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Abstract: In recent years, the transition metal carbonitrides(MXenes) have been widely applied to
photoelectric field, and better performance of these applications was achieved via MXene complex
structures. In our work, we proposed a MXene core-shell nanosheet composed of a Ti2C (MXene)
phase and gold nanoparticles, and applied it to mode-locked and single-frequency fiber laser applica-
tions. The optoelectronic results suggested that the performances of these two applications were both
improved when MXene core-shell nanosheets were applied. As a result, we obtained a mode-locking
operation with 670 fs pulses, and the threshold pump power reached to as low as 20 mW. Besides, a
single-frequency laser with the narrowest linewidth of ~1 kHz is also demonstrated experimentally.
Our research work proved that MXene core-shell nanosheets could be used as saturable absorbers
(SAs) to promote versatile photonic applications.

Keywords: 2D material; core-shell structure; mode-locked; single frequency; fiber laser

1. Introduction

Over the past decade, researches on two-dimensional (2D) materials [1] have drawn
much attention, and these 2D materials included transition metal dichalcogenides (TMDs) [2],
semiconductors [3,4], and insulators [5]. Due to the strong interaction with lightwaves,
more and more applied fundamental researches of 2D materials have concentrated in
versatile photonic applications [6]. Nonlinear optical characteristic was one of the most
important properties of 2D materials. By taking full advantage of the unique nonlinear
optical characteristic, 2D materials have been widely applied to laser technology, laser
processing [7], laser displays [8], photodetectors [9], laser facilities [10], and medical
treatment [11]. Graphene, as the earliest discovered 2D materials, possesses a zero band
gap and has been proved to achieve good nonlinear optical characteristics. But the low
absorption coefficient and low damage threshold have limited its development [12]. BP, as a
tunable band gap semiconductor, has been demonstrated to exhibit remarkable anisotropy,
high carrier mobility, and good stability with a layered structure [13]. However, when
it was applied to photonics researches, the exfoliation of few-layer nanosheet structure,
seriously decreased the stability of BP and further restricted its application in photonics.

To our best knowledge, MXenes, as one of the novel 2D materials, have been reported
to be achieved from the MAX(M = transition metal, A = Al, X = C,N) phase. Because
of the treatment by HF solution, the surface of MXenes is rich in functional groups [14],
such as -F, -O, and -OH group. Such surface groups have promised MXene materials a
flexible surface modification [15]. Moreover, the layered structure has ensured MXene
materials tunable properties [16,17], and made them more potential in photoelectronics [18],
photocatalysis [19], and energy storage [20]. Our team has demonstrated the nonlinear
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optical characteristics of MXenes in erbium-doped fiber (EDF) lasers. Based on the func-
tional groups of MXene materials and our previous work, we have further promoted
the performance of MXenes by fully utilizing the advantages of MXene@gold core-shell
nanosheets.

As we known, MXene core-shell nanostructures usually consist of MXene materials
and other materials via the effect of functional groups. By applying core-shell nanostruc-
tures, the photoelectric properties of MXene materials were demonstrated to be modified,
such as absorption enhancement or shiftness of the absorption peak [21]. If MXene materi-
als are enclosed by nanometal materials, or by other materials that possess collective free
electrons, such as gold nanoparticles or silver nanoparticles, then the optical characteristics
are expected to be enhanced due to surface plasmon effect [22]. For example, MXene@gold
core-shell nanocomposites have been reported to exhibit highly efficient catalysis ability,
and effectively enhanced the second biological window [23,24]. These studies suggested
that the strong photoelectronic interaction is fully utilized by MXene@gold core-shell
structure, and excellent performance is achieved. However, the surface plasmon effect of
metal nanoparticles on MXene materials has not been deeply demonstrated, application of
the MXene@gold nanostructure to promote the performance in photonics technology has
seldom been reported, and its improvement mechanism has not yet been explored [25].

To our best knowledge, ultrafast fiber lasers (UFFLs) and single-frequency fiber lasers
(SFFLs) are two important fiber lasers in our daily life and industrial manufacturing.
The UFFL with an ultrashort pulse width is a significant component in fiber communica-
tions [26], micromachining [27], and medical surgery [28]. Hence, researchers have devoted
themselves to improving the characteristics of UFFLs, which included a lower lasing thresh-
old, an ultrashort pulse width, a high peak power, and a high repetition frequency. In
addition, a stable SFFL with narrow linewidth and low noise is an ideal candidate for
coherent optical communications [29], precise optical sensing [30], gravitational wave de-
tection [31], and lidar [32]. It should be noted that, the narrow linewidth of SFFL has been
eagerly pursued, and the reason was maily ascribed to the urgent need of high-precision
sensing systems [33]. Recently, Ning Xu et al. have synthesized MXene (Ti3C2Tx) quantum
dots from few-layer MXene materials, and applied it to UFFLs and SFFLs [34]. The results
suggested that better nonlinear optics was achieved due to quantum effect, and indicated
that the laser characteristics can be optimized by improving the optical nonlinear response
of MXenes materials.

In our work, Ti2C@Au core-shell nanosheets were prepared and employed as a sat-
urable absorber (SA) to construct an UFFL and a SFFL. Compared with the UFFL and
SFFL, which employed Ti2C nanosheets as a SA [35], the laser characteristics of both UFFL
and SFFL were conspicuously promoted. The results suggested that the UFFL based on
Ti2C@Au core-shell nanostructure has a lasing threshold as low as 20 mW, and the SFFL
in this work has a laser linewidth as narrow as 1 kHz, which were the best performances
among the relevent lasers based on MXenes. It indicated that the Ti2C@Au core-shell
nanostructure was a potential material for achieving low threshold, low noise, and narrow
linewidth in EDF-SFFLs. Our study provided insight into promoting MXene materials in
fiber laser applications.

2. Results and Discussions
2.1. Fabrication and Characterization of Ti2C@Au

In Brief, Ti2C@Au nanostructures were synthesized from Ti2C materials, which were
fabricated from the Ti2AlC phase. First, the purchased Ti2AlC solid phase was dissolved
in HF solution, and then ultrasonicated to achieve a few-layer Ti2C solution. Second, the
Ti2C solution was centrifugated at 3000 r/min for 2 min to obtain small Ti2C particles.
Subsequently, HAuCl4 crystals were dissolved in deionized water and then combined
with the Ti2C particle dispersion in a beaker. The redox reaction of HAuCl4 and Ti2C
particles was conducted at 40 ◦C for 30 min to prepare core-shell nanostructures. After
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the reaction process, the composites were centrifuged and dispersed in an isopropanol
solution before use.

The flowchart in Figure 1 shows the preparation process of Ti2C@Au core-shell nanos-
tructure. The reaction between MXene materials and Au3+ can be expressed by the follow-
ing equation:

Ti2CFx(OH)y + 3δe− + δAu3+ → Ti2CFx(OH)y + δAu (1)

In Equation (1), Ti2CFx(OH)y represented Ti2C (MXene) materials, whose surface
showed -F and -OH groups, HAuCl4 crystal could be dissolved into Au3+ in solution. Dur-
ing the reaction, a mounts of Au3+ were reduced to gold nanoparticle and deposited onto
Ti2C (MXene) materials when reacted with Ti2CFx(OH)y. In our preparation experiment,
the solvent concentration and the usage was strictly kept the same. The concentration of the
Ti2C material and the Ti2C@Au core-shell nanostructure, were both adjusted to 3 mg/mL
with isopropanol.
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Figure 2 shows the scanning electronic microscopy (SEM) characterization and tran-
simission electronic microscopy (TEM) characterization of the prepared Ti2C material and
Ti2C@Au core-shell nanostructure.
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Figure 2a shows the SEM image of Ti2C material, which exhibited a morphology of
layer structure, while Figure 2b shows the SEM image of Ti2C@ Au core-shell nanostructure,
which presented densitive spots deposited on the Ti2C materials. Figure 2c–f shows the
TEM images of the prepared Ti2C materials and the Ti2C@Au core-shell nanostructure, to
further analyze the transformation from the Ti2C material to the Ti2C@Au nanostructure.
As depicted, a core-shell-like nanostructure with a shell thickness of approximately 15 nm
was found, and the crystal lattice distance was enlarged from 0.42 to 0.58 nm when the
Ti2C material was transformed into the Ti2C@Au core-shell nanostructure.

Figure 3 shows the X-ray photoelectronic spectrum (XPS) of Ti2C@Au core-shell nanos-
tructure for further analyzing. As depicted, the binding energy intensity was enhanced
when the spots deposited on the Ti2C material. From Figure 3d, we confirmed the spots
to be gold nanoparticles with the binding energies of 83 eV and 87 eV. In addition, the
titanium elemental analysis exhibited in Figure 3b, shows the binding energy intensity
of Ti2C material is remarkly enhanced with densitive coverage of gold nanoparticles. A
similar phenomenon was found for carbon element, which is shown in Figure 3c. These
results indicated that the outer environment of Ti2C materials was modified when covered
by gold nanoparticles [36–38].
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Figure 4a shows the absorption spectra of Ti2C materials and Ti2C @Au nanostructure.
As depicted, Ti2C material and Ti2C@Au nanostructure both exhibited a broad absorption
range from 400 to 2000 nm. It should be noted that there were six optical peaks appeared
in the absorption spectra of Ti2C materials, which were respectively located around 900,
1015, 1470, 1590, and 1710 nm. It indicated that abundant energy level was achieved for the
prepared Ti2C material, however, when the gold nanoparticles deposited on Ti2C material,
the absorption peak of 1710 nm was significantly enhanced. To our best knowledge,
gold nanoparticles hardly reacted with the Ti2C materials via chemical interaction, so we
establish that the absorption enhancement originated from the physical interaction when
excited by an incident with wavelength around 1710 nm. Owing to the collective oscillation
of free electrons, electromagnetic field that local around gold nanoparticles was considered
to be formed, and attributed to the absorption enhancement of Ti2C material.
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As we know, the Raman scattering signals of most molecules could be enhanced due
to the electromagnetic field excitation. So we applied the Raman spectrum to demonstrate
the field-enhancemnet effect of Ti2C@Au nanostructure, whose result is shown in Figure 4b;
Ti2C materials was measured for a comparison. As depicted, we infered the characterized
peak that located around 1050 cm−1 originated from the vibration of carbon atom, and
another peak that exhibited around 1600 cm−1 was due to the vibration of –OH group.
However, when the gold nanoparticles deposited onto Ti2C material, significant enhance-
ment was observed of such characterized peaks. These results suggested that photoelectric
interaction was fully utilized when gold nanoparticle and Ti2C material were assembled
together in such a complex structure, and attributed to the field enhancement effect.

2.2. Optical Nonlinearity Characteristics

Figure 5 shows a balanced twin-detector measurement system to study the nonlinear
optical characteristics of the fabricated Ti2C@Au-SA. The seed source is a homemade
erbium-doped fiber laser with a pulse duration of 600 fs and a repetition rate of 8.13 MHz.
After the measurement, we found that the fabricated Ti2C@Au-SA has a modulation depth
of 6.6%, a saturation intensity of 17.96 GW/cm2, and the corresponding non-saturable loss
of 18.9%.
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2.3. Mode-Locked Fiber Laser

To analyze the performance of Ti2C @Au in erbium-doped fiber laser, the Ti2C @Au
saturable absorbers are transferred to an all-fiber laser setup, and pumped by a 980 nm
laser diode with a maximum power of 750 mW via a wavelength-division multiplexer, as
shown in the Figure 6.
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diode. WDM: wavelength division multiplexer. EDF: erbium-doped fiber. OC: output coupler. Ti2C
@Au-SA: Ti2C @Au saturable absorber. PC: polarization controller. PI-ISO: polarization independent
isolator.

The characteristics of the stable femtosecond pulse results are shown in Figure 7a–d.
As depicted, the stable mode-locked regime was obtained when the pump power was
larger than 20 mW, while, to our best knowledge, the obtained mode-locking threshold is
the lowest among the MXenes at a wavelength of 1.55 um (see Table S1). Figure 7a displays
the mode-locked pulse train. The time interval between the two pulses was 117.6 ns,
which corresponded to 8.5 MHz repetition rate. Figure 7b shows the optical spectrum was
centered at 1560 nm with mode-locked pulses and a 3-dB spectral width of 3.2 nm.
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Figure 7. Typical mode-locking characteristics. (a) Pulse train. (b) Optical spectrum. (c) Radio
frequency spectrum (inset: the wideband RF spectrum). (d) Autocorrelation trace. (e) Variation of
the output power with respect to the pump power. (f) Optical spectra measurements at 1 h intervals
over 10 h.
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Figure 7c presents a strong signal peak with a mode-locked repetition rate of 8.5 MHz,
and the signal to noise ratio (SNR) of about 62 dB. The autocorrelation trace of corre-
sponding mode-locked pulse is shown in Figure 7d. When the sech2 function was used
to fit the measured pulse autocorrelation trace, the estimated pulse duration was 670 fs
with a time-bandwidth product (TBP) of 0.54. Figure 7e presents the relationship between
average output power and pump power, and it shows an excellent linear relationship with
a slope efficiency of 3.08%. In our experiment, the laser was operated in continuous wave
(CW) regime when the pump power was increased to 5 mW, as the pump power further
increased to the threshold of 20 mW, stable continuous wave mode lock (CWML) was
achieved. Figure 7f shows the pulse spectrum that applied the same material solution
evolved over 10 h, which indicated that higher stability of the Erbium-doped femtosecond
fiber laser was obtained. For a convenient comparison, we listed the properties of EDFs
based on 2D materials in Table S1, which was shown in the supporting information.

To explain the better performance for mode-locked fiber laser when applied the
Ti2C@Au SA, we owned the reason to the surface plasmon effect that originated from the
gold nanoparticles, which resulted in the enhancement of nonlinear optics [39].

Figure 8 shows the schematic diagram illustration of the mode-locking laser by applied
Ti2C@Au core-shell nanostructures. As depicted, a mount of gold nanoparticles deposited
on the surface of Ti2C materials, and excited by laser source with wavelength of 1500 nm,
then collective electrons are aroused and form oscillation around the interface between gold
nanoparticle and Ti2C materials, resulting in local electromagnetic field enhancement [40].
Under the affection of electromagnetic filed, the electronic cloud of MXene core-shell
nanostructures is distorted, and the Ti2C material molecules trend to reorient and lead to a
change of electronic density, as well as the variation of refractivity [41]. Thus, the strong
light wave that coupled into fiber laser, can be effectively modulated via the interaction
with Ti2C@Au core-shell nanostructures. That is, the photonic mode which is harmonic
with the polarization direction, is effectively enhanced, while those that are not harmonic
with the polarization direction weaken [42].
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To our best knowledge, nonlinear absorption optic of dielectric, is correlated with the
modification of refractive index, which is proportional to the square of electric field.

Here, the nonlinear absorption coefficient of Ti2C@Au nanostructures that applied to
fiber laser is given by [43]:

αnon,G =
α0

1 + Ie,t/Ie,sat
→ Ie,t = Ie,sat(

α0,G

αnon,G
− 1) (2)

where α0,G is the nonlinear absorption component, Ie,t represents the evanescent-wave
intensity, and Ie,sat represents the saturable intensity of Ti2C@Au nanostructures. The
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evanescent-wave within the hole-cladding region of the fiber laser, was interfered by the
evanescent-wave that originated from the gold nanoparticles, and the evanescent-wave
intensity exponentially decayed with the radial distance (x) away from the core/cladding
interface. We described the evanescent-wave intensity by following equation [44]:

Ie,sat = I0e−2βx (3)

where I0 and β are respectively the pulse intensity of intracavity and the extinction coeffi-
cient factor. With the assistance of Ti2C@Au nanostructures, the extinction coefficient factor
is expressed by Equation (4) [45]:

β =
2πnc

λ
(

sin2 θ(
nc
ni

)2 − 1)
2

(4)

where ni is the core refractive index, and nc is the effective cladding refractive index. In our
work, the core is acted by Ti2C materials, and the cladding are gold nanoparticles. To our
best knowledge, gold nanoparticle possesses a higher refractive index than Ti2C materials,
so the value of nc

ni
is larger than 1, and the extinction coefficient factor β is negative.

According to Equations (2) and (3), the Ie,sat and α0,G are positively increased compared to
the pure MXene materials, which coincided with the P-scan measurement of the Ti2C@Au
nanostructures. It indicated that the nonlinear absorption is effectively improved by gold
nanoparticles, and contributed to the lower threshold output of ultrashort pulse.

2.4. Single Frequency Fiber Laser

To further understand the nonlinear optic enhancement effect by using Ti2C@Au
core-shell nanostructures, the Ti2C@Au was applied as a SA to single frequency fiber laser
(SFFL). Figure 9 shows the experimental schematic of this SFFL which included a seed laser
and an amplifier.
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Pump 1 was launched into the laser cavity through a fiber bragg grating (FBG, reflec-
tion of 57% at 1549.65 nm, 3 dB bandwidth of 0.036 nm) via a 1 × 2 wavelength division
multiplexer (WDM, 980/1550 nm). A length of 0.3 m single mode EDF (peak absorption
of 17 dB/m at 1530 nm) was severed as the gain medium. In purpose of eliminating the
effect on the loop mirror by the residual pump, another WDM (1 × 2.980/1550 nm) was
spliced to the EDF. On the end of the cavity, the loop mirror that connected the WDM by
an optical coupler(OC, 50/50), was worked as a high reflectivity mirror to bring laser beam
back. A section of tapered fiber, with a length of ~3 cm and a waist diameter of ~10 µm,
was embedded into the loop mirror to release the optical evanescent filed. To optimize the
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reflection of the loop mirror, a polarization controller (PC2 and PC3) was set to adjust the
polarization of the counter-propagation beam. As we know, the spatial hole buring (SHB)
effect holds when two laser beams are encountered in the cavity. Thus the PC1, which was
between FBG and gain medium, was employed to restrain this effect [46]. It should be
noted that the total length of the cavity was ~2 m, it was not easy to detect and analyze
the laser signal due to the low power of seed laser. Then, the seed laser was incidented
into an amplifier, composed of a pump source (Pump 2, 980 nm) and a certain length EDF.
Finally, the amplified laser beam propagated along a Fabry-Perot Scanning Interferometer
(FPSI, Thorlabs, SA200-12B, free spectral range of 1.5 GHz, resolution of 7.5 MHz) through
a pigtail fiber for inspecting the single-frequency characteristics. Besides, the linewidth
was investigated by a delayed self-homodyne (DSH) technique, which has a delay line
of 50 km and a frequency shifter of 200 MHz. The signal was detected by a high-speed
photodetector (EOT, ET-5000F), and presented in a radio frequency spectrum analyzer
(RFSA, Rigol, DSA815).

To keep the laser in a peak power output, the power of Pump 1 and Pump 2 were both
set at a appropriate value, and the two PCs in the loop were also adjusted. Before MXene
core-shell nanostructure solution was dripped over the taper fiber, the FPSI recorded the
scanning spectrum as shown in Figure 10 by pink curve. This result indicated that the laser
was operated at a multi-frequencies state, and never disappeared even though the three
PCs were adjusted. Figure 11 presents the laser beam gets through the DSH system with
pink curve, whose heterodyne output signal of the laser was obtained from nonsolution
state. As depicted, a number of unstable peaks can be observed in the range of 0~400 MHz,
which was due to the multi-frequencies. As the Ti2C@Au solution was added to the
tapered fiber, the counter propagating beam created a standing wave, and established an
instantaneous grating in the intra-loop simultaneously [47]. After a while, the signal on
scanning spectrum turned into the blue curve, which is shown in Figure 10. Despite the
multi-frequencies state was unaltered, the number of frequencies was decreased obviously.
It can be imagined that the amount of frequencies measured by DSH will decline as well.
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Figure 11 validates our prediction by the blue curve. We insisted that this phenomenon
was induced by the SHB effect. To elimate the SHB effect, we carefully rotated the PC1, and
the reflection of loop mirror was also optimized by adjusting PC2 and PC3 patiently. As a
result, a typical scanning spectrum of SFFLs was achieved, which is presented in Figure 10
by the red curve. It suggested that the laser was just operated at a single frequency state,
and a single peak centered at ~200 MHz appeared in the RFSA, which is shown in Figure 11
by the red curve.
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For investigating the linewidth of this SFFL, the frequency signal ranging from 198 to
202 MHz was obtained by the DSH technique and the RFSA with a resolution of 600 Hz,
then fitted by Lorentzian curve, whose result is shown in Figure 12a. It is suggested that the
bandwidth of the peak at −20 dB was 20.63 kHz by the fitted curve, whose result coincided
with a laser with a linewidth of 1.0315 kHz.
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Figure 12. The spectrum measured by DSH technique and the Lorentz fit (a); the optical spectrum of
amplified laser (b); output power of seed laser and amplified laser versus to input pump power (c);
the output power stability of seed laser and amplified laser in 1 h (d).

Afterward, we adjusted two pump power to research the relationship between pump
power and output power. First, the Pump1 power was kept under 85 mW until the laser
stops operating. Then, the frequency signal of the laser gets unstable, and the mode became
conspicuous when Pump 1 power was higher than 500 mW. Second, we fixed the Pump1
power at 500 mW for the highest output power with single frequency operation, and the
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Pump 2 power was also altered from 50 to 700 mW. Figure 12b shows the output power
of seed laser versus pump1 power, as well as the output power of amplified laser versus
pump 2 power, and the results were fitted by line as well. A slop efficiency of ~0.207%
for the seed laser, and ~5.64% for the amplified laser were calaculated. We believed that
the short gain medium and the unsaturable loss of materials, contributed to the low slop
efficiency. An optical spectrum analyzer (OSA, YOKOGAWA AQ6370D) was employed to
analyze the SNR, which reached to the highest value when the Pump 2 power was locked
at 300 mW. Figure 12c exhibits that the SNR exceeded 48 dB. In this situation, the output
power of seed laser and amplified laser were recorded every two minutes within 1 h, and
the results are shown in Figure 12d. It indicated that the power of seed laser, as well as the
amplified laser, had a fluctuation in the range of 1.179 ± 0.009 mW and 11.17 ± 0.15 mW,
showing that the results support the stability of less than 0.76% and 1.34% respectively. In
addition, the average powers were calculated to be 1.179 mW and 11.160 mW, the stability
of laser power was evaluated by the standard error (SE), with values ~8.152 × 10−4 and
1.496 × 10−2 respectively. As far as we are concerned, the increasing of power and the
amplified spontaneous emission (ASE), should be accountable for the deteriorated output
power stability of amplified laser.

For a convenient comparision, we listed the properties of SFFLs based on LCLM with
2D material in Table S2, it can be found that our work was reported to be the narrowest
linewidth among this kind of SFFL, whose comparison is shown in supporting information.

3. Conclusions

In conclusion, we successfully synthesized a core-shell nanostructure composed of
Ti2C (MXene) phase and gold nanoparticle. The morphology and composition were
characterized by SEM, TEM, and XPS, the optoelectronic characteristic was analyzed
by UV-vis spectrum and Raman spectra. The results suggested that full utilization of
surface plasmon effect was made by gold nanoparticle, and attributed to the application
of nonlinear optics. Finally, we applied such core-shell nanostructure to a passive mode-
locked EDFL and an EDF-SFFL. The results suggested that stable passive mode-locked
EDFL has a low startup threshold, and approximately 410% lower than the previously
reported. The pulse duration and the center wavelength of this laser were measured to be
670 fs and 1560 nm respectively. The stabilized EDF-SFFL based on a linear cavity with
a loop mirror embedded in a taper fiber, has a linewidth of ~1.00 kHz when immersed
in such Ti2C@Au core-shell material. To our best knowledge, this was the narrowest
linewidth of the SFFL based on 2D materials. It has a SNR of 31.82 dB, and an average
output power of ~1.18 mW and ~11.16 mW before and after amplification respectively.
While, the output power fluctuation of seed laser and amplified laser was less than 0.76%
and 1.34% respectively. It proved that the Ti2C@Au core-shell material can be employed
to suppress the bandwidth and enhance the stability of SFFL. We believe that the passive
MLFL and SFFL can be improved further by optimizing the Ti2C@Au core-shell material.
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