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Highly successful invasive pathogens exploit host vulnerabilities by adapting tools to co-
opt highly conserved host features. This is especially true when pathogens develop
ligands to hijack trafficking routes or signaling patterns of host receptors. In this context,
highly successful pathogens can be grouped together by the patterns of organs infected
and diseases they cause. In the case of this perspective, the focus is on the historically
most successful invasive bacterial pathogens of children that cause pneumonia, sepsis
and meningitis: Streptococcus pneumoniae, Haemophilus influenzae, and Neisseria
meningitidis. This triad shares a ligand to bind to PAF receptor to enter host cells
despite early defenses by innate immunity. All three also target laminin receptor to
cross endothelial barriers using a common set of molecular tools that may prove to be
a design for a cross-protective vaccine.
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INTRODUCTION

“The challenge is to figure out why the most virulent bacterial pathogens of children cause the same
pattern of disease, particularly meningitis, and share the same unusual microbial physiology,
particularly autolysis and natural transformation”.

Joshua Lederberg, PhD
Nobel Laureate
Personal communication

Every pediatrician will tell you that, historically, the major invasive pathogens of children that
they dread the most are Streptococcus pneumoniae, Haemophilus influenzae, and Neisseria
meningitidis (Kim, 2010; Lundbo and Benfield, 2017). They share striking features of the pattern
of disease. All three most commonly attack children under the age of 5 years. All three begin
infection by asymptomatic carriage in the nasopharynx, spread through the respiratory tract,
multiply quickly to high titer bacteremia and cross the blood brain barrier to cause meningitis
(Loughren et al., 2019). It is the final step to meningitis that truly sets these three apart and begs the
question, what do they “know” about host vulnerability that promotes a course of infection that is so
glaringly lethal? What unusual features of microbial physiology relate to shared pathogenesis?
Several major surface features that promote virulence differ between them and thus, are not likely to
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explain the shared organ tropism. Their capsules serve to protect
all three of these bacteria from phagocytosis but are of widely
varying chemical composition.Haemophilus and meningococcus
are Gram negative and thus have a thin cell wall and an outer
membrane, while the Gram positive pneumococcus has a thick
cell wall and no outer membrane. Determining why this
seemingly mixed triad causes such a similar pattern of disease
is a significant challenge that is only partially solved.
CARRIAGE

Pneumococcus, Haemophilus and meningococcus circulate in
the population by asymptomatic carriage in the nasopharynx of
young children (Adegbola et al., 2014). Their mechanisms of
attachment are diverse, and each has several ligand receptor
interactions with the nasopharyngeal mucosa. During multiple
events of carriage in early childhood, the host acquires immunity
to the dominant capsular antigens and a variety of surface
proteins which, in most cases, appears to be enough to limit
further invasion (Segal and Pollard, 2005; Ramos-Sevillano et al.,
2019). Unencapsulated strains colonize the mucosa of the upper
respiratory tract quite well. The multiplicity of adherence events
for each pathogen complicates the design of simple protein-
based vaccines to eliminate carriage as a first step in defense.
Clearly, these three pathogens start at the same physical point of
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entry to the host using a very different set of capabilities. Then
the story changes.
SHARED INVASION STRATEGY 1: ENTER
CELLS DESPITE INNATE IMMUNITY

Infection of the lower respiratory tract is the go/no go for
invasive disease. While these bacteria use several different
ligand/receptor interactions at any one site, it is in the
respiratory tract that the three pathogens reveal they also
harbor a shared invasion strategy that is effective despite innate
immunity. All three bacteria decorate their surfaces with the
small molecule phosphorylcholine (ChoP) (Figure 1A) that is
added to bacterial surface components by the shared LicD
protein, a ChoP transferase (Weiser et al., 1997; Weiser et al.,
1998a; Zhang et al., 1999). First described for the pneumococcus,
ChoP is covalently added to the teichoic acid and lipoteichoic
acid of the cell wall (Briles and Tomasz, 1973). As a key bioactive
adduct, ChoP on the pneumococcal cell wall serves as a non-
covalent docking station for over a dozen secreted choline
binding proteins that are interchanged to modulate contact
interactions between the pathogen and host (Gosink et al.,
2000). Rather than being added to cell wall, ChoP appears on
the lipopolysaccharide of Haemophilus (Weiser et al., 1997) and
on meningococcal lipopolysaccharide and pili (Weiser et al., 1998a).
A B

D

C

FIGURE 1 | Interactions of bacteria with ChoP-PAFR. (A) Platelet activating factor, an inflammatory lipid chemokine. The portion in red is ChoP which is present on
bacterial surfaces while the black is the lipid backbone of PAF that is missing in the bacterial form. The 7 transmembrane PAF receptor (PAFR) is shown in yellow.
(B) Trafficking of PAFR upon ligation by ChoP is diagrammed. Receptor mediated endocytosis engulfs the PAFR bound vesicle containing bacteria into the host cell
cytoplasm. The endosome then may traffic to the lysosome for killing, recycle back to the cell surface or translocate across the cell barrier in the process of invasion.
(C) ChoP (blue balls on cell wall) binds PAFR (red transmembrane lines on host cell). The innate immune system counteracts ChoP by C-reactive protein (orange
caps covering ChoP), surfactant (broad sheet of secretions rich in ChoP) and anti-ChoP antibodies. (D) Mice were challenged with pneumococci intravenously and
the presence bacteria in the cerebrospinal fluid was quantified at 6 h. Animals lacking PAFR (blue dots) are protected from meningitis compared to wild type (WT,
red dots) (adapted from Radin et al., 2005).
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Further work has expanded the list of pathogens that display
ChoP to incorporate most pulmonary pathogens, including
Pseudomonas, Klebsiella, Legionella and even mycoplasma
(Clark and Weiser, 2013). Further underlining the breadth of
use of this determinant, virtually all oral commensals display it
on their surfaces (Gillespie et al., 1993).

The ChoP Disguise Promotes Bacterial
Entry Into Cells
Expression of ChoP on the bacterial surface mimics the critical
chemical determinant of the lipid chemokine platelet activating
factor (PAF) (Figure 1A) (Cundell et al., 1995; Swords et al.,
2000; Iuchi et al., 2019). The binding of PAF-ChoP to PAF
receptor (PAFR) results in two outcomes: 1) it induces multiple
inflammatory signals transduced by coupled G-proteins in
platelets, macrophages, epithelial and endothelial cells (Chao
and Olson, 1993; Izumi and Shimizu, 1995; Honda et al., 2002);
and 2) the triad of invasive pathogens uses ChoP to co-opt PAFR
trafficking whereby the receptor undergoes rapid internalization
independent of G-protein activation (Figure 1B) (Chen et al.,
2002; Fillon et al., 2006). Uptake of the chemokine or the bacteria
by PAFR is followed by either trafficking to the lysosome via
Rab5 and Rab7 or recycling to the cell surface (Ishii et al., 1998;
Chen et al., 2002). This recirculation of PAFR from the host cell
surface to the cytoplasm and back to the surface provides a
shuttle for adherent bacteria to enter epithelial and endothelial
cells via receptor mediated endocytosis (Ring et al., 1998). This
trafficking involves co-localization of bacteria, PAFR and the
scaffold protein ß-arrestin (Luttrell and Lefkowitz, 2002; Spiegel,
2003; Radin et al., 2005; Iovino et al., 2013). Bacteria in the
intracellular vacuole are then subject to three fates: being killed in
the lysosome, transcytosing across the cell to exit the basal
surface, or recycling back to the apical surface (Ring et al., 1998).

The Host Fights Back With the Innate
Immune Response
The innate immune response strongly counteracts ChoP mediated
interactions between bacteria and host cells (Gould and Weiser,
2002) (Figure 1C). The ChoP decoration is the target of natural
antibodies that are present at birth even without prior bacterial
challenge (Lieberman et al., 1974; Goldenberg et al., 2004). ChoP is
the determinant recognized by the first responder of the innate
immune system, C-reactive protein, which by binding ChoP, serves
as a competitive inhibitor (Weiser et al., 1998b; Clark and Weiser,
2013; Langereis et al., 2019). Furthermore, the lung is awash in
ChoP as a major component of surfactant (Gould and Weiser,
2002). Thus, early events in establishing pneumonia are played out
by tipping the balance between host recognition of ChoP as a
foreign disguise on bacteria and fighting back vs falling for the
deception that ChoP-coated bacteria mimic the beneficial
proinflammatory cytokine PAF.

When Is ChoP-PAFR Operative in
Infection?
Presentation of ChoP on the surfaces of all three pathogens is
phase variable with greater abundance correlating with greater
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
interactions with mucosal cells and decreased expression
characterizing sustained circulation in the bloodstream (Weiser
et al., 1994; Weiser et al., 1997; Serino and Virji, 2002). ChoP-
PAFR is not the only mechanism of cellular entry for the three
major pathogens, but it is a shared one of importance as shown
by the failure of mice lacking PAFR to rapidly spread infection
between organs (Rijneveld et al., 2004; Radin et al., 2005). These
animals show a delayed translocation of bacteria from lung to
blood and a significant defect in causing meningitis (Figure 1D).

Recently, evidence indicates that bacterial surface components,
free from the intact bacterium, also transit barriers using the ChoP
tag. Bacterial surface components are released upon lysis of
bacteria by antibiotics. Using the pneumococcal cell wall as an
example, ChoP on the teichoic acid enables cell wall fragments in
blood to bind to PAFR on vascular endothelial cells and traffic into
the brain and heart (Tuomanen et al., 1985; Fillon et al., 2006).
These cell wall components are recognized by Toll-like receptor 2
and thus, are highly inflammatory (Yoshimura et al., 1999). Upon
entering the brain parenchyma, ChoP cell wall induces caspase-
dependent apoptosis of neurons (Braun et al., 1999; Orihuela
et al., 2006). In the heart, ChoP-bearing cell wall induces death of
cardiomyocytes and lethal cardiac dysfunction (Fillon et al., 2006).

In the specific clinical context of a pregnant mouse being
treated for bacteremic pneumonia with antibiotics, cell wall
released in the bloodstream crosses the placenta and enters the
fetal brain. The interaction required for translocation of cell wall
across the placenta is ChoP binding to PAFR (Humann et al.,
2016). It is not as yet known if components from other bacteria
decorated with ChoP also cross the placenta. While cell wall is
highly inflammatory in most models, the interaction of cell wall
components with embryonic neurons appears to be
fundamentally different than the catastrophic death of
postnatal neurons. Early in development of the fetal neocortex,
neuronal progenitor cells bearing TLR2 respond to cell wall by
enhancing proliferation without any cell death (Humann et al.,
2016). This results in a larger pool of progenitors that constitute a
wave of excess cells that migrates through all the cortical layers
resulting in a 50% increase in total cell number in the neocortex.
The cortical layers form normally but each layer has an
abnormally high number of cells, an aberration in brain
architecture that persists after birth. A bigger brain is not
always a better brain. Mice born after experiencing a cell wall-
induced proliferative wave of neurons during gestation exhibit
abnormal social behavior, cognitive deficits and permanent
changes in cortical architecture (Humann et al., 2016).
SHARED INVASION STRATEGY 2: CO-OPT
RECEPTOR MEDIATED ENDOCYTOSIS TO
CROSS CELL BARRIERS

Having passed from the lung into blood, the three pathogens
undergo phase variation to increase capsule thickness and
downregulate ChoP to effectively avoid phagocytosis resulting
in high titer bacteremia, a prerequisite explaining their particular
propensity to invade other organs and cause sepsis (Orihuela
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et al., 2003). Bacterial titers above 10e5 cfu/ml of blood trigger
translocation across substantial vascular barriers in the heart and
the brain. While the three major meningeal pathogens use
several strategies to transit both through and between
endothelial cells, they all share the ability to exploit laminin
receptor mediated endocytosis that enables entry into the brain
and heart.

All three pathogens harbor a functional homolog of the
pneumococcal adhesin CbpA that binds to laminin receptor of
the host (Figure 2A) (Orihuela et al., 2003). Within the CbpA
domain that binds laminin receptor, the sequence EPRNEEK
forms a loop between two helices (Luo et al., 2005). Both the
sequence and tertiary structure are highly conserved among
pneumococci and are critical to function (Mann et al., 2014);
pneumococci lacking CbpA show poor penetration into the
cerebrospinal fluid in mouse models (Figure 2B). Although
there is no sequence homology to this domain in their
genomes, meningococci display pilus protein PilQ and outer
membrane protein PorA and Haemophilus present membrane
protein OmpP2 that crossreact with antibodies to CbpA and
enable both bacteria to also bind to laminin receptor (Mann
et al., 2014). This binding facilitates both adherence of bacteria to
the cerebral vasculature and subsequent translocation across the
endothelial cell cytoplasm into the brain parenchyma.
Intravenous injection of CbpA-coated beads into mice followed
by imaging of the brain surface through a cranial window
dramatically reveals the ability of CbpA to bring particles to
and through the cerebral capillary endothelium (Figure 2C).

Further impact of the adhesin/laminin receptor interaction is
revealed by recent work that, during the course of bacteremic
pneumonia, the pneumococcus can translocate into myocardial
cells forming microlesions (Brown et al., 2014). It appears that
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
the mechanism of translocation across the cardiac vascular
endothelium again involves CbpA/laminin receptor facilitating
live bacterial entry into cardiomyocytes. Cardiac damage is
reflected by increased levels of Troponin T and abnormal
electrocardiography as the bacterial microcolonies interrupt
electrical transduction pathways. Necroptosis and apoptosis
within the lesions lead to permanent scar formation and
contribute to cardiac morbidity and mortality, underappreciated
as sequela of clinical pneumonia (Reyes et al., 2017). Such cardiac
injury has been associated clinically with the acute and
convalescent phases of pneumonia but the mechanism of this
link is only now appreciated.
Design of a Cross-Protective Vaccine
Cross-reactivity between the meningeal pathogens of the
ligands for laminin receptor-mediated translocation is
highlighted by the observation that induction of antibody by
vaccination with CbpA conveys protection not only against
pneumococcal infection but also against Haemophilus sepsis
and otitis media and meningococcal meningitis in mouse
models (Mann et al., 2014; Rowe et al., 2019). A CbpA-based
vaccine is effective in preventing cardiac lesions based on
blocking the shared CbpA/laminin receptor mechanism
(Mann et al., 2014). Just as was the case for ChoP/PAF
receptor as a generalized code for pulmonary/meningeal
pathogens entering cells, CbpA/laminin receptor is a shared
key to recognizing the blood brain barrier and the heart.
Neurotropic pathogens as disparate as syphilis, Venezuelan
equine encephalitis virus, Sinbis virus, and prions all share
entry into the central nervous system via laminin receptor. If
many laminin receptor ligands also cross react, this is a feature
A

B

C

FIGURE 2 | Interaction of CbpA-like adhesin with laminin receptor. (A) The structure of the CbpA adhesin domain highlighting the amino acid sequence of the
region required for binding to the blood brain barrier (circle) (adapted from Luo et al., 2005). (B) Pneumococcal mutant lacking CbpA is compared to wild type (WT)
for causing meningitis. Strains were injected intravenously into mice (each symbol is one mouse) and the presence of bacteria in the blood and CSF was determined.
Graph shows that WT pneumococci cross the blood brain barrier into the CSF at a blood threshold of ~10e5 cfu. Pneumococcal mutants lacking CbpA do not
cross the blood brain barrier into the CSF even at 10e7 cfu in the blood. (adapted from Orihuela et al., 2003) (C) Beads coated with CbpA and injected intravenously
in mice, adhere to cerebral capillaries (white) and cross into the brain parenchyma (dark) as viewed through a cranial window of a mouse. (adapted from Orihuela
et al., 2009).
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that could be exploited for a more broadly protective meningitis
vaccine; how broadly protective is yet to be determined.
SUMMARY

Pathogens utilize a vast array of individual host/receptor
interactions. However, particularly successful ones, like
pneumococcus, Haemophilus influenzae, and meningococcus,
they harbor a uniquely effective shared invasion strategy
targeting receptor mediated endocytosis by PAFR and laminin
receptor. These mechanisms to cross endothelial barriers have
proven successful in causing a similar pattern of severe infections
including sepsis and meningitis. Using this commonality to
design a vaccine to elicit crossreactive antibodies against the
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
bacterial ligands for laminin receptor may prove to be a broadly
effective counterattack.
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