (Krogsrud et al., 2021). These studies, 

while crucial for the establishment of the neuroanatomical correlates of behavior, have 

largely focused on univariate analyses, leaving much to be understood about the multivariate 

associations that exist throughout the brain.

The volume of the cranium, typically referred to as intracranial volume (ICV) or estimated 

total intracranial volume, was historically thought to increase during development and 

remain stable throughout adulthood (Matsumae et al., 1996), with larger volumes in males 

than in females throughout the lifespan (De Bellis et al. 2001; Cosgrove et al., 2007). 

More recent studies have confirmed greater ICV in males as well as changes in ICV 

throughout the lifespan (Caspi et al., 2020; Mills et al., 2016). ICV shows significant 

increases throughout childhood and adolescence (Mills et al., 2016; Dong, Castellanos, et 

al. 2020), followed by gradual increases in early adulthood until the fourth decade of life 

after which it begins to decrease (Caspi et al., 2020). These changes in ICV parallel shifts 

in cortical expansion (Hill et al., 2010), myelination (Grydeland et al., 2019), structure-

function coupling (Baum et al., 2020), and functional maturation of association networks 

(Dong et al., 2021) throughout the lifespan (Sydnor et al., 2021). Across development, males 

exhibit larger ICV relative to females, along with a steeper rate of change during childhood 

and adolescence, as well as higher reduction rates after the fifth decade of life (Caspi et al., 

2020). When investigating neuroanatomical properties (and their relationships to behavior) 

across the sexes and in different age groups, it is standard to correct for variations in ICV 

(Pintzka et al., 2015; Buckner et al., 2004), as corrected properties are assumed to be 

more valid than uncorrected measures (Sanfilipo et al., 2004), providing regional anatomical 

estimates unbiased by global shifts in head size across the population. However, different 

ICV correction methods can unintentionally introduce biases pertaining to cranial volume 

into the regional anatomical estimates. Critically, ICV itself is also related to behavioral 

and psychological constructs of interests, including cognition (Van Loenhoud et al. 2018; 

MacLullich et al., 2002). Accordingly, the use of ICV correction may influence relationships 

between neuroanatomical properties and other variables of interest, an effect that could vary 

in impact across populations.

The presence of sex and/or gender differences in brain anatomy (e.g., Joel et al., 2015; 

Chekroud et al., 2016) and associated brain-behavior relationships has been a subject of 

pointed debate in the field (Ingalhalikar et al., 2014; Wierenga et al., 2019; Gur and Gur 

2016). Several groups have investigated multivariate brain-behavior relationships in males 
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and females (Dhamala et al., 2022; Jiang et al., 2020, et al. 2020). While some data 

suggests the presence of dissociable functional connections and neuroanatomical features 

underlying cognitive abilities in men and women (Jiang et al., 2020, et al. 2020), other 

work has revealed that both sexes rely on shared functional connections (Dhamala et al., 

2022). However, this prior work has largely neglected the possible differential impact of ICV 

correction across the sexes, which could serve to amplify or mask group-level predictive 

features. Along these lines, recent work indicates that ICV correction methods can reduce 

both univariate sex differences and the accuracy of multivariate sex prediction based on gray 

matter volume (Sanchis-Segura et al., 2019; Sanchis-Segura et al., 2020). Meanwhile, in 

clinical populations, ICV correction can alter the relationships captured between regional 

neuroanatomical properties and behaviors (Voevodskaya et al., 2014). Although these data 

suggest ICV correction can influence both the results and their subsequent interpretation, 

it remains to be established whether these effects are consistent between sexes. Moreover, 

given the unique trajectories of ICV and regional neuroanatomy during development and 

adulthood (Caspi et al., 2020; Voevodskaya et al., 2014), it is likely that ICV correction will 

have differential effects across the lifespan.

In the current study, we sought to uncover the extent to which a widely used ICV correction 

method, proportion correction, might differentially bias brain-behavior predictions and 

associated interpretations across diverse populations. To directly address this open question, 

we investigated the sex-independent and sex-specific effects of accounting for individual 

differences in ICV using proportional corrections on predictions of cognition based on 

surface area, gray matter volume, and cortical thickness in healthy young adults from the 

Human Connectome Project (HCP) and typically developing children from the Adolescent 

Brain Cognitive Development (ABCD) dataset. First, examining the differences in predictive 

accuracy based on ICV-uncorrected and ICV-(proportion)-corrected neuroanatomical 

measures, we demonstrate that ICV correction reduces predictive accuracies achieved by 

sex-independent and sex-specific models based on surface area and gray matter volume but 

increases predictive accuracies achieved by models based on cortical thickness. Second, 

evaluating the effects of ICV correction on model generalizability across sexes and datasets, 

we determine that predictive models based on uncorrected measures of surface area and 

gray matter volume are more generalizable than their corrected counterparts. Conversely, 

models based on ICV-corrected measures of cortical thickness are more generalizable 

than their uncorrected counterparts. Third, investigating the influence of ICV correction 

on the associations identified between neuroanatomical features and cognitive abilities, we 

reveal that distinct neuroanatomical features are associated with cognition across children 

and adults regardless of ICV correction, but those associations are shared across sexes 

for uncorrected measures of surface area and gray matter volume and for ICV-corrected 

measures of cortical thickness. Collectively, these results highlight the differential effects 

of ICV correction on behavioral predictions across neuroanatomical features, sexes, and 

age groups. Based on these findings, we speculate that ICV carries behaviorally relevant 

information, and this must be taken into consideration when developing predictive models 

to capture brain-behavior relationships across distinct populations that are likely to differ in 

ICV.

Dhamala et al. Page 4

Neuroimage. Author manuscript; available in PMC 2022 October 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2. Methods

An overview of our experimental workflow is shown in Fig. 1. The methods used in this 

study build upon those previously described in our prior work (Dhamala et al., 2021; 

Dhamala et al., 2022; Anderson et al., 2021; Ooi et al., 2022) to perform novel analyses 

investigating effects of intracranial volume correction on sex-independent and sex-specific 

predictive modeling of behavioral traits in distinct populations.

2.1. Datasets

We considered healthy young adult participants from the Human Connectome Project 

(HCP) – Young Adult S1200 release (Van Essen et al. 2013). The HCP dataset is a 

community-based sample of twins, siblings, and unrelated individuals who were assessed on 

a comprehensive set of neuroimaging and behavioral batteries. After pre-processing quality 

control of imaging data, as described in (Li et al., 2019; Kong et al., 2021; Ooi et al., 2022), 

we filtered participants based on availability of anatomical scans and behavioral scores of 

interests (Fig. 1 A). Our final HCP sample comprised 1013 adults (548 males; 22–37 years 

old). Although the term gender is used in the HCP Data Dictionary, the term sex is used 

in this article because the database collected self-reported biological sex information as 

opposed to gender identification.

We also considered typically developing children from the Adolescent Brain Cognitive 

Development (ABCD) 2.0.1 release (Casey et al., 2018). The ABCD dataset is a 

large community-based sample of children and adolescents who were assessed on a 

comprehensive set of neuroimaging, behavioral, and developmental batteries. After pre-

processing quality control of imaging data, as described in (Ooi et al., 2022; Chen et al., 

2022), we filtered participants based on availability of anatomical scans and behavioral 

scores of interest (Fig. 1 B–C). Our final ABCD sample comprised 1823 children (979 

males; 9–10 years old).

2.2. Image acquisition and processing

Minimally processed T1-weighted anatomical images (0.7 mm isotropic for HCP; 1.0 mm 

isotropic for ABCD) were used for the analyses. Details about the acquisition protocol and 

processing pipelines are described elsewhere for HCP (Glasser et al., 2013; Marcus et al., 

2013) and ABCD (Hagler et al., 2019). Briefly, for HCP, the T1-weighted images underwent 

gradient distortion correction, followed by alignment to match the MNI template, and the 

anterior commissure/posterior commissure axis while maintaining the original brain size and 

shape. Then, an initial robust brain extraction was performed, and a field map was used to 

remove readout distortion to produce the minimally processed T1-weighted image (Glasser 

et al., 2013; Marcus et al., 2013). For ABCD, the T1-weighted images underwent gradient 

distortion correction and bias field correction. Next, the images were aligned to match an 

average reference brain in standard space and the anterior commissure/posterior commissure 

axis to produce the minimally processed T1-weighted image (Hagler et al., 2019).
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2.3. Behavioral data

The NIH Toolbox Cognition Battery is an extensively validated battery of 

neuropsychological tasks used to assess language, executive function, episodic memory, 

processing speed, and working memory based on seven individual test instruments (Fig. 

1B) (Carlozzi et al., 2017; Gershon et al., 2013; Heaton et al., 2014; Mungas et al., 2014; 

Weintraub et al., 2013; Weintraub et al., 2014; Zelazo et al., 2014; Zelazo and Bauer 

2013). Initial factor analysis of the individual task scores yields three composite scores: 

total, crystallized, and fluid. Broadly, crystallized cognition represents language abilities, 

while fluid cognition represents executive function, episodic memory, processing speed, and 

working memory. These composite scores tend to be more reliable and stable but may fail to 

capture variability in individual tasks (Heaton et al., 2014). Accordingly, all individual task 

scores as well as the composite scores were used in the analyses.

2.4. Neuroanatomical features

For each participant, the native fs_LR32k surface space was projected onto the 400-region 

Schaefer parcellation (Schaefer et al., 2018) using HCP workbench, and the T1-weighted 

anatomical image was used to extract cortical surface area, cortical gray matter volume, and 

cortical thickness for each of the 400 regions of interest (ROIs) using FreeSurfer 6.0′ s 

mris_anatomical_stats (Dale et al., 1999) (Fig. 1C). Measures of intracranial volume (ICV) 

were obtained from FreeSurfer’s estimated total intracranial volume. Surface area, gray 

matter volume, and thickness were proportionally corrected for individual differences in ICV 

by dividing the raw values by ICV. Both ICV-uncorrected and ICV-corrected anatomical 

measures were used in the analyses. Regional measures were also summarized at a network-

level by computing the sum of the surface areas and gray matter volumes and the average 

of cortical thickness measures across all parcels within a network. Correlations between 

network-level measures of neuroanatomical features and ICV, as well as between ICV and 

the cognitive scores, age and the cognitive scores, and age and ICV were computed in a 

sex-specific manner for each dataset using Pearson’s correlation.

2.5. Predictive modelling

Linear ridge regression models and more complex deep learning algorithms achieve 

comparable predictive accuracies of behavioral traits based on neuroimaging data (He et 

al., 2020), but linear ridge regression models are less computationally expensive and more 

interpretable. In this study, sex-independent and sex-specific linear ridge regression models 

were trained to predict each behavioral score (individual task scores and composite scores) 

based on each anatomical measure (intracranial volume, surface area, gray matter volume, 

thickness) (Fig. 1D). Separate models were trained for ICV-uncorrected and ICV-corrected 

measures of surface area, gray matter volume, and thickness, as well as for each of the 

two datasets (HCP and ABCD). Sex-independent models were trained on data from all 

subjects, while male- and female- specific models were trained only on data from males 

and females, respectively. For each model, data were randomly shuffled and split into 100 

distinct train (66%) and test sets without replacement. For the HCP data, family structure 

was considered when splitting the data such that related participants were placed either in 

the train or the test set but not split across both. Similarly, for the ABCD data, imaging 
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site was considered such that all participants from a given site were placed either in the 

train or the test set but not split across both. The regularization parameter was optimized 

using three-fold cross-validation within the training set. Family structure and imaging site 

were similarly accounted for in the cross-validation as in the initial train-test split. Once 

optimized, sex-independent models were evaluated on test sets from both datasets while 

sex-specific models were evaluated on test sets from both datasets and across both sexes. 

This was repeated for the 100 distinct train-test splits to obtain a distribution of performance 

metrics. The accuracy of each model is defined as the correlation between the true and 

predicted behavioral scores for each split. Average accuracy was computed by taking the 

mean across the 100 distinct train-test splits.

2.6. Model significance

All models were evaluated on whether they performed better than chance using null 

distributions of performance as previously described (Dhamala et al., 2021; Dhamala et 

al., 2022; Parkes et al., 2021). For each predictive model, the behavioral score was randomly 

permuted 10,000 times. Each permutation was used to train and test a null model using 

a randomly selected regularization parameter from the set of selected parameters for the 

original model. Prediction accuracy from each of the original model’s 100 train-test splits 

were then compared to the median prediction accuracy from the null distribution. The 

p-value for the model’s significance is defined as the proportion of 100 original models 

with prediction accuracies less than or equal to the median performance of the null model. 

In other words, a model is considered to be significant if it performed better than the 

median null performance for more than 95 of the 100 original models. The p values were 

then corrected for multiple comparisons across all cognitive scores using the Benjamini-

Hochberg False Discovery Rate (q = 0.05) procedure (Benjamini and Hochberg 1995).

2.7. Model comparisons

Models trained on ICV-uncorrected versus ICV-corrected anatomical measures were 

compared to one another to evaluate significant differences in performance using a two-

tailed exact test of differences (MacKinnon 2009) as previously described (Dhamala et al., 

2021). The p-value for the model comparison is defined as the proportion of pairs of 100 

models where one model’s prediction accuracy either is less than or equal to the other 

model. In other words, one model is considered to be significantly better than the other 

model if it performed better than the other for more than 95 of the 100 paired models. The 

p values were then corrected for multiple comparison across all cognitive scores using the 

Benjamini-Hochberg False Discovery Rate (q = 0.05) procedure (Benjamini and Hochberg 

1995).

2.8. Model generalizability

For sex-independent models, models trained on a given dataset were evaluated on both 

datasets. For each anatomical modality, an average model prediction accuracy was computed 

for each train/test dataset combination by taking the mean prediction accuracy across all 

cognitive scores. For sex-specific models, models trained on a given sex from a given dataset 

were evaluated on both sexes from both datasets. For each anatomical modality, a model 

prediction accuracy was computed for each train/test dataset and sex combination by taking 
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the mean prediction accuracy across all cognitive scores. Model generalizability is defined 

as the accuracy obtained when a given model is evaluated on a population (i.e., a given sex 

and/or dataset) that is unique from the population in which it was trained. This is distinct 

from the model accuracy which is defined as the accuracy obtained when evaluating the 

model on a (hold out) test set that is from the same population as the training set. Model 

generalizability was also computed separately for each of the three cognitive domains; total 

(composite score only), crystallized (composite score and individual task scores), and fluid 

(composite score and individual task scores). Percent difference (% difference) between 

the ICV-uncorrected (runcorrected) and ICV-corrected (rcorrected) prediction accuracies was 

calculated as follows:

%Difference =
runcorrected − rcorrected
runcorrected + rcorrected

2

x100

2.9. Feature weights

Raw feature weights obtained from the linear ridge regression models were transformed 

used the Haufe transformation (Haufe et al., 2014) to increase their interpretability and 

reliability (Tian and Zalesky 2021; Chen et al., 2022). For each train-test split, the raw 

feature weights, W, the covariance of the input data (anatomical modality) from that train 

set, Σx, and the covariance of the output data (behavioral score) from that train set, Σy, were 

used to compute the Haufe-transformed feature weights, A, as follows:

A = ∑xW ∑y
−1

These Haufe-transformed feature weights were then averaged across the 100 splits to 

obtain a mean regional feature weight. To compare pairs of regression models, correlations 

between mean region feature weights were evaluated using Pearson’s correlation. Absolute 

regional feature weights were mapped to a network-level by assigning each Schaefer cortical 

parcel to one of 17 networks from the Yeo 17-network parcellation (Yeo et al., 2011) to 

generate network-level feature weights. Divergence in feature weights between models were 

evaluated using exact tests for differences.

2.10. Data and code availability

All data used in this study are openly available and can be accessed directly from 

the HCP (https://www.humanconnectome.org/study/hcp-young-adult) and ABCD (https://

abcdstudy.org/) websites. Code used to generate the results presented here are available on 

GitHub (https://github.com/elvisha/neuroanatomical-predictions-of-behaviour).

3. Results

3.1. Intracranial volume is uniquely related to brain anatomy across populations

Regional uncorrected and proportion-corrected measures of surface area, gray matter 

volume, and cortical thickness were summarized at the network-level by taking the sum 
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of the surface areas and gray matter volumes and average of cortical thickness measures 

across all parcels within a network. These uncorrected and proportion-corrected network 

summaries of the anatomical properties were then correlated with total intracranial volume 

(ICV) to evaluate network-specific relationships between the neuroanatomical features and 

ICV, as shown in Fig. 2.

Within the HCP dataset (Fig. 2A), correlations between uncorrected surface area and 

ICV ranged between 0.55 and 0.80 (mean ± standard deviation = 0.73 ± 0.06), with 

somewhat stronger relationships present in heteromodal association cortices (0.77 ± 0.02) 

than in unimodal somatosensory/motor (somato/motor) cortices (0.68 ± 0.07). Similarly, 

correlations between uncorrected gray matter volume and ICV ranged between 0.59 and 

0.80 (0.75 ± 0.05) with somewhat stronger relationships in heteromodal association cortices 

(0.78 ± 0.02) than in unimodal cortices (0.70 ± 0.06). However, for uncorrected cortical 

thickness, correlations were generally weaker and ranged between 0.06 and 0.24 (0.16 ± 

0.05), and somewhat stronger relationships were observed in unimodal (0.19 ± 0.05) than 

association cortices (0.14 ± 0.04).

Within the ABCD dataset (Fig. 2A), correlations between ICV and uncorrected surface 

area or gray matter volume were generally comparable across unimodal and heteromodal 

cortices. Correlations between uncorrected surface area and ICV ranged between 0.51 and 

0.74 (0.67 ± 0.06), while those between uncorrected gray matter volume and ICV ranged 

between 0.59 and 0.77 (0.69 ± 0.05). However, correlations between uncorrected cortical 

thickness and ICV exhibited the opposite pattern as that observed in HCP: correlations 

ranged between −0.02 and 0.30 (0.10 ± 0.08) with stronger relationships in heteromodal 

association cortices (0.14 ± 0.07) than in unimodal somato/motor cortices (0.05 ± 0.06). 

These data are consistent with prior work indicating a staggered maturation of cortical 

gray matter across development, in which the unimodal somato/motor and visual territories 

develop prior to the heteromodal association areas (Dong et al., 2021; Sydnor et al., 2021).

Across both datasets, correlations between all proportion-corrected neuroanatomical features 

and ICV were negative and comparable across unimodal and heteromodal cortices (Fig. 2B). 

In HCP, the correlations ranged between −0.38 and −0.59 (−0.47 ± 0.05) for surface area, 

−0.35 and −0.51 (−0.43 ± 0.05) for gray matter volume, and −0.91 and −0.95 (−0.94 ± 

0.01) for cortical thickness. In ABCD, they ranged between −0.18 and −0.41 (−0.27 ± 0.06) 

for surface area, −0.13 and −0.37 (−0.24 ± 0.07) for gray matter volume, and −0.87 and 

−0.93 (−0.91 ± 0.02) for cortical thickness. These data suggest that proportion correction 

is unsuccessful in removing all of the variance related to individual differences in ICV for 

surface area and gray matter volume, and instead introduces additional information about 

ICV into cortical thickness measures.

Similar results were observed when correlations between ICV and the neuroanatomical 

properties were evaluated in a sex-specific manner in HCP (Figure S1A, S2A) and ABCD 

(Figure S1B, S2B).

These data suggest that ICV is differentially related to structural organization of the cortex 

during childhood and adulthood. Moreover, correcting for individual differences in ICV 
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using the proportion correction method can induce distinct effects in populations across 

the lifespan and inadvertently introduce information about intracranial volume into the 

neuroanatomical measures.

3.2. Intracranial volume is distinctly related to abilities across cognitive domains

Sex-specific correlations between ICV and the ten cognitive scores (three composite, seven 

individual task) were computed (Figure S3A). Across both datasets and sexes, correlations 

between ICV and the total and crystallized composite scores ranged between 0.16 and 0.24. 

Similar correlations ranging from 0.14 to 0.22 were observed with individual task scores 

within the crystallized domain. Weaker relationships were identified between ICV and the 

fluid composite (0.08 – 0.18) as well as individual fluid task scores (0.00 – 0.15) with the 

exception of the Working Memory (List Sort) score (0.13 – 0.19). Sex-specific correlations 

between age and the ten cognitive scores were also computed (Figure S3B). In HCP, males 

and females exhibited mostly negative relationships between age and fluid abilities with 

correlations ranging from −0.18 to 0.03. Males exhibited positive relationships between 

age and crystallized abilities (0.11 – 0.23) while females exhibited no clear relationships 

(−0.04 – 0.03). In ABCD, both sexes exhibited positive relationships between age and 

cognition with correlations ranging between 0.06 and 0.36. Finally, sex-specific correlations 

between age and ICV were also analyzed (Figure S3C). Weak relationships were observed 

in HCP (r = 0.02 in males, r = −0.14 in females) and ABCD (r = 0.06 in males, r = 0.07 

in females). All observed correlations between ICV, cognitive scores, and age are small 

relative to historical standards and muted relative to correlations between ICV and regional 

neuroanatomical properties.

Sex-independent and sex-specific models were trained to predict the cognitive scores in 

both HCP (adults) and ABCD (children) based on ICV. Prediction accuracies obtained by 

these models are shown in Fig. 3. In HCP and ABCD, sex-independent and sex-specific 

models successfully predicted total and crystallized composite scores, as well as task scores 

within the crystallized domain (corrected p < 0.05). Across both datasets, mixed results were 

observed for sex-independent and sex-specific model predictions of fluid abilities where 

many predictions were not better than chance (corrected p < 0.05).

Relationships between brain volume and general intelligence have been previously reported 

(Gignac and Bates 2017). Here, in both children and adults, crystallized and fluid domains 

of cognition are differentially related to and predicted by ICV, suggesting ICV carries 

behaviorally relevant information that is partially distinct across cognitive domains. The 

observed opposite relationships between age and cognitive scores in children and adults 

also suggests that even within the relatively narrow age range, there may exist underlying 

associations between age and cognition. However, the lack of clear relationships between 

age and ICV suggest that any observed relationships between age and cognition are not 

driven by ICV.
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3.3. Intracranial volume correction differentially biases prediction accuracies across 
neuroanatomical features

Sex-independent models were trained to predict ten distinct behavioral scores using either 

ICV-uncorrected or ICV-corrected anatomical measures of surface area, gray matter volume, 

or cortical thickness in both HCP (adults) and ABCD (children). Prediction accuracies 

obtained by these models are shown in Fig. 4.

Sex-independent models based on uncorrected and corrected measures of surface area, 

gray matter volume, and cortical thickness successfully predicted (corrected p < 0.05) total 

composite scores and scores within the crystallized domain in both datasets, but generally 

only successfully predicted scores within the fluid domain in HCP.

Models trained to predict cognitive scores in HCP achieved higher mean prediction 

accuracies based on uncorrected measures of surface area (r = 0.190 for ICV-uncorrected, 

r = 0.142 for ICV-corrected) and gray matter volume (r = 0.200 for ICV-uncorrected, r 
= 0.153 for ICV-corrected), and corrected measures of cortical thickness (r = 0.119 for 

ICV-uncorrected, r = 0.174 for ICV-corrected) (Fig. 4A). Similarly, models trained to predict 

cognitive scores in ABCD yielded higher within-dataset mean prediction accuracies based 

on uncorrected measures of surface area (r = 0.114 for ICV-uncorrected, r = 0.064 for 

ICV-corrected) and gray matter volume (r = 0.123 for ICV-uncorrected, r = 0.087 for 

ICV-corrected), and corrected measures of cortical thickness (r = 0.106 for ICV-uncorrected, 

r = 0.142 for ICV-corrected) (Fig. 4B). While this general trend was evident across analyses, 

most of these differences were non-significant at the level of the individual cognitive scores 

being predicted (corrected p > 0.05). The one notable exception: models predicting cognitive 

scores within the crystallized domain in ABCD were significantly more accurate when using 

uncorrected measures of surface area or gray matter volume than when using their corrected 

counterparts.

Previous work has demonstrated that transformation of neurobiological variables can 

strengthen or weaken the brain-behavior associations captured by predictive models (Li et 

al., 2019). Our current findings show that ICV correction can similarly strengthen or weaken 

relationships between neuroanatomical features and individual cognitive abilities, revealing 

unique impacts in prediction accuracies across children and adults.

3.4. Effects of intracranial volume correction on prediction accuracies differ across sexes 
and age groups

Sex-specific models were trained to predict ten distinct behavioral scores using either ICV-

uncorrected or ICV-corrected anatomical measures of surface area, gray matter volume, or 

cortical thickness in both HCP and ABCD (Fig. 5).

Within datasets, sex-specific models based on uncorrected and corrected measures of surface 

area, gray matter volume, and cortical thickness generally successfully predicted (corrected 

p < 0.05) total composite scores and scores within the crystallized domain in females in 

both datasets. Sex-specific models generally successfully predicted (corrected p < 0.05) total 

composite scores and scores within the crystallized domain in males within both datasets 

when using uncorrected measures of surface area or gray matter volume, or ICV-corrected 
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measures of cortical thickness. Models trained to predict cognitive scores in HCP males 

achieved higher mean prediction accuracies when based on uncorrected measures of surface 

area (r = 0.149 for ICV-uncorrected, r = 0.053 for ICV-corrected) and gray matter volume 

(r = 0.146 for ICV-uncorrected, r = 0.061 for ICV-corrected), and corrected measures of 

cortical thickness (r = 0.019 for ICV-uncorrected, r = 0.119 for ICV-corrected) (Fig. 5A). 

Similarly, models trained to predict cognitive scores in HCP females achieved higher mean 

prediction accuracies when based on uncorrected measures of surface area (r = 0.188 for 

ICV-uncorrected, r = 0.123 for ICV-corrected) and gray matter volume (r = 0.194 for 

ICV-uncorrected, r = 0.141 for ICV-corrected), and corrected measures of cortical thickness 

(r = 0.128 for ICV-uncorrected, r = 0.174 for ICV-corrected) (Fig. 5B).

Models trained to predict cognitive scores in ABCD demonstrated similar trends. Higher 

mean prediction accuracies were achieved in males using models based on uncorrected 

measures of surface area (r = 0.093 for ICV-uncorrected, r = −0.003 for ICV-corrected) and 

gray matter volume (r = 0.106 for ICV-uncorrected, r = 0.035 for ICV-corrected), and ICV-

corrected measures of cortical thickness (r = 0.066 for ICV-uncorrected, r = 0.111 for ICV-

corrected) (Fig. 5C). Likewise, in females, higher mean prediction accuracies were achieved 

using models based on uncorrected measures of surface area (r = 0.152 for ICV-uncorrected, 

r = 0.071 for ICV-corrected) and gray matter volume (r = 0.140 for ICV-uncorrected, r 
= 0.092 for ICV-corrected), and ICV-corrected measures of cortical thickness (r = 0.079 

for ICV-uncorrected, r = 0.162 for ICV-corrected) (Fig. 5D). While differences based on 

uncorrected and corrected measures were generally non-significant at the level of individual 

cognitive scores, there were two noteworthy exceptions. First, models trained on uncorrected 

measures of surface area and gray matter volume in ABCD males and females significantly 

outperformed those trained on corrected measures (corrected p < 0.05) to predict cognitive 

scores within the crystallized domain. Second, models trained in ABCD females achieved 

significantly higher prediction accuracies (corrected p < 0.05) using uncorrected measures 

of surface area and gray matter volume, and ICV-corrected measures of cortical thickness to 

predict the Working Memory task score. Finally, within-dataset prediction accuracies were 

typically numerically higher in females than in males in HCP and ABCD.

In line with previous work, these data highlight the presence of differential brain-behavior 

predictive relationships across the sexes (Dhamala et al., 2022; Jiang et al., 2020, et al. 

2020). These results also emphasize the unique effects of ICV correction not just across age 

groups, but also across sexes within a given age group.

3.5. Intracranial volume differentially influences generalizability of predictive models 
across neuroanatomical features, sexes, and age groups

Sex-independent models trained on each dataset were evaluated across both datasets. Mean 

prediction accuracies (across all cognitive scores) obtained by these models when evaluated 

within and between datasets are shown in Figure S4A. Prediction accuracies obtained for 

each cognitive score when evaluating the models between datasets are shown in Fig. 6.

Sex-independent models trained to predict cognitive scores in HCP (Figs. 6A, S4A) were 

more generalizable to ABCD based on uncorrected measures of surface area (r = 0.099 

for ICV-uncorrected, 0.007 for ICV-corrected) and gray matter volume (r = 0.093 for ICV-
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uncorrected, r = 0.013 for ICV-corrected), and corrected measures of cortical thickness (r 
= −0.044 for ICV-uncorrected, r = 0.079 for ICV-corrected). Similarly, models trained to 

predict cognitive scores in ABCD (Figs. 6A, S4B) were more generalizable to HCP based 

on uncorrected measures of surface area (r = 0.144 for ICV-uncorrected, r = −0.023 for 

ICV-corrected) and gray matter volume (r = 0.118 for ICV-uncorrected, r = −0.009 for ICV-

corrected), and corrected measures of cortical thickness (r = −0.036 for ICV-uncorrected, r = 

0.147 for ICV-corrected).

Sex-specific models trained on each sex from each dataset were evaluated across both sexes 

and both datasets. Mean prediction accuracies obtained by these models when evaluated 

within and between sexes and datasets are shown in Fig. 6B. Prediction accuracies obtained 

for each cognitive score when evaluating the models between datasets are shown in Figures 

S5–S8. In brief, sex-specific models exhibited similar overall trends in generalizability as 

those described for the sex-independent models above. Male- and female- specific models 

were more generalizable across sexes within datasets than they were across datasets when 

based on uncorrected measures of surface area or gray matter volume, or corrected measures 

of cortical thickness (Fig. 6B). Moreover, sex-specific models based on ICV-corrected 

measures of surface area or gray matter volume, or uncorrected measures of cortical 

thickness generally achieved negative mean prediction accuracies when evaluated between 

datasets (Fig. 6B).

Given the unique relationships between ICV and cognition across the different cognitive 

domains (total, crystallized, and fluid) outlined in Figure S3, we next examined each 

cognitive domain separately (see Figure S9 for the sex-independent models, and Figures 

S10–S12 for the sex-specific models). Sex-independent models trained to predict total 

cognition were more generalizable across datasets based on uncorrected measures of surface 

area (Figure S9A, left panel) and gray matter volume (Figure S9A, center panel), and 

corrected measures of cortical thickness (Figure S9A, right panel). Unsurprisingly, similar 

results were obtained for models trained to predict crystallized (Figure S9B) and fluid 

(Figure S9C) abilities, albeit at lower prediction accuracies for the fluid abilities.

Sex-specific models across each cognitive domain exhibited similar results as the sex-

independent ones (see Figures S10–S12 for the sex-specific models). Models predicting 

total (Figure S10), crystallized (Figure S11), and fluid (Figure S12) abilities were more 

generalizable to the opposite sex within datasets than they were to either sex in the opposite 

dataset when based on uncorrected measures of surface area and gray matter volume, 

or corrected measures of cortical thickness. Models typically did not generalize between 

datasets (i.e., achieved negative prediction accuracies) when based on corrected measures of 

surface area and gray matter volume, or uncorrected measures of cortical thickness.

Differences in accuracy between models based on the ICV-uncorrected and ICV-corrected 

measures were also computed for each cognitive domain to quantify the effect of ICV 

correction and are shown in Fig. 7A for the sex-independent models and Fig. 7B for the 

sex-specific models. Relatedly, percent differences in accuracy were also computed and 

are shown in Figure S13. As per the results described above, ICV correction reduced 

generalizability of models based on surface area (Fig. 7A–B, left panels) and gray 
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matter volume (Fig. 7A–B, center panels), and increased generalizability of models based 

on cortical thickness (Fig. 7A–B, right panels). Moreover, in line with the generally 

lower for predictions of fluid abilities, numerical differences between the uncorrected 

and corrected measures were somewhat smaller compared to the total and crystallized 

domains, but percent differences are broadly comparable across the cognitive domains 

for sex-independent and sex-specific models. For sex-independent models, greater effects 

of ICV correction are observed in all three cognitive domains when evaluating model 

generalizability across sexes/datasets than model accuracy within a given sex and dataset. 

Models trained to predict total cognition exhibited lower differences within datasets than 

between datasets for surface area (Fig. 7A, top left panel), gray matter volume Fig. 7A, 

top center panel), and cortical thickness (Fig. 7A, top right panel). Similar patterns of 

larger effects of ICV correction for predictions across datasets than within datasets were 

observed for sex-independent predictions of crystallized (Fig. 7A, middle panels) and 

fluid abilities (Fig. 7B, bottom panels). Sex-specific models to predict total (Fig. 7B, top 

panels), crystallized (Fig. 7B, middle panels), and fluid (Fig. 7B, bottom panels) abilities 

exhibited similar trends such that stronger effects of ICV correction were present when 

evaluating model predictions across datasets and sexes, than within datasets. Within datasets, 

predictions within and between sexes were generally similarly influenced by ICV correction 

in HCP and in ABCD.

Out-of-sample validation of predictive models using external datasets is typically considered 

the gold standard. These findings reveal that ICV correction more strongly affects out-of-

sample predictions using external datasets than predictions on hold-out test sets within 

a dataset. These data also show that the correction affects males and females equally. 

Although speculative, this perhaps reflects differences in brain-behavior relationships 

throughout development and adulthood.

3.6. Intracranial volume correction uniquely affects interpretations of brain-behavior 
relationships across neuroanatomical features and age groups

Regional Haufe-transformed feature weights were summarized at a network-level based 

on the Yeo 17-network solution (Yeo et al., 2011). Absolute relative network-level feature 

weights are shown in Fig. 8 for the sex-independent models and in Figure S14–S15 for 

the sex-specific models. Within each dataset, measures of surface area and gray matter 

volume exhibit similar associations with individual cognitive abilities regardless of ICV 

correction. In HCP, surface area within the visual networks and gray matter volume within 

the default mode, language, and control networks are strongly associated with cognition 

(Fig. 8A, left and center panels). In ABCD, surface area within the default mode network, 

and to a lesser extent the somatomotor network, as well as gray matter volume in the visual, 

somatomotor, and dorsal attention networks are strongly associated with cognition (Fig. 8B, 

left and middle panels). Uncorrected measures of cortical thickness across a diverse set 

of networks are associated with cognitive abilities in both datasets (Fig. 8A–B, top right 

panels). However, with ICV correction, opposing gradients of associations emerge in HCP 

and ABCD (Fig. 8A–B, bottom right panels). In HCP, cortical thickness of regions within 

heteromodal association cortices are most strongly associated with cognitive scores while 

regions within unimodal cortices are weakly associated. However, in ABCD, this pattern 
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is reversed and cortical thickness of regions within unimodal somato/motor cortices are 

most strongly associated with cognitive scores while regions within heteromodal association 

cortices are weakly associated.

These results emphasize that while ICV correction may not always affect network-level 

interpretations of brain-behavior relationships, it can reveal underlying relationships. The 

specific brain-behavior relationships we do capture, and the unique patterns they exhibit 

in the two datasets, are in line with prior work demonstrating non-linear maturation 

trajectories for cortical expansion, cortical thinning, intracortical myelination, functional 

maturation, and structure-function coupling (Sydnor et al., 2021) where unimodal somato/

motor networks achieve maturity earlier in childhood followed by heteromodal association 

cortices later in adolescence.

3.7. Intracranial volume correction differentially influences interpretations of brain-
behavior relationships across sexes

Feature weights used to predict cognitive scores were extracted from the sex-specific models 

and Haufe-transformed. Regional surface area and gray matter volume feature weights to 

predict the Total Composite score are shown in Fig. 9A, and regional cortical thickness 

feature weights to predict the Total Composite are shown in Fig. 10A. Across sexes and 

datasets, there are widespread positive associations between the uncorrected measures of 

surface area and gray matter volume, and cognitive scores throughout the whole brain (Fig. 

9A). However, with ICV correction, HCP males and females demonstrated significantly 

weaker surface area (corrected p < 0.05) and gray matter volume (corrected p < 0.05) 

associations with cognition. While similar trends are present in ABCD males and females, 

the decrease in the strength of the associations is not significant. Regional feature weights of 

cortical thickness exhibit slightly different trends: in HCP, males and females exhibit diffuse 

positive and negative associations between uncorrected measures of cortical thickness 

and cognitive abilities, while in ABCD, males generally exhibit positive associations and 

females exhibit pre-dominantly negative associations (Fig. 10A). However, across both sexes 

and datasets, there exist widespread strong negative associations between ICV-corrected 

measures of cortical thickness and cognition. These differences in associations between the 

uncorrected and ICV-corrected measures were not significant.

Correlations between the feature weights were also analyzed and are shown for surface 

area and gray matter volume in Fig. 9B, and for cortical thickness weights in Fig. 10B. 

Across datasets, there is little to no overlap in the features used to predict cognitive abilities 

based on uncorrected measures of surface area (average correlation between regional feature 

weights, r = 0.00) and gray matter volumes (r = −0.01) (Fig. 9B, top panels). However, 

within datasets, male- and female- specific models rely on shared features to predict 

cognitive scores based on uncorrected measures of surface area (r = 0.81 for HCP, r = 

0.81 for ABCD) and gray matter volume (r = 0.86 for HCP, r = 0.67 for ABCD). With ICV 

correction, across datasets, there remain little to no overlap in the features used by models 

based on surface area (r = 0.00) or gray matter volume (r = 0.01), but correlations observed 

within datasets between sexes are also generally reduced for both surface area (r = 0.24 for 

HCP, r = 0.29 for ABCD) and gray matter volume (r = 0.24 for HCP, r = 0.31 for ABCD) 
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(Fig. 9B, bottom panels). The opposite pattern is observed with cortical thickness: feature 

weights extracted from models using ICV-corrected measures are correlated across sexes (r 
= 0.80 for HCP, r = 0.78 for ABCD) but not datasets (r = −0.20), while those extracted from 

models using uncorrected measures are reduced across sexes (r = 0.43 for HCP, r = 0.32 for 

ABCD) and datasets (r = −0.04) (Fig. 10B).

Correcting for ICV can reduce univariate sex differences in neuroanatomical properties 

as well as multivariate predictions of biological sex (Sanchis-Segura et al., 2019; Sanchis-

Segura et al., 2020). Relationships between regional neuroanatomical properties and 

behaviors can also be altered by ICV correction in clinical populations (Voevodskaya et 

al., 2014). Our findings provide additional evidence that ICV correction can influence 

interpretation of regional-level brain-behavior relationships, particularly between sexes 

within a dataset. Based on these data, we emphasize that the unique effects of ICV 

correction across populations throughout the lifespan bias not only the strength of the 

brain-behavior relationships we can capture, but also their interpretability.

4. Discussion

The application of predictive modeling in neuroimaging has provided foundational insights 

into the neurobiological correlates of behavior. While population-level associations between 

neuroanatomy and cognition have been extensively studied, prior predictive modeling work 

has not explicitly addressed the extent to which these relationships are shared across 

sexes and age groups. A standard practice when studying brain anatomy is to correct 

for individual differences in ICV using proportion correction, but the impact of this 

correction on the brain-behavior predictions had not previously been examined. Here, we 

demonstrate that proportional ICV correction differentially biases behavioral predictions 

and the subsequent interpretations of the underlying brain-behavior relationships across 

neuroanatomical properties, sexes, and age groups. For both the ABCD (n = 1823; children) 

and HCP (n = 1003; adults) datasets, the size of individual cortical regions (in terms 

of surface area and gray matter volume) predicts behavioral traits within and between 

sexes and datasets with greater accuracy and generalizability when ICV correction is not 

implemented. The captured associations between behavioral traits and regional surface area 

or gray matter volume are unique across children and adults regardless of ICV correction, 

but unique across sexes with ICV correction and shared otherwise. Conversely, regional 

cortical thickness predicts behavioral traits with greater accuracy and generalizability when 

individual differences in ICV are corrected. The associations between behavioral traits and 

regional cortical thickness are also consistently unique across children and adults but shared 

across sexes with ICV correction and unique otherwise. Taken together, these results reveal 

the differential effects of ICV correction on accuracy, generalizability, and interpretability of 

behavioral predictions across neuroanatomical features, sexes, and age groups.

There are marked differences in head size between individuals, presenting a challenge for 

the measurement of regional volumes and surface areas. Established differences in gray 

matter volume and ICV between the sexes and throughout the lifespan (Caspi et al., 2020; 

De Bellis et al. 2001; Bethlehem et al., 2021) have led to widespread implementations 

of ICV correction when studying brain-behavior relationships across populations. In 
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this present work, we described how proportional ICV correction influences accuracy 

of behavioral predictions within a population, generalizability of the predictions across 

populations, and interpretations of the underlying brain-behavior relationships. We began 

by quantifying how ICV relates to uncorrected neuroanatomical properties and cognitive 

domains. Here, we observed diverging gradients in the network-specific relationships with 

uncorrected neuroanatomical properties across adults and children. In adults, surface area 

and gray matter volume across all networks were strongly related to ICV, but exhibited 

stronger correlations in heteromodal association cortices than in unimodal somato/motor 

cortices. Cortical thickness was weakly related to ICV across all networks, but exhibited 

stronger correlations with ICV in unimodal somato/motor cortices. In children, relationships 

with ICV were equally strong and comparable between unimodal somato/motor cortices 

and heteromodal association cortices for surface area and gray matter volume, while 

correlations with cortical thickness were weak overall but slightly stronger in heteromodal 

association cortices than unimodal cortices. These data are consistent with extensive 

work in neurodevelopment establishing that unimodal cortices exhibit earlier cortical 

expansion and cortical thinning than heteromodal cortices (Sydnor et al., 2021). We also 

quantified relationships between ICV and proportion-corrected neuroanatomical properties. 

In doing so, we observed that across both datasets and all networks, the relationships 

with surface area and gray matter volume were inverted and reduced in magnitude. 

Meanwhile, correlations between ICV and proportion-corrected cortical thickness were 

strongly negative. We also noted that in adults and children, ICV is more strongly 

correlated with crystallized abilities than fluid abilities, which is in agreement with existing 

work (Farias et al., 2012). Relatedly, ICV alone more successfully predicted crystallized 

abilities in adults and children, whereas predictions of fluid abilities were only sometimes 

better than chance levels. Collectively, these data reveal that relationships between ICV 

and cognitive domains exist during childhood and adulthood, but relationships between 

ICV and neuroanatomical features are unique across those populations. The analyses 

also demonstrate that proportional ICV correction does not entirely remove information 

pertaining to ICV from measures of surface area and gray matter volume, and actually 

introduces information about ICV to measures of cortical thickness. Therefore, this field 

standard method may not be ideal when accounting for individual differences in brain 

volume.

The rapidly growing use of predictive modeling in neuroimaging to map brain-behavior 

relationships has yielded numerous important advances in recent years. Studies have 

investigated how preprocessing (Li et al., 2019), data transformation (Parkes et al., 2021), 

predictive algorithms (He et al., 2020), neuroimaging features (Dhamala et al., 2021; Greene 

et al., 2018), model translation (He et al., 2022), parcellation choices (Dhamala et al., 2021), 

sample sizes (Marek et al., 2022), and phenotype selection (Chen et al., 2022) can influence 

neuroimaging-based predictions of individual behaviors. Unfortunately, these studies have 

in large part relied on single datasets of healthy young adults to train and evaluate model 

performance, even though it is becoming increasingly evident that models must be not only 

replicable and reliable within a dataset (Tian and Zalesky 2021), but also generalizable 

across datasets (Scheinost et al., 2019).
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In this study, we quantified the extent to which predictive models generalize across distinct 

populations, evaluating whether this generalizability is influenced by ICV correction. 

Upon confirming how ICV is related to neuroanatomical features and cognition, we 

sought to determine how ICV correction differentially influences predictive models of 

behaviors based on the size or thickness of cortical territories in adults and children. ICV 

correction reduced (within sex and/or dataset) accuracy and (between sex and/or dataset) 

generalizability of predictions based on surface area and gray matter, and increased accuracy 

and generalizability based on cortical thickness. We speculate that these effects are driven 

by the inherent relationships that ICV has with both regional neuroanatomy and behavior. 

Given that surface area and gray matter volume are more strongly correlated to ICV than 

cortical thickness, and the proportion correction reduces and inverts those relationships, ICV 

correction for measures of surface area and gray matter volumes results in the removal of 

behaviorally relevant information (captured in ICV) thus impairing predictions. Conversely, 

proportional ICV correction for cortical thickness introduces ICV-relevant information into 

the measures that may indirectly, and potentially artifactually, enhance the predictions. This 

is further supported by our observations that ICV alone can predict cognitive behaviors 

at levels comparable to that of uncorrected measures of surface area and gray matter 

volume, and corrected measures of cortical thickness. These observed effects were more 

pronounced in predictions across datasets than within datasets. As previously mentioned, 

ICV tends to differ between children and adults and these group differences may explain 

why models are more influenced by ICV correction when evaluating their generalizability 

across populations than within populations. Finally, these effects of ICV correction were 

surprisingly comparable across cognitive domains even though the cognitive domains 

themselves are differentially related to and predicted by ICV. This suggests that the effect 

of ICV correction on prediction of a behavioral trait is, to some extent, independent of 

the relationship that ICV shares with that behavioral trait. Therefore, even in the absence 

of the underlying relationships between ICV and the behavior of interest, researchers must 

be aware of the influence that the correction may impart on their predictive modeling 

and subsequent interpretations. This work provides the basis for further exploration into 

whether ICV correction equally influences predictions of non-cognitive behaviors, including 

personality, and mental health.

The use of open-access neuroimaging datasets has gained considerable popularity in recent 

years (Madan 2021; Bzdok and Yeo 2017). Several studies have used these large-scale 

datasets to model brain-behavior relationships, but if and how those models can be 

interpreted is still up for debate (Tian and Zalesky 2021; Kohoutová et al., 2020). Here, 

we evaluated how ICV correction influences model interpretations of the neurobiological 

features that underlie individual cognitive abilities at both a network-level and a regional-

level. At a network-level, feature weights extracted from models based on surface area and 

gray matter volume were generally unchanged with ICV correction. However, network-level 

features of cortical thickness demonstrated no interpretable trends without ICV correction, 

but a definitive gradient of network contributions emerged with ICV correction. These 

network-level weights across all neuroanatomical features were generally shared across 

sexes and unique across age groups regardless of ICV correction. At a regional level, 

examining the feature weights from the uncorrected models may lead one to conclude that 
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relationships between the neuroanatomical features and cognition are unique across age 

groups but shared across sexes within age groups for surface area and gray matter volume 

but unique across sexes for cortical thickness. However, if ICV correction is implemented, 

we observe a different pattern: relationships remain unique across age groups, and are also 

unique across sexes within age groups for surface area and gray matter volume, but are 

shared across sexes for cortical thickness. Previously, we suggested that ICV correction 

inadvertently removes behaviorally relevant information from models based on surface area 

and gray matter volume and introduces it into models based on cortical thickness. The same 

mechanism may also explain the discrepancies in feature weights between uncorrected and 

ICV-corrected models. At the population-level males and females differ in ICV. However, 

this broad trend masks the presence of substantial variability and overlapping phenotypic 

distributions across populations. Predictions based on uncorrected measures of surface area 

and gray matter volume and corrected measures of cortical thickness may rely heavily 

on overlapping ICV information shared across the sexes (within each age group) while 

those based on corrected measures of surface area and gray matter volume and uncorrected 

measures are more reliant on unique relationships that are not driven by ICV. These findings 

serve as a cautionary tale for researchers using predictive modeling approaches to identify 

complex multivariate brain-behavior relationships across healthy and clinical populations 

without considering how factors such as ICV correction may be undermining their efforts 

and unintentionally biasing their interpretations.

Although many researchers have studied age- and sex- related differences in cortical 

organization and cognitive abilities, most prior experiments have focused on one or the 

other, or relied on univariate analyses (Cummings et al., 2020; Giedd and Rapoport 2010; 

Gong et al., 2011; Gur and Gur 2017; Jäncke 2018; Lenroot and Giedd 2010; Scheinost et 

al., 2015; Hagmann et al., 2010; Fair et al., 2009; Satterthwaite et al., 2015). Leveraging 

two large, open-access datasets, we quantified age- and sex- specific neurobiological 

correlates of cognition using multivariate predictive modeling approaches. Surface area 

of unimodal somato/motor regions, and gray matter volume and cortical thickness of 

heteromodal association regions were most strongly associated of cognition in adults. In 

children, the opposite was observed: surface area of heteromodal association regions, and 

gray matter volume and cortical thickness in unimodal somato/motor regions exhibited 

the strongest associations with cognition. Cortical surface area increases during childhood, 

before reaching a global peak at around 9 years of age and then slowly declining (Wierenga 

et al., 2014). Gray matter volume exhibits a similar trajectory but peaks occur between ages 

11 and 14 (Gogtay and Thompson 2010). Global cortical thickness increases from birth until 

early childhood (Wang et al., 2019), before declining throughout adolescence and adulthood 

(Zhou et al., 2015). Studies of surface area, gray matter volume, and cortical thickness have 

established a progression of cortical maturation along the somatomotor-association axis: 

progression begins in unimodal somato/motor cortices and ends in heteromodal association 

cortices (Sydnor et al., 2021; Gogtay and Thompson 2010). The differential relationships 

we observe between the neuroanatomical properties and individual cognitive abilities 

in children and adults, suggest that brain-behavior relationships likely exhibit a similar 

developmental trajectory along the somatomotor-association axis as the neuroanatomical 

properties themselves. Given the cross-sectional nature of this study, we are limited in our 
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ability to draw conclusions about these trajectories. However, future analyses incorporating 

longitudinal samples from ABCD will be able to capture these trajectories more definitively 

and further clarify best practices for ICV correction in phenotypic prediction across different 

modeling scenarios.

The present analyses reveal that proportional ICV correction does not sufficiently remove 

brain volume effects from neuroanatomical measures and can introduce ICV bias where 

there previously was none. Feature weights obtained from the predictive models reveal that 

the correction can also influence how we interpret relationships between neuroanatomical 

properties and cognition. This leads us to the question of whether the biases in prediction 

accuracy and interpretability due to the correction are generally beneficial or harmful. The 

use of predictive modeling in neuroscience and medicine has led to broader questions 

regarding whether accuracy or interpretability (or both) should be prioritized (Bzdok and 

Ioannidis 2019; Yarkoni and Westfall 2017). Present analyses suggest that if the goal is to 

yield the most accurate behavioral predictions based on surface area or gray matter volume, 

uncorrected measures are likely the preferred option. If instead the main purpose of a study 

is to generate an accurate model based on cortical thickness, ICV-corrected measures are 

likely preferred, although the improved phenotypic predictions may be artifactual. Finally, 

if the main focus is to determine the underlying brain-behavior relationships between 

neuroanatomical properties and behaviors, the use of uncorrected features will reveal direct 

relationships whereas corrected features will reveal relative associations that may or may not 

be biased by individual differences in ICV. Hence, a single overarching recommendation to 

the field about whether or not ICV correction should be implemented is not supported or 

justified by these reported findings. Rather, these data highlight the need to consider specific 

study goals, sample composition, possible correlates of ICV, and the potential downstream 

consequences of proportional ICV correction in future work.

Of note, the findings of this study are subject to several limitations. First, these analyses 

are focused only on evaluating the effects of one of the most widely used ICV correction 

method: the proportion correction. Other methods for the correction include covariate 

regression, non-linear modulation based on voxel-based morphometry (Good et al., 2001), 

the power-corrected proportion (Liu et al., 2014), and the residuals adjustment (Arndt 

et al., 1991; Mathalon et al., 1993). Methods that rely on population-level information 

(i.e., covariate regression, power-corrected proportion, and residuals adjustment) for the 

correction must be implemented separately within each cross-validation fold for every train-

test split to prevent data leakage and then applied to the test set. Consequently, the model 

would have less utility when generalizing it to a population that is distinct from the training 

set (i.e., a different sex or age group). Prior work has also demonstrated that brain regions 

and networks exhibit differential areal scaling relative to total area (Reardon et al., 2018). 

Larger brains demonstrate greater areal expansion in heteromodal association networks 

than unimodal somato/sensory networks and limbic networks. While prior work focused 

on regional and total surface area, it is likely that similar patterns may also exist for gray 

matter volume and cortical thickness relative to ICV. Non-linear scaling of brain regions 

relative to the whole brain across different brain sizes suggests that the use of proportional 

ICV correction or linear ICV correction methods that seek to regress or residualize brain 

volume effects would be unlikely to remove the regional effects completely and equally 
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across individuals with different brain sizes. Consequently, such approaches may also result 

in greater effects of ICV correction across sexes and age groups where brain volumes are 

likely to be different and residualizing based on one population (i.e., male adults) is unlikely 

to generalize to another population (i.e., female children).

Second, this study only assessed the effects of proportional ICV correction rather than 

proportional correction of the phenotype being used for prediction (i.e., dividing regional 

surface area by total surface area or regional cortical thickness by average cortical 

thickness). Proportional measures of phenotypes (i.e., the proportion of total surface area 

comprised by a given region) can be of interest for reasons beyond just correcting for 

differences in total measures. For example, abnormal enlargement or shrinkage of a 

given region or network relative to the whole brain may be representative of underlying 

neurological or psychiatric illnesses and have subsequent influences on behaviors and 

behavioral predictions. In our present analyses, we find differential contributions of 

networks to cognitive predictions, but we are not able to assess whether the same networks 

would emerge when relying on proportional measures of the neuroanatomical measures.

Third, the two datasets we relied on for this study capture a relatively small range of 

ages. HCP includes subjects between the ages of 22 and 37 while ABCD includes subjects 

who are 9–10 years old. Given this limited age range, we are unable to identify the network-

level trajectories of brain-behavior relationships that exist throughout the lifespan. Future 

analyses of these relationships in adolescents and older adults can be used to supplement our 

findings and establish trajectories of associations between cognition and neuroanatomical 

organization in unimodal somatosensory and heteromodal association cortices.

Fourth, structural and functional brain organization are influenced by both genetic 

(Anderson et al., 2021; Ge et al., 2017; Gu et al., 2021; Sabuncu et al., 2016) and 

environmental factors (Lenroot and Giedd 2008; Blakemore 2012; Tost et al., 2015; Tooley 

et al., 2021; Tooley et al., 2019). Likewise, there are known genetic and environmental 

influences on individual cognitive abilities. (Tucker-Drob, Briley, and Harden 2013; Bartels 

et al., 2002; Rindermann et al., 2010; Krogsrud et al., 2021; Ge et al., 2017). Although 

the HCP and ABCD datasets are considerably heterogeneous in terms of race/ethnicity, 

the samples are derived entirely from the United States (US) so environmental factors, 

including trauma, socioeconomic status, and chemical exposures, are likely to be largely 

shared across the participants from both datasets. Therefore, these predictive models and the 

brain-behavior relationships they’ve captured may be specific to a US-centric population and 

lack generalizability to other environmental contexts. Recent work has also demonstrated 

that behavioral prediction models based on neuroimaging can exhibit biases across races/

ethnicities (Li et al., 2022). Consequently, it is crucial that we consider the complex 

interplay of ICV, demographics, and cognitive performance when developing models to 

capture brain-behavior relationships.

Finally, we rely on a single dataset for each age group studied, and for each of the two 

datasets, we included a subset of the participants in these analyses based on data quality 

and availability. The adults and children in the included subsets of these datasets are not 

necessarily representative of the general population so we cannot rule out the possibility 
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that the effects observed here are driven by differences in scanners, imaging parameters, or 

scanning acquisitions in the subset of participants included, unrelated to the age differences. 

Although all of the HCP data were collected at a single site using the same scanner, the 

ABCD participants were scanned using two different scanners (GE and Siemens) across 19 

different sites, suggesting our results are broadly generalizable across scanners and sites. 

Moreover, given that our findings align with established developmental cortical maturation 

trajectories (Blakemore 2012; Stiles and Jernigan 2010; Casey et al., 2005), it is likely that 

our results are capturing core age-related effects. Related work on behavioral predictions in 

ABCD based on functional connectivity has also demonstrated that results obtained using a 

similar subset of participants as included in our analyses are comparable to results obtained 

using larger populations with more liberal quality control thresholds or using similar sample 

sizes that are matched for age, sex, family income, and behavior as the broader ABCD 

population (Chen et al., 2022).

5. Conclusion

An understanding of the effects of data transformation on predictive models of brain-

behavior relationships can enable to development of more accurate, generalizable, and 

interpretable models. In this work, we establish the differential impact of ICV correction on 

models of cognition based on cortical size and thickness in adults and children. Accuracy 

and generalizability were reduced with ICV correction for models based on size (surface 

area and gray matter volume) but increased for models based on thickness. Interpretability of 

the features that these models relied on were also affected by ICV correction: brain-behavior 

associations were unique across children and adults regardless of the correction, but only 

unique across sexes for models based on ICV-corrected measures of cortical size and 

uncorrected measures of cortical thickness. Taken together, these findings emphasize that 

we must carefully consider individual differences in ICV when evaluating brain-behavior 

associations across populations as those differences, and their potential interactions with 

demographics, environmental factors, and cognitive performance, may influence the strength 

and associated interpretability of the underlying relationships.
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Fig. 1. Experimental Workflow.
(A) Dataset: Healthy young adults from the Human Connectome Project dataset, and 

typically developing children from the Adolescent Brain Cognitive Development dataset 

were included in the study. (B) Behavioral Data: Cognitive scores were compiled for each 

subject based on NIH Toolbox Cognitive Battery Task Scores. Total, Crystallized, and Fluid 

composites, as well as individual task scores within the Crystallized and Fluid domains 

were considered. (C) Neuroanatomical Features: Each subject’s native surface space was 

projected onto the 400-region Schaefer parcellation, and the T1-weighted anatomical image 

was used to extract regional surface area, gray matter volume, and cortical thickness for 

each of the 400 regions of interest. For each subject, these regional measures were either 

left uncorrected, or proportionally corrected for total intracranial volume. (D) Linear ridge 
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regression models were trained to predict individual cognitive scores based on each of 

the neuroanatomical features. Males and females from each of the datasets were split into 

train (66%) and test sets. For each dataset, sex-independent models were trained on both 

male and female subjects, while sex-specific models were trained separately for each sex. 

All models employed three-fold cross-validation to optimize the regularization parameter. 

Sex-independent models were evaluated on sex-independent test sets from both datasets, 

and sex-specific models were evaluated on male- and female- specific test sets from both 

datasets.
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Fig. 2. Total surface area and gray matter volume, and average cortical thickness across distinct 
cortical networks exhibit correlations with intracranial volume. 
Correlation (Pearson’s correlation coefficient) between network-level uncorrected (A) and 

proportion-corrected (B) neuroanatomical properties (total surface area, total gray matter 

volume, and average cortical thickness) and total intracranial volume across both datasets 

(HCP and ABCD). SalVenAttn – Salience/Ventral Attention; DorsAttn – Dorsal Attention; 

SomMot – Somatomotor. Networks are ordered from heteromodal (left) to unimodal (right).
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Fig. 3. Intracranial volume predicts cognitive abilities.
Prediction accuracies (Pearson’s correlation coefficient between observed and predicted 

scores) for sex-independent and sex-specific models predicting cognitive scores in HCP 

(top) and ABCD (bottom) based on ICV. Sex-independent (left), male-specific (middle), 

and female-specific (right) predictions are shown, Black asterisks (*) denote that the model 

performed above chance levels based on permutation tests (corrected p < 0.05). The shape of 

the violin plots indicates the entire distribution of values, dashed lines indicate the median, 

and dotted lines indicate the interquartile range.
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Fig. 4. Accounting for intracranial volume reduces predictive accuracies of cognition based on 
surface area and gray matter volume, and increases predictive accuracies based on cortical 
thickness.
Prediction accuracies (Pearson’s correlation coefficient between observed and predicted 

scores) for sex-independent models predicting cognitive scores in HCP (A) and ABCD (B). 

Predictions based on surface area (left), gray matter volume (middle), and cortical thickness 

(right) using ICV-uncorrected (green) and ICV-corrected (orange) anatomical properties are 

shown. Green and orange asterisks (*) denote that the model performed above chance levels 

based on permutation tests (corrected p < 0.05). Black asterisks (*) denote that model 

performance was significantly different between the ICV-uncorrected and ICV-corrected 

predictions based on exact tests for differences (corrected p < 0.05). The shape of the violin 

plots indicates the entire distribution of values, dashed lines indicate the median, and dotted 

lines indicate the interquartile range.
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Fig. 5. Accounting for intracranial volume differentially impacts predictive accuracies across 
surface area, gray matter volume, and cortical thickness in a sex specific manner.
Prediction accuracies (Pearson’s correlation coefficient between observed and predicted 

scores) for sex-specific models predicting cognitive scores in HCP males (A), HCP females 

(B), ABCD males (C), and ABCD females (D). Predictions based on surface area (left), 

gray matter volume (middle), and cortical thickness (right) using ICV-uncorrected (green) 

and ICV-corrected (orange) anatomical properties are shown. Green and orange asterisks 

(*) denote that the model performed above chance levels based on permutation tests 

(corrected p < 0.05). Black asterisks (*) denote that model performance was significantly 

different between the ICV-uncorrected and ICV-corrected predictions based on exact tests 

for differences (corrected p < 0.05). The shape of the violin plots indicates the entire 
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distribution of values, dashed lines indicate the median, and dotted lines indicate the 

interquartile range..
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Fig. 6. Intracranial volume correction reduces generalizability of models based on surface area 
and gray matter volume but increases generalizability of models based on cortical thickness.
Generalizability of sex-independent (A) and sex-specific (B) models across sexes (males and 

females) and datasets (HCP and ABCD). Mean prediction accuracies across all 10 cognitive 

scores based on surface area (left), gray matter volume (middle), and cortical thickness 

(right) using raw anatomical properties are shown in the top panels, and predictions 

using ICV proportion-corrected anatomical properties are shown in the bottom panels. The 

populations that the models were trained on are shown along the rows, and the populations 

that the models were tested on are shown along the columns.
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Fig. 7. Intracranial volume correction differentially reduces generalizability of models based on 
surface area and gray matter volume but increases generalizability of models based on cortical 
thickness across cognitive domains.
Difference in generalizability of sex-independent (A) and sex-specific (B) models across 

sexes (males and females) and datasets (HCP and ABCD). Difference between average 

prediction accuracies is based on ICV-uncorrected and ICV-corrected measures of surface 

area (left), gray matter volume (middle), and cortical thickness (right) to predict total (top), 

crystallized (middle), and fluid (bottom) abilities. Positive (warmer) values indicate that the 

ICV-corrected measures outperformed the ICV-uncorrected measures. The populations that 

the models were trained on are shown along the rows, and the populations that the models 

were tested on are shown along the columns.

Dhamala et al. Page 38

Neuroimage. Author manuscript; available in PMC 2022 October 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 8. The predictive relationships linking cognition with the anatomy of association and 
unimodal cortices across populations can be revealed or obscured though the use of intracranial 
volume correction.
Absolute relative network-level feature weights to predict each of the cognitive scores in 

HCP (A) and ABCD (B). Feature weights for models based on surface area (left), gray 

matter volume (middle), and cortical thickness (right) using ICV-uncorrected anatomical 

properties are shown in the top panels, and predictions using ICV-corrected anatomical 

properties are shown in the bottom panels. SalVenAttn – Salience/Ventral Attention; 

DorsAttn – Dorsal Attention; SomMot – Somatomotor. Networks are ordered from 

heteromodal (left) to unimodal (right)..
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Fig. 9. Regional surface area and gray matter volume associations with cognition are unique 
across age groups regardless of ICV correction, but they are shared across sexes without ICV 
correction and unique across sexes with ICV correction.
Regional feature weights (A) and the correlations between them (B) for sex-specific models 

based on surface area (left) and gray matter volume (right). Models trained on HCP 

males, HCP females, ABCD males, and ABCD females using ICV-uncorrected anatomical 

properties are shown in the top panels, and predictions using ICV-corrected anatomical 

properties are shown in the bottom panels. Feature weights to predict total cognition 

are shown in (A) on lateral left (left) and right (right) cortical surfaces. Heatmaps of 

correlations of regional feature weights are ordered along the rows and columns based on the 

populations the models were trained on in the following order: HCP Males, HCP Females, 

ABCD Males, ABCD Females. Within the blocks for each of those training sets, regional 
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feature weights are ordered based on the cognitive scores being predicted as follows: Total 

Composite, Crystallised Composite, Reading Decoding, Vocabulary Comprehension, Fluid 

Composite, Visual Episodic Memory, Cognitive Flexibility (Card Sort), Inhibition (Flanker), 

Processing Speed, Working Memory (List Sorting).
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Fig. 10. Associations between regional cortical thickness and cognition are unique across age 
groups regardless of ICV correction, but they are unique across sexes without ICV correction 
and shared across sexes with ICV correction.
Regional feature weights (A) and the correlations between them (B) for sex-specific models 

based on cortical thickness. Models trained on HCP males, HCP females, ABCD males, 

and ABCD females using ICV-uncorrected anatomical properties are shown in the top 

panels, and predictions using ICV-corrected anatomical properties are shown in the bottom 

panels. Feature weights to predict total cognition are shown in (A) on lateral left (left) 

and right (right) cortical surfaces. Heatmaps of correlations of regional feature weights are 

ordered along the rows and columns based on the populations the models were trained on 

in the following order: HCP Males, HCP Females, ABCD Males, ABCD Females. Within 

the blocks for each of those training sets, regional feature weights are ordered based on 
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the cognitive scores being predicted as follows: Total Composite, Crystallised Composite, 

Reading Decoding, Vocabulary Comprehension, Fluid Composite, Visual Episodic Memory, 

Cognitive Flexibility (Card Sort), Inhibition (Flanker), Processing Speed, Working Memory 

(List Sorting).
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