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Aims/hypothesis: Recurrent hypoglycaemia (RH) is a major side-effect of intensive
insulin therapy for people with diabetes. Changes in hypoglycaemia sensing by the
brain contribute to the development of impaired counterregulatory responses to and
awareness of hypoglycaemia. Little is known about the intrinsic changes in human
astrocytes in response to acute and recurrent low glucose (RLG) exposure.

Methods: Human primary astrocytes (HPA) were exposed to zero, one, three or four
bouts of low glucose (0.1 mmol/l) for three hours per day for four days to mimic RH. On the
fourth day, DNA and RNA were collected. Differential gene expression and ontology
analyses were performed using DESeq2 and GOseq, respectively. DNA methylation was
assessed using the Infinium MethylationEPIC BeadChip platform.

Results: 24 differentially expressed genes (DEGs) were detected (after correction for
multiple comparisons). One bout of low glucose exposure had the largest effect on gene
expression. Pathway analyses revealed that endoplasmic-reticulum (ER) stress-related
genes such as HSPA5, XBP1, and MANF, involved in the unfolded protein response
(UPR), were all significantly increased following low glucose (LG) exposure, which was
diminished following RLG. There was little correlation between differentially methylated
positions and changes in gene expression yet the number of bouts of LG exposure
produced distinct methylation signatures.

Conclusions/interpretation: These data suggest that exposure of human astrocytes to
transient LG triggers activation of genes involved in the UPR linked to endoplasmic
reticulum (ER) stress. Following RLG, the activation of UPR related genes was diminished,
suggesting attenuated ER stress. This may be a consequence of a successful metabolic
adaptation, as previously reported, that better preserves intracellular energy levels and a
reduced necessity for the UPR.
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INTRODUCTION

Iatrogenic hypoglycaemia is a limiting factor to optimal
glycaemic control in people with type 1 (T1D) and insulin/
sulphonylurea-treated type 2 diabetes [T2D (1)]. Acutely, severe
hypoglycaemia, defined as requiring help from a third party for
recovery, can lead to brain damage or death, in extreme but rare
circumstances. Importantly the detection of hypoglycaemia and
activation of appropriate counterregulatory responses (CRR) to
reverse hypoglycaemia, are mediated to large extent by the
central detection of hypoglycaemia (2). Moreover, frequent
exposure to hypoglycaemia leads to defective CRR. Specifically
the magnitude of the glucose-raising catecholamine response
during hypoglycaemia is suppressed and triggered at a lower
plasma glucose level, combined with an often absent glucagon
response (3). These changes are, at least in part, driven by
changes in brain hypoglycaemia-sensing nuclei, including the
ventromedial hypothalamus [VMH (4)] and hindbrain (5).

Activation of CRR can be induced by administration of
glucoprivic agents such as 2-deoxy-glucose [2DG (6)] and 5-
thio-D-glucose (7) to discrete brain nuclei. Glucose sensing
neurons found in nuclei of the hypothalamus and hindbrain
detect changes in glucose concentration (8, 9). However, recently
astrocytes have been implicated in direct glucose sensing and
altering neuronal output (10, 11). For example, the expression of
the glucose transporter GLUT2 is required in astrocytes but not
neurons for a robust response to glucoprivation (12). Moreover,
astrocytes in ex vivo brain slices containing the nucleus of the
tractus solaris [NTS (6)], were activated by low glucose or 2DG.
Furthermore, blocking astrocytic metabolism with fluorocitrate
prevented increases in gastric motility normally associated with
hypoglycaemia (13). In response to low glucose, astrocytes in the
NTS increase intracellular calcium levels which occur before and
independently of neuronal activity (14). Recently it has also been
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shown that blockade of purinergic signalling from astrocytes also
blocks 2DG-induced CRR (11, 15). In addition, astrocytic
glutamate uptake is impaired following RH, contributing to
counterregulatory failure (16). Together these data suggest an
active role of astrocytes in glucose detection, despite this
evidence little is known about the intrinsic changes within
astrocytes, especially human astrocytes, following recurrent low
glucose (RLG). In this study, we used both RNA sequencing and
an epigenome-wide association study (EWAS) of DNA
methylation (DNAm) to examine for the first time, changes to
the human astrocyte transciptome and methylome following
acute and recurrent low glucose exposure.
RESEARCH DESIGN AND METHODS

Astrocyte Isolation and Cell Culture
HPA cells were isolated from post-mortem sub-ventricular deep
white matter following consent from next-of-kin, and with
ethical approval from the North and East Devon Research
Ethics Committee and confirmed as glial fibrillary and acidic
protein (GFAP) and vimentin positive, as previously described
(17), confirming astrocyte identity. The recurrent low glucose
(RLG) model has been previously described [(18); Figure 1].
Each day cells were cultured in 2.5 mmol/L glucose-containing
media for 2 hours before being changed for media containing 0.1
(low) or 2.5 (normal) mmol/L glucose for 3 hours. Overnight,
cells were recovered in stock media containing 5.5 mmol/L
glucose. This was repeated for four days. Control and low
glucose (LG) treated cells had 2.5 mmol/L glucose for three
days and on the fourth day the LG group received low glucose for
3 hours. The antecedent RLG (aRLG) and RLG groups had 0.1
mmol/L glucose for 3 hours on three consecutive days, on the
fourth day the aRLG group was exposed to 2.5 mmol/L glucose,
FIGURE 1 | Schematic of the recurrent low glucose model. Human primary astrocytes were exposed to 0, 1, 3, or 4, three-hour long bouts of 0.1 mmol/l glucose;
control (C), acute low glucose (LG), antecedent recurrent low glucose (aRLG), and recurrent low glucose (RLG) respectively. Each day cells were first incubated in
2.5 mmol/l glucose for 2 hours as a step down from overnight/stock media of 5.5 mmol/l glucose. Adapted from (18).
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whereas RLG was exposed to 0.1 mmol/L glucose for 3 hours.
Mannitol was added to maintain osmolarity (see ESM for
details). Samples were split for RNA extraction and DNA
extraction, with a total of five and six replicates for RNA
sequencing and DNA methylation studies, respectively. Cells
were confirmed as mycoplasma free using the MycoAlert kit
(Lonza, Slough, UK).

RNA Sequencing
Briefly, RNA was extracted using TRIzol and Direct-zol
miniprep kit (Invitrogen, Carlsbad, CA, USA), according to
manufacturers’ instructions. cDNA libraries were generated
using the TruSeq DNA HT Library Preparation Kit (Illumina
Inc., San Diego, CA, USA). Sequencing reads were generated
using the Illumina HiSeq 2500 and fastq sequence quality was
checked using MultiQC before alignment to the human genome
(Build GRCh38.p12) using STAR. Mapped reads were counted
using the FeatureCounts function of the subread package.
Differential gene expression was calculated using DESeq2 (19)
using the Likelihood ratio test function to analyse all groups
together followed by the Wald-test for pairwise analysis. Genes
with a false discovery rate (FDR) ≤0.05 were considered
differentially expressed. For a principal component analysis
plot see ESM Figure 1. Functional gene ontology analysis was
performed using GOSeq. Gene length was accounted for during
GO analysis. Raw RNAseq files are available through GEO
accession number GSE166848.

DNA Methylation Analysis
DNA was extracted using a modified phenol:chloroform protocol
and DNA methylation (DNAm) examined using the Infinium
MethylationEPIC BeadChip platform (Illumina Inc.; EPIC).
729727 probes remained after QC processes. The one-way
analysis of variance (ANOVA) test was used to test for
differentially methylated sites associated across the three groups:
LG, aRLG, RLG compared to control. To determine which group
was driving the association behind the significant ANOVA results,
the T statistics for control versus each of the three groups were
extracted from the regression model. Unprocessed array data is
available through GEO accession number GSE166848.
RESULTS

Low Glucose-Induced Changes in Gene
Expression in Human Astrocytes
In HPA cells, expression of 1240 genes were significantly (p<0.05)
altered in response to glucose variation; 24 of which were
significantly differentially expressed (DE) after FDR correction
(adjusted p<0.05; Figure 2A). Volcano plots displaying the
pairwise comparisons of each treatment group versus control
shows that LG (Figure 2Ai) produced the largest effect on gene
expression, whereas changes induced by aRLG (Figure 2Aii) and
RLG (Figure 2Aiii) were more modest. LG and RLG shared similar
DE patterns (Figure 2B) and importantly TXNIP, regulated by
glucose (20), was significantly downregulated in both LG (log2 fold-
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change -2.16, p=1.09E-5) and RLG (log2 fold-change -1.46,
p=2.91E-3; Figure 2C). Of the other DE genes there was a
predominance of genes related to endoplasmic reticulum (ER)-
stress. X-box binding protein 1 (XBP1; log2 fold-change 0.28,
p=1.56E-4; Figure 2D), heat shock protein family A member 5
(HSPA5; log2 fold-change 0.34, p=3.55E-6; Figure 2E), and
mesencephalic astrocyte-derived neurotrophic factor (MANF; log2
fold-change 0.41, p=7.55E-6; Figure 2F) showed increased
expression following LG exposure which was blunted following
RLG. Similarly, mitochondrially encoded NADH:ubiquinone
oxidoreductase core, subunit 4 and subunit 4L (ND4 and ND4L)
had increased gene expression in acute LG (ND4; log2 fold-change
0.37, p=3.5E-6; ND4L; log2 fold-change 0.47, p=5.75E-7) and
a diminished, but still significant increase following RLG
(Figures 2G, H). Pathway analysis of the DE genes identified
seven gene ontology (GO) terms that were significantly altered
after correction for multiple comparisons, which were related to the
unfolded protein response (UPR) and ER-stress (Table 1).

LG and RLG Produce Distinct DNA
Methylation Profiles
Our analyses did not identify any differential methylated
positions (DMP) that reached genome-wide significance for
DNA methylation association analyses (Figures 3Ai-iii;
p<9.42x10-8 (21)). However, 65 probes reached nominal
significance of p<0.0001. Hierarchical clustering of these top
probes showed four distinct groups that matched with the four
experimental conditions suggesting a DNA methylation profile
specific to each condition (Figure 3B). Of the differentially
methylated CpG sites, several were related to energy or ion
homeostasis. SLC19A3 (cg07417745, p=5.16E-7, bD= 0.23),
encoding the thiamine transporter was hypermethylated after
LG showing a linear relationship with the number of bouts of LG
exposure (Figure 3C). Similarly, methylation of the GRID1 gene,
encoding the ionotropic glutamate receptor d1 (cg16777181) was
hypermethylated following LG exposure (p=1.90E-3, bD=0.18)
and this remained elevated following RLG (Figure 3D). In
contrast, cg1102254 (NIPA1 , p=2.65E-6, bD= -0.02),
cg11692715 (SLC8B1; p=1.61E-5, bD= -0.16) and cg22467827
(CLHC1, p=4.28E-4, bD= -0.03), which encode a Mg2+

transporter (22), a Na+/Ca2+ antiporter, and clathrin heavy
chain linker domain containing 1 respectively, were
hypomethylated following RLG (Figures 3E–G). The probe
cg22467827 (annotated to the gene CLHC1) was also
differentially expressed (log2 fold-change 0.80, p=1.03E-4) in
relation to RLG (Figure 3H). The two datasets (RNAseq and
EPIC) were integrated resulting in 28 DE genes that overlapped
with 31 differentially methylated positions (Figure 3I).
DISCUSSION

The central adaptations in response to RH that mediates defective
CRR require further investigation, with little known about how
astrocytes respond or adapt to RH. We sought to examine changes
in HPA gene expression and DNAmethylation to determine which,
May 2021 | Volume 12 | Article 671724
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if any, pathways were altered by acute and RLG exposure. DE and
GO pathway analyses revealed that the major pathway altered by
acute LG was the UPR. Protein folding within the ER requires
hydrolysis of ATP (for review see (23)) and reductions in ATP
content driven by energy stress increases protein misfolding to
activate the UPR (24). ER stress, viaATF6 promotes the production
Frontiers in Endocrinology | www.frontiersin.org 4
of XBP1 (25), which is spliced by IRE1a, to produce a potent
transcriptional activator, XBP1s that increases HSPA5 (25) and
MANF expression (26)). MANF is upregulated by UPR to inhibit
cell proliferation and prevent ER-stress-related cell death (27, 28).
Interestingly, here expression of XBP1, HSPA5, and MANF were
increased following a single bout of LG. Similar ER stress responses
Ai Aii Aiii

B D

E F

G H

C

FIGURE 2 | Glucose variation alters expression of genes involved in endoplasmic-reticulum stress. Volcano plots on the pairwise differential expression analysis
between control cells (C) versus (Ai) low glucose (LG), (Aii) antecedent RLG, and (Aiii) recurrent low glucose (RLG), the red points on the plots represent genes
padj<0.05. (B) Heatmap of hierarchical clustering of LRT analysis FDR ≤ 0.1 indicates differentially expressed genes (rows) between the four groups (padj<0.1).
Orange indicates up-regulation and blue indicates down-regulation. The LG and RLG groups cluster together. TXNIP (C), XBP1 (D), HSPA5 (E), MANF (F), ND4L
(G), ND4 (H) expression profiles, selected for their functional relevance to hypoglycaemia (p-value is the adjusted result of the likelihood ratio test). n=5; *p<0.05,
**p<0.01, ***p<0.001, ****p<0.0001. Data presented as Mean ± SD.
TABLE 1 | Glucose variation significantly enriched gene ontologies related to endoplasmic-reticulum stress.

GO term ID GO term full name Number of DEGs
in the category

Total number of
genes in the category

corrected
p value

GO:0006986 response to unfolded protein 8 160 0.0159
GO:1905897 regulation of response to endoplasmic reticulum

stress
6 72 0.0159

GO:0006984 ER-nucleus signalling pathway 5 45 0.0159
GO:0035966 response to topologically incorrect protein 8 179 0.0159
GO:0034620 cellular response to unfolded protein 7 125 0.0159
GO:0035967 cellular response to topologically incorrect protein 7 143 0.0329
GO:0036498 IRE1-mediated unfolded protein response 5 59 0.0440
May 2021 | Volume 12 | Art
Gene ontologies that were significantly enriched by the differentially expressed genes. All seven of the GO terms were related to endoplasmic-reticulum stress and the unfolded protein
response.
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have been reported in pericytes (29), cardiac tissue (30), rat primary
astrocytes (31) and primary hippocampal neurons (24) in response
to LG. Following RLG, the increase in UPR-related gene expression
was substantially diminished. Given that energy deficiency increases
ER stress, it is plausible that acute LG exposure causes poor folding
of proteins leading to a marked increase in ER stress. Following
successive bouts of LG, a concomitant metabolic adaptation, as
previously reported (18), better preserves cellular (or intra-ER) ATP
levels, thus attenuating (or delaying) subsequent LG-induced ER
stress, reducing the necessity of the UPR. This is supported by the
observation that expression levels ofND4L andND4 following RLG
remained elevated above control. Thesemitochondrial genes encode
two subunits of complex I (NADH dehydrogenase) and the
continued elevation of expression following RLG suggests a
persistent adaptation. This correlates with our previous data in
the same cell type demonstrating increased basal mitochondrial
oxygen consumption following RLG, mediated by an increased
reliance on fatty acid oxidation for ATP generation (18). It is worth
noting that in our previous study, we did not observe any reduction
in total intracellular ATP content following acute or recurrent low
Frontiers in Endocrinology | www.frontiersin.org 5
glucose exposure. When combined with our data presented here,
it is possible that normal ER functions are transiently reduced
during acute low glucose exposure in order to maintain intracellular
ATP levels. Whether any metabolic adaptation following RLG
leads to better preservation of intra-ER ATP levels remains to
be determined.

The EWAS identified 65 DMPs associated with LG/RLG that
reached nominal significance, while we did not identify any
DMPs that reached the suggested array-wide significance
(p<9.42x10-8). Hierarchical clustering revealed distinct patterns
of DNA methylation across the four conditions. One of the
most significant DMPs (cg07417745) is located in intron 1 of
the SLC19A3 gene, which encodes a thiamine transporter (32),
and showed a linear relationship between increased DNA
methylation and the number of LG exposures. Interestingly,
expression of this gene has previously been found to be
modulated by hyperglycaemic-like conditions (33). Conversely,
methylation of cg11022541 and cg11692715 located within the
genes NIPA1 and SLC8B1 respectively, decreased following RLG.
As these genes encode a Mg2+ transporter (22) and a Na+/Ca+
Ai Aii Aiii

B

D E

F G
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H

C

FIGURE 3 | Effect of glucose variation on DNA methylation. (A) The most differentially methylated genes (ANOVA p ≤ 0.001) in pairwise comparison (red points are
p<0.0001) between control treated HPA cells (C) versus (Ai) low glucose (LG), (Aii) antecedent recurrent low glucose (aRLG), and (Aiii) recurrent low glucose (RLG).
(B) Heatmap of hierarchical clustering using probes ANOVA p<0.001 indicates differentially methylated cg sites (rows) between the four groups. Orange indicates
hypermethylation and yellow indicates hypomethylation. Box plots of some of the most differentially methylated CpG sites labelled by their associated gene, selected
for functional importance (C), cg07417745/SLC19A3, (D), cg16777181/GRID1, (E), cg11022541/NIPA1, (F), cg11692715/SLC8B1 (G), cg22467827/CLHC1 (p-
value is the adjusted result of the ANOVA). (H), CLCH1 gene expression increases. Error bars represent standard deviation (I), Venn diagram of differentially
methylated cg sites in yellow and differentially expressed genes (blue) and overlap between the two data sets, 28 genes. Data presented as Mean ± SD. *p<0.05,
**p<0.01, ***p<0.001, ****p<0.0001. n=6 for methylation data and n=5 for gene expression changes.
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exchanger (34), this may indicate the energetic cost of ion
handling within the cell, which requires further investigation.
The main limitation in this study was that we were underpowered
in the DNA methylation analyses as power analysis indicated
we had 50% power to detect a difference of 10% in half of all
the sites on the EPIC array. Moreover, the relationship between
DNA methylation and gene expression is complex, with the
direction of effect dictated by sequence context (35).
Furthermore, the annotation of DNAm sites to genes is purely
based on proximity rather than empirically derived data (36),
both of these factors make inferences between DMPs and gene
expression complicated. Despite these challenges we looked for
overlapping genes between the datasets and identified 28 that
were significantly altered (p<0.05) in both analyses. For example,
CLHC1 gene expression was significantly increased and a DMP
(cg22467827) located in intron 1 was hypomethylated. This
tentatively suggests that DNA methylation within the first
intron may be mediating the upregulation of this gene in the
response to LG glucose.

These data demonstrate the intrinsic response of adult human
primary astrocytes to acute and recurrent low glucose exposure.
Despite the advantages of the high resolution information
obtained from primary astrocyte cultures, whether these
responses are shared by astrocytes across different brain
regions remains unknown, especially given the emerging
evidence of astrocyte heterogeneity. In addition, the influence
of neighbouring cells such as neurons, pericytes and microglia
would be interesting to examine. Therefore, expanding these
findings to a more replete setting will be important for future
studies using for example human inducible pluripotent stem cells
in vitro or ex vivo/in vivo rodent models.

In summary, there are both shared and unique gene expression
and DNA methylation profiles in human astrocytes following LG
and RLG exposure. A single bout of LG exposure induced
expression of genes associated with the UPR linked to ER stress.
This response diminished after four bouts of LG exposure,
suggesting an attenuated stress response. Taken together with
previous observations that astrocytes adapt to RLG by increasing
reliance on fatty acid oxidation to maintain intracellular ATP levels,
activation of the UPR by glucose deprivation may be attenuated
following RLG exposure.
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