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Abstract: Using the orbital-free quantum crystallography approach, we have disclosed the quan-
titative trends in electronic features for bonds of different strengths formed by tetrel (Tt) atoms
in stable molecular complexes consisting of electrically neutral tetrahedral molecules and halide
anions. We have revealed the role of the electrostatic and exchange-correlation components of the
total one-electron static potential that are determined by the equilibrium atomic structure and by
kinetic Pauli potential, which reflects the spin-dependent electron motion features of the weak and
strong bonds. The gap between the extreme positions in the electrostatic and total static potentials
along the line linking the Tt atom and halide anion is wide for weak bonds and narrow for strong
ones. It is in very good agreement with the number of minima in the Pauli potential between the
bounded atoms. This gap exponentially correlates with the exchange-correlation potential in various
series with a fixed nucleophilic fragment. A criterion for categorizing the noncovalent tetrel bonds
(TtB) based on the potential features is suggested.

Keywords: tetrel bond; orbital-free quantum crystallography; electron density; total one-electron
static potential; electrostatic potential; Pauli potential

1. Introduction
1.1. Tetrel Bonds

The aim to understand the nature of various chemical bonds and their categorization
reflects the global challenges and trends in theoretical chemistry and computational material
science. The categorization of noncovalent bonds is based on the ability of the elements
belonging to Groups 14–17 of the periodic table (PT) to provide the local electrophilic region
in the inhomogeneous electron shells and to define the name of the specific bond [1–3].
This systematization stands on the concept of the anisotropy of electron density in the
valence shell of a covalently bound atom, which leads to the formation of the σ- and π-
holes [4]. This effect is easily observable and this is one of the reasons why corresponding
interactions are called “electrostatically driven” ones [5]. Nowadays, several important
discussions have taken place, and, as a result, noncovalent bonds acquired the following
names: halogen bond, XB (atom X of Group 17 of PT provides its electrophilic region for
noncovalent bonding); chalcogen bond, ChB (atom Ch of Group 16); pnictogen bond, PnB
(atom Pn of Group 15); tetrel bond, TtB (atom Tt of Group 14). By the analogy with IUPAC
definitions [6,7] formulated for “-ogen bonds”, a tetrel bond could be defined as an attractive
interaction between a local electrophilic region of an atom belonging to Group 14 of PT
with a nucleophilic region in the same or another molecule.

Tetrel bonds are now intensively studied from both experimental and theoretic points
of view [1]. The elements of the carbon group are part of the most important compounds
of reinforcing fillers, carbon fibers, nanotubes, and nanoparticles, so the issues of their
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involvement in noncovalent interactions deserve special attention. Several features sig-
nificant for the practice of TtB formation by carbon materials have been mentioned in
the review [8]. Computational modeling has shown [9] that the strength of TtB increases
in a row C < Si < Ge. Heavier tetrels can form stronger TtB than carbon because of their
higher polarizability.

Analysis of computational spectral data used for the estimation of the TtB strength [10]
has shown that it is impossible to specify the sole determining factor, and we should
consider several of them simultaneously. Firstly, the bonding is stronger with the increase
in the atomic number of the Tt-atom and its polarizability. Secondly, the strongest bond is
formed with halogen substituents. Thirdly, the Tt-atom involved in a double bond forms a
weaker interaction. The correlation between the frequency shift in the IR spectra, chemical
shielding in NMR and parameters of noncovalent bonds from halogen to tetrel, including
the complexes of the FH3Tt molecules, where Tt = Si, Ge, Sn, have been studied [11]. It
has been shown that the highest frequency shift is observed for XB, while the lowest one
is for PnB. In NMR, the changes in shielding are decreased from XB to TtB, but for the
donor of the electrons, they are the highest for TtB. It has been suggested [12] that the
X2TtO molecules (X = H, F, Cl, Br, CH3; Tt = C, Si, Ge, Sn) can act as effective adsorbents of
CO2 due to the TtB formation. The majority of complexes with CO2 are stabilized by the
combination of C . . . O and O . . . Tt interactions and their energy of interaction increases
in a row C < Ge < Sn < Si.

For molecular complexes, the ability of the TtB formation with the massive nucleophile
atoms is higher for heavier representatives of Group 14. Steric effects preventing a binding
could be compensated by the increase of the Tt-atom size by the addition of electron-
acceptor substituents and by the strengthening nucleophiles such as anions. The energy of
TtB reaches up to 10 kcal/mol for the pair of neutral molecules without an electron-acceptor
substituent: the addition of CF3-group increases the energy of TtB and attains its maximum
of almost 54 kcal/mol in anionic complexes [13].

The results of diverse studies of the geometries, energy, and electronic characteristics of
TtBs, formed by heavy atoms, such as Sn and Pb, are summarized in [14]. The stabilization
of the complexes formed by σ- and π-hole interactions, especially for specific anion binding,
is discussed in [15–17]. The reactivity of the gas–phase complexes in the SN2 reactions
is actively studied [18]. It has been demonstrated that the SnF3 group is able to form
strong bonds with anions (~50 kcal/mol) and can be used for the extraction of target
anionic pollutants from water solutions. The specific binding via S . . . Sn interactions has
been considered using structural data from the Protein Data Bank with further docking of
organotin compounds into the active center of the receptor [19]. It has been observed that
the formation of S . . . Sn interactions reinforced by the assisted CH . . . π interaction takes
place and it promotes the receptor activation controlling further gene expressions.

A rigorous analysis of CSD data for TtBs [20], formed by the C(sp3) atom, which is
bound to cationic (ammonium, sulfonium) and neutral (F и NO2) substituents, has been
recently performed in the framework of crystal design methodology. It has been revealed
that the linear direction of R–C . . . B interactions is an important characteristic of TtBs. The
ability to form TtB is also treated as a tool for crystal engineering. A mention has recently
been made [21] about the lack of experimental data concerning the interactions of Ge and
Sn with nucleophiles. For several crystalline systems with fragments Hal− . . . CH3–Y
(Hal− = Cl, Br; Y = N, O) it has been confirmed that the carbon atom in the methyl group
presents its electrophilic region in a typical TtB [22]. The electronic criterion [23] based on
the disposition of the minima of electron density and electrostatic potential along the TtB
line has been applied.

However, the analysis of CSD shows the existence of numerous short contacts between
Ge and Sn with the atoms bearing electron lone pairs and reveals that such interactions
can define the conformations and packing of the organometallic crystals. Analysis of
experimental short-contact data from CSD for the crystalline complexes of Pb and Sn [21,24]
has led to the conclusion that TtBs formed by Sn do not only widely take place in a solid
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state, but also promote the stabilization of complexes in a crystal form. Intramolecular
TtBs Sn . . . X (X=O, S, N, F, Cl, Br, I) also play a significant role in the stabilization of the
preferable conformation. There are examples of TtBs, formed by Pb(II) [24], which could be
used in the tasks of crystal engineering for the formation of 2D and 3D motives and the
generation of the crystal packing of the organometallic framework. The usage of SnPh3
chloride as a donor of TtB [25] has allowed for 10 different co-crystals with short, as well
as linear TtBs, to be obtained, and such a donor can be used for the crystal engineering of
packing with a predefined topology of bonds.

The idea to use the local electronic characteristics, P(rbcp), at the bond critical points
(bcp) of electron density in the analysis of chemical bonding came from QTAIM [26–28].
Bond critical points (if they exist) are the specific points corresponding to the minimum of
electron density along the interatomic line and to its maxima in the orthogonal directions.
For evaluating the energy of hydrogen bonds, EHB, the single-factor correlation models
were suggested, such as the models “EHB vs. P(rcp)”, where P(rcp) was the potential v(rbcp),
or kinetic g(rbcp) electronic energy density [29–33]. Further, that idea was extended to
different types of noncovalent bonds [34–37]. The electrostatic potential at bcp was used
as a factor in correlation models [38,39]. It was found [40] that those different principles
of sorting noncovalent bonds in a sample led to the superiority of some factors over
others. The choice of single-factor models depends on the fixation or variation of the
atom donating its local electrophilic region for noncovalent bonding. Simultaneously, the
fixation/variation of a nucleophilic fragment affects the behavior of linear trends. Therefore,
while estimating the energy of a bond from parametric equations and making predictions,
it is important to select the appropriate parameters of the model.

1.2. Orbital-Free Quantum Crystallography Approach

Orbital-free density functional theory [41] allows extending QTAIM and joins it with
the quantum crystallography [42,43]. It starts from the one-electron Euler equation

µ(r) =
δTs[ρ]

δρ
+ υst(r) (1)

which connects the static one-electron potential, υst(r), and the functional derivative of the
noninteracting kinetic energy of N electrons, Ts[ρ], with respect to the electron density.
A Lagrange multiplier µ, an electronic chemical potential, follows from the condition∫
ρ(r)dr = N. A static potential

υst(r) = −υes(r) + υxc(r) (2)

includes the electrostatic (es) and exchange-correlation (xc) components that depend on
the equilibrium nuclear configuration and on the corresponding electron density. It often
appears in the literature as a potential acting on an electron in a molecule [44–46]. In a
single-determinant approximation, Ts[ρ] is presented as a sum of the contributions:

Ts[ρ] = TW[ρ] + TP[ρ] (3)

The Weizsäcker (1935) kinetic energy TW[ρ] =
∫ |∇ρ(r)|2

8ρ(r) dr > 0 originates from the
wave–particle duality of electrons and an uncertainty principle [47]. It arises from a
semi-local part of the quantum electron fluctuations and presents the kinetic energy of
noninteracting “spinless” particles of density ρ(r), which are in the hypothetical “bosonic”
ground state, where all particles are in the same lowest energy state [48]. However, the
presence of an electron of a given spin at r affects the motion of the rest of the same-
spin electrons near this point. Therefore, to fit the antisymmetry requirement for the
many-electron wavefunction, the Pauli energy [49,50], TP[ρ], is introduced. It describes
the excess in the total electronic kinetic energy over the energy of the noninteracting
“spinless” particles.
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Taking the functional derivative of Ts[ρ] and supposing the proper homogeneity of
the functionals in density scaling, the Euler equation for the stationary state is re-written
via corresponding potentials as

µ = υkin(r) + υst (r) (4)

Here, the kinetic potential υkin(r) = υP(r) + υW(r) contains the terms related to
electron motion.

All terms in (3) have clear physical and chemical meanings. They determine the one-
electron homotropic and heterotropic forces [42] acting in a molecule and have been com-
puted and implemented to the studies of chemical bonds in different compounds [51–54].
The Equations (2) and (3) lead to following expression for the Pauli potential [55–57].

υP(r) = υes(r)− υxc(r)− υW(r) + µ (5)

The electrostatic potential, υes(r), is linked to the total (electron plus nuclear) charge
density by the Poisson equation; there are approximations for the exchange potential, υxc(r),
and the Weizsäcker potential, υW(r), is read as [49,58]

υW(r) =
1
8
|∇ρ(r)|2

ρ2(r)
− 1

4
∇2ρ(r)
ρ(r)

(6)

The outlined approach highlights physically significant components in the electron
density and one-electron potentials connected with electrostatics, exchange, and spin-
independent wave properties of an electron in a crystal. Electronic descriptors designed on
the basis of this approach have been successfully tested for the analysis of the properties of
chemical bonds in crystals [59]. In particular, for the halogen bonds the use of the electronic
criterion has been suggested in order to distinguish electrostatically-driven noncovalent
bonds from the weaker van der Waals interactions [60]. We will apply this methodology
in our study of the electronic properties for a series of TtBs in molecular complexes to
understand the nature of similarity and difference between weak and strong interatomic
interactions in which the Tt atom participates as the provider of the electrophilic region.
We have tried to answer the following specific questions.

- What electronic features of TtBs formed by tetrahedral molecules, where Tt = C, Si,
Ge, Sn, Pb, might be made visible?

- How does the behavior of the Pauli potential, and electrostatic and static potentials
differ for weak and strong bonds formed by a Tt atom?

- Could the exchange-correlation contribution to the static potential characterize
TtB quantitatively?

- Is there a visible change in the properties at the junction of weak and strong TtBs? Can
we merge them?

2. Materials and Methods

The equilibrium state modeling has been carried out for the complexes of halide
anions, Hal = F−, Cl−, Br−, with electrically neutral tetrahedral molecules, Y–TtX3, Tt = C,
Si, Ge, Sn, Pb; X = Cl, Br, CH3; Y = Hal, CH3, CN, NH2, NO2. In order to make the
sample large and representative, we considered a halide anion as a nucleophile to avoid
alternative binding with the rest of functional groups. In such complexes, the halide anion
acts as the nucleophilic moiety, and the Tt atom of tetrahedral molecule Y–TtX3 delivers an
electrophilic site. The geometry optimization of molecular complexes has been performed
by Firefly software (v. 8.2.0), [61,62]. We have used the PBE0 [63] functional with Jorge-
DZP-DKH [64–66] basis set from the Basis Set Exchange site [67]. Gradient convergence
was 0.9 × 10−6. The optimized structures have been tested for the absence of imaginary
IR frequencies.
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The binding energy of complexes, Ebind, has been estimated as the difference of
the total energy of the optimized complex, EAB, and the sum of energies for isolated
components: Ebind = EAB − (EA + EB) − ECP, see Table S3 in Supplementary Materials.
Thus, Ebind describes the energy gain for tetrahedral molecule Y–TtX3 gathered in a complex
with a halide anion. The BSSE correction, ECP, has been estimated, taking into account the
phantom orbitals for optimized molecules in complexes and considering relaxation effects
of isolated molecules.

The distributions of electronic properties along the studied bonds were analyzed using
electrostatic potential, υes(r), static potential acting on an electron in a molecule, υst(r), and
electron delocalization indices δ(Tt|Hal) [68]. Since the υst(r), in contrast to υes(r), contains
a contribution from exchange-correlation potential, υxc(r), we estimate the latter as the
difference between these quantities. For difference between extremes of potentials along
the bond line, υst(r)max and υes(r)min, we used υxc(r)ext; for values at the critical point of
electron density, the exchange-correlation potential was denoted as υxc(rcp). We applied
the evaluation of exchange-correlation density in terms of Müller approximation [69,70].
All these functions were calculated using Multiwfn program [71]. For calculating the Pauli
potential, υP(r), the approach suggested in [55] and implemented in Multiwfn was applied.
Visualization of geometry and some properties of electron density at critical points, such as
ρ(rcp), electrostatic potential, υes(rcp), were calculated using AIMAll software package [72].
All calculated values for bonds properties of complexes Y–TtX3 . . . Hal− were gathered in
Tables S2 and S3 of Supplementary Materials.

The quantitative relationships between Ebind and bond properties were analyzed using
Statistica program [73].

3. Results and Discussion
3.1. Electron Density Properties

We analyzed the series of complexes Y–TtX3 . . . Hal− formed by halide anions
Hal− = F−, Cl−, Br−, and tetrahedral molecules Y–TtX3, in which the tetrel atom, Tt = C,
Si, Ge, Sn, Pb, delivers its electrophilic region for bonding. The functional group Y = Hal,
CH3, CN, NH2, NO2, covalently bound with the Tt atom was placed at the same line with
it and the nucleophilic fragment Hal−. Each of the three identical substituents X = Cl, Br,
CH3, was involved in interactions with Hal–. Note that the arrangement of three bulky
electronegative substituents X3 on the side of a halide anion was influenced by the steric
screening of the σ-hole for the Tt-atom. Nevertheless, this fact did not prevent the formation
of the weak and strong Hal− . . . Tt bonds. We can point out the following features of the
Y–TtX3 . . . Hal− complexes. Firstly, the geometry of the complexes essentially depends
on the strength of the Hal– . . . Tt interaction. The long and weak Hal− . . . Tt bonds only
slightly distort the tetrahedral shape of the Y–TtX3 molecule, while the short and strong
bonds lead to the shape of trigonal bipyramid for a complex. The last effect is more often
manifested for heavy Tt-atoms, but it also depends on the σ-hole polarizing introduced
by the Y substituent. Secondly, we have found that not every weakly bound complex
has a bond path and bond critical point (bcp) between the Tt-atom and Hal−. Thus, the
combination of substituents in the Y–TtX3 molecule has made it possible to form the three
types of Hal− . . . Tt interactions in our sample. There are the weakest interactions without
a bond path between Hal− and Tt, the typical tetrel bonds Hal− . . . Tt formed by the
slightly distorted geometry of the tetrahedral molecule, and the strong bonds approaching
the covalent character in the complexes which take the form of a trigonal bipyramid.

For complexes in which Tt = C, it has been found that the bcp (3, −1) is formed only
for the F− . . . C bonds. In other cases, we observe the arrangement of electron density
curvature according to the cage type, with a cage critical point (ccp) (3, +3) approximately
on the line Hal− . . . C, Hal = Cl−, Br−. In this case, any halide anion forms the bond paths
with any substituent X = Cl, Br, CH3. It is interesting that in two isoelectronic complexes
F–CCl3 . . . Cl− and Cl–CCl3 . . . F−, the formation of completely different electron density
curvature between the Hal– and C atoms is observed (Figure 1). This observation confirms
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that the fluorine atom is not the best polarizing carbon substituent, but it is able to form the
noncovalent bond F− . . . C with relatively high values of ρ(rbcp). The values of electron
density at the cage critical points, ρ(rccp), are almost an order of magnitude lower than
ρ(rbcp) in complexes with a typical TtB.
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Figure 1. Different curvature of electron density and signature of cp in isoelectronic complexes
(a) Cl–CCl3 . . . F− and (b) F–CCl3 . . . Cl–.

In most cases where Tt = Si, we observe the bcp and bond path formation for the
Hal− . . . Si interactions (Figure 2b), and it is one of the attributes of a typical tetrel bond
(TtB). Nevertheless, the several Hal− . . . Si interactions are not strong enough. In the
equilibrium state, the halide anion is relatively far from the Tt position, and the ccp is
formed. Such a situation is observed for the cases of weakly polarizing substituents Y with
an electron-donor property: Y = NH2, CH3 (Figure 2a). The participation of the F atom
as a polarizing group does not contribute to the essential strengthening of the Hal− . . .
Si interactions. In the F–Si(CH3)3 . . . Cl− and F–Si(CH3)3 . . . Br– complexes, the electron
density in the region between the Si and Hal– atoms is already higher than for Tt = C, but
the Hal– . . . Si interatomic distance and the curvature of the electron density does not yet
allow the bond path formation. Instead, we observe the formation of only two ring critical
points (rcp) (3, +1) close to each other. In this case, C3v symmetry is broken due to slightly
different orientation of the methyl groups. Methyl groups in equatorial positions, X3 = CH3,
do not create obstacles for the Hal− . . . Tt bond path; in addition, one hydrogen atom
of each CH3 group forms the bound path with Hal−. In the complex with four identical
substituents, Y = X3 = Cl, the resulting bond Cl− . . . Si is as strong as the one opposite of it
(Figure 2c). If the F− participates as a nucleophile, then the Hal– . . . Si bond path is formed,
just as it was observed for complexes with Tt = C.
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In all cases when Tt = Ge, only bond critical points of electron density are observed for
Hal− . . . Ge interactions. Formation of bond paths confirms the presence of TtBs (Figure 3a).
Nevertheless, another important feature begins to appear in a number of Y–GeX3 . . . Hal−

complexes. The tetrahedral geometry of the Y–GeX3 molecule could be strongly distorted
in complexes with relatively strong Hal− . . . Ge interactions. Due to the more pronounced
ability of the Ge atom to be polarized, the Hal− can come close to it, forming a rather
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short and strong Hal− . . . Ge bond. In such cases, the shape of the Y–GeX3 molecule is
strongly distorted, three X substituents fit into one equatorial plane, and the geometry of
the complex acquires the shape of a trigonal bipyramid. Relatively high values of ρ(rbcp)
occur for Hal− . . . Ge bonds in such complexes (Table S2). They are comparable with ρ(rbcp)
for Y–Ge covalent bonds located in axial positions, but they are slightly inferior to Ge–X
covalent bonds in equatorial positions. Note that the bipyramid geometry of complexes is
accompanied by the disappearance of all three Hal− . . . X bond paths, regardless of the
substituents X = Cl, Br, CH3 (Figure 3b). Nevertheless, the effect of the X3 substituents can
be illustrated by the following example. For the F–GeX3 . . . Cl− complexes, the binding
energy, Ebind, decreases in the order X3 = F < Br < Cl, while ρ(rbcp) decreases in the different
order X3 = Br < F < Cl. This fact indicates the steric effect created by three atoms X = Br,
which restrain a shorter Cl− . . . Ge bond formation.

For most complexes Y–TtX3 . . . Hal–, Tt = Sn, Pb, we observe a relatively strong for-
mation of Hal− . . . Tt bonds formation (Figure 3b,d) accompanied by bcp with rather high
values of ρ(rbcp). The geometry of the complexes takes the form of a trigonal bipyramid,
as a rule. Nevertheless, in the series of Tt = Sn complexes, there are still cases where the
tetrahedral form of the Y–Sn(CH3)3 molecules is retained, where the electron-donor groups
NH2 and CH3 participate as Y substituent (Figure 3a,c). It can be concluded that the effect
created by the polarizing group Y is important, and its manifestation is clearly visible in
the series from Si to Sn. For Tt = Pb, all complexes are trigonal bipyramids and they are
characterized by a low negative binding energy, Ebind, and ρ(rbcp) between Hal– and Pb is
equal or comparable to the values for the covalent bonds of the corresponding sort.
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Figure 3. Weak and strong complexes (a) CH3–Ge(CH3)3 . . . Cl−; (b) Cl–GeCl3 . . . Cl–; (c) CH3–
Sn(CH3)3 . . . Cl−; (d) Cl–SnCl3 . . . Cl–.

The fact that a number of studied bonds formed by the Tt atom approaches the bonds
with covalent characters can be supported by a comparison of the properties of the axial
Hal− . . . Tt and equatorial Tt–X bonds of the same sort for which Hal− = X, Tt = Si, Ge,
Sn, Pb (Table S1). The positions of maxima for the ρ(rbcp) normal distributions are quite
close to each other and amount to 0.069 and 0.076 a.u., respectively (Figure S1). The total
range of the ρ(rbcp) values is from 0.04 to 0.14 a.u. A comparison of the axial bonds of one
complex Hal– . . . Tt and Y–Tt for which Hal = Y leads to the normal distributions of ρ(rbcp)
with maxima at 0.074 and 0.080 a.u., respectively (Figure S2a). If we take into account the
normal distributions of the weak Hal– . . . C bonds, formed by Y–CX3 molecules with a
small distortion of the tetrahedral shape, then the difference in the maxima positions will
amount to 0.05 a.u. (Figure S1b).

Thus, for the series of the Y–TtX3 . . . Hal– complexes considered in our study, the
strength of the Hal– . . . Tt interactions increases with an increase in the atomic number of Tt
in the series from C to Pb. Note that the widest range of the type of Hal– . . . Tt interactions
falls on the case of Tt = Si. At the same time, we should take into account that TtBs in
our set of complexes are under the influence of a number of factors created by different
substituents. For example, in a number of cases, the nucleophilic Hal–, in addition to the
TtB formation with an electrophilic region of the Tt atom, can be involved in noncovalent
interactions with electronegative substituents, X3.
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3.2. Electronic Criterion for Weak and Strong Bonds Involving Tt

When a covalent bond is formed, a variational balance is achieved between the ki-
netic and potential energy of electrons. Let us consider a potential component and turn
to the electronic criterion [23] based on the electron density and electrostatic potential
distributions. It has been created for identifying the electrophilic region and for naming
the noncovalent bonds in cases of “non-obvious σ-hole—lone pair” mutual orientation.
In accordance with the electronic criterion, the minimum of electrostatic potential along
the bond line is closer to the atom that shows the local accumulation of electron density.
The minimum of electron density is always located closer to the atom that provides its
electrophilic site for bonding.

The application of the electronic criterion to the considered complexes with weak
and strong interactions of the Tt atom illustrates the following results. The behavior of
the electrostatic potential, υes(r), static potential, or potential acting on an electron in a
molecule, υst(r), electron density functions, ρ(r), has an extreme character along the line
of the Hal– . . . Tt bond (Figure 4). A comparison of the extreme positions xes, xst, xρ, of
the abovementioned functions (Table S2) shows that for all considered cases, the minimum
of the ρ(r) is located on the side of the Tt atom, which provides its electrophilic region for
bonding, and the minimum of υes(r) is closer to nucleophilic Hal–. Position xρ corresponds
to the boundary of Bader’s atomic basins Hal–|Tt, and position xes separates the electrically
neutral atomic basins of these atoms. The observed ranking of the minima positions, xst|xρ,
mirrors the superposition of the boundaries of neutral and charged atomic basins. For all
Hal– . . . Tt interactions, it has been confirmed that the Tt atom provides its electrophilic
region for bonding and the fraction of electrons belonging to Hal– is attracted to the nucleus
of the Tt atom, as it should be for a typical TtB. Note that, for shorter and stronger Hal– . . .
Tt bonds, the gap between xst and xρ is significantly smaller than for longer and weaker
bonds. This fact confirms the observations presented in [74].
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Figure 4. The disposition of electron density, and electrostatic potential minima and potential acting
on an electron in a molecule, (a.u.) along interatomic line Hal– . . . Ge in complexes (a) F–Ge(CH3)3

. . . Cl− and (b) F–GeF3 . . . Cl−. The arrows point to the atom providing electrophilic region. Vertical
lines show the extremes of functions; corresponding color is used.

It is important that the xst coordinate which determines the position of the static
potential maximum, υst(r)max, along the bond line, is always located between the xes
and xρ positions. We denote the gap between the positions of υst(r)max and υes(r)min
as (xst – xes) = ∆st-es. The gap between the υst(r)max and ρ(r)min positions is labeled as
(xρ – xst) = ∆ρ-st. By analyzing the positions xes, xst, and xρ in the series of Hal– . . . Tt
bonds, we have discovered the following phenomenon. The gaps ∆st-es and ∆ρ-st differ
significantly for weak and strong Hal– . . . Tt bonds and depend on the sort of Hal– and Tt
atoms. If we count from the position of the Hal–, then for relatively weak noncovalent bonds
of Hal– . . . Tt, ∆st-es > ∆ρ-st (or ∆x = ∆st-es – ∆ρ-st > 0). It means that the gap between the
positions of υst(r)max and υes(r)min is significantly wider than the gap between the positions
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of υst(r)max and ρ(r)min. For relatively strong bonds that have acquired a partially covalent
character, everything is exactly the opposite: ∆st-es < ∆ρ-st (or ∆x = ∆st-es – ∆ρ-st < 0).

We tested the width of the two gaps ∆st-es and ∆ρ-st for their correlations with the Hal–

. . . Tt bond lengths, binding energy Ebind, and electron density properties characterizing
the features of weak and strong bonds in the complexes under study. As Figure 5 shows, the
relationship between the gap width ∆st-es and Ebind follows a certain logic. For relatively
weak bonds of Hal– . . . Tt, for which ∆x > 0, regardless of the curvature of the electron
density and the signature of its critical points between Hal– and Tt, the binding energy
Ebind does not exceed –24 kcal/mol. The gap width ∆st-es for such noncovalent bonds
varies significantly in a wide range from 0.17 to 0.47 Å. Note that for interactions between
Hal– and Tt that are not accompanied by bcp and a bond path, the gap ∆st-es is only slightly
larger than for typical TtBs characterized by bcp presence. For relatively strong Hal– . . .
Tt bonds with Ebind in the range from –24 to –140 kcal/mol, the gap ∆st-es is small and
changes in the narrow range from 0.05 to 0.10 Å (Figure 5). Note that noncovalent bonds
involving Tt = C do not fall into the range of strong bonds, just as the bonds Tt = Pb do not
fall into the range of weak ones. The width of another gap ∆ρ-st remains dependent on the
bond sort; nevertheless, it does not perfectly correlate with the binding energy or electron
density properties characterizing the strength of Tt interactions in complexes.
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Figure 5. The gap width between positions of electrostatic potential minimum and static potential
maximum, (Å) along interatomic line Hal− . . . Tt related with the binding energy in Y–TtX3 . . .
Hal− complexes.

Next, we focused our attention on the quantitative relationships between the gap
width ∆st-es and the energy characteristics of Hal– . . . Tt bonds. It has been found that the
value ∆st-es depends exponentially on the exchange-correlation contribution, υxc(r)ext, to
the static potential, υst(r) (Figure 6a). For each sort of Hal– . . . Tt bond determined by the
nucleophilic fragment Hal– = F–, Cl–, Br–, a separate exponential dependence is observed.

∆st-es = a0 · exp[a1 · υxc(r)] (7)

The fitting parameters in Equation (7) for the separate sets with various nucleophilic
fragments are given in Table 1. For weak Hal– . . . Tt bonds with relatively small values
of υxc(r)ext (–0.35 ÷ –0.65 a.u.), the gap width ∆st-es rapidly decreases with increasing the
bond length in the range from 0.15 to 0.50 Å. At the same time, a similar rate of exponential
fall is observed for different sorts of TtBs determined by Hal–. Note that for Hal = F–, the
values of υxc(r)ext are much larger in their absolute value than for Hal = Cl–, Br–. For strong
bonds of any sort, the great negative values υxc(r)ext = –0.50 ÷ –1.05 a.u. correspond to the
small common range (0.01 ÷ 0.15 Å) of the gap between the positions of the electrostatic
potential minimum, υes(r)min, and static potential maximum, υst(r)max, along the Hal– . . .
Tt bond line.
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Table 1. Parameters of Equation (7) describing relationship between the gap ∆st-es (Å) along inter-
atomic line Hal– . . . Tt and the contribution of exchange-correlation potential υxc(r), (a.u.) estimated
on the base of extremes of potentials and at the critical points of electron density (in brackets).

Type of the Set,
(Number of Cases) a0 a1

R, Correlation
Coefficient

Hal = F–, (19) 3.515 (3.913) 4.144 (5.138) 0.99 (0.99)
Hal = Cl–, (56) 5.550 (3.416) 6.468 (6.279) 0.97 (0.96)
Hal = Br–, (36) 6.600 (4.945) 7.705 (7.824) 0.97 (0.98)
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the Tt atom that mainly leads to the enhancement of the TtB strength. In addition, we 
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Thus, it can be stated that strong and weak bonds of any sort are unambiguously
separated in the scale of the gap width ∆st-es in the region of 0.15 ± 0.02 Å. For strong Hal–

. . . Tt bonds in our series, the type of which can be defined as a covalent, the gap width
(xst – xes) reaches a certain limit; for weak noncovalent bonds, the influence of the sort of
Hal– is clearly manifested. The observation that, for weak noncovalent bonds, the υxc(r)ext
contribution to the static potential is strongly tied to Hal– properties, can be explained by
the fact that at long distances, the individuality of bound atoms and specific features of
electron density distribution for nucleophilic fragments are preserved.

We have also made sure that the exponential nature of the ∆st-es vs. υxc(r) dependence
is preserved if we evaluate the exchange-correlation contribution to the static potential at the
critical points of electron density (in this case, the notation υxc(rbcp) is used). Considering
the largest set of bonds Cl– . . . Tt, we have verified that for weak interactions, υxc(rbcp)
is sensitive to X3 substituents, and depends on Y atom variation, which polarizes the Tt
atom that mainly leads to the enhancement of the TtB strength. In addition, we note that in
conditions of fixed nucleophilic fragments, the exponential trend [∆st-es vs. υxc(r)] remains
common for various Tt atoms (Tt = Si, Ge, Sn, Pb).

We could estimate the contribution to the electron exchange energy from Hal– . . . Tt
bonds by the expression Vx = −δ(Hal|Tt)/2R(Hal . . . Tt) [75,76], where δ(Hal|Tt) is the
electron delocalization indices and R(Hal . . . Tt) is the interatomic distance. It can be seen
that each nucleophilic fragment, F–, Cl–, and Br–, is responsible for its own trend, which
is not exponential (Figure 6b). For very weak interactions of any sort, Vx asymptotically
tends to zero. The narrowest gap ∆st-es ~ 0.05 Å corresponds to values Vx < −0.10 a.u.

Most properties of the chemical bonds are strongly dependent on the sort of bound
atoms. The accumulated observations of the quantum-topological characteristics of electron
density [77] rather indicate the absence of a specific boundary between covalent and
noncovalent bonds, so it would be reasonable to speak about the intermediate type of
bonds. Nevertheless, the possibility of the separation of the interactions of our set into
weak and strong bonds suggests determining a certain “reference point”, for example,
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on the scale of energy or properties of electron density that could mark the threshold
for covalent and noncovalent bonds. Such a step could be important for the express
determination of a chemical bond type.

It is clear that the switching of the bond type from covalent to noncovalent demands
the transfer from the sharing of an electron pair by two atoms forming a strong bond
to another bonding mechanism. The kinetic component of bonding can help to better
understand the resulting picture. The Pauli potential, υP(r), reflects important kinetic
features of electron pairing and can serve as the characteristic that allows us to find out
the threshold between covalent and noncovalent bonds in our series. Let us compare the
behavior of the υP(r) function along the bond line for strong and weak interactions of
the same sort. As it turned out, the Pauli potential, υP(r), exhibits two (sometimes more)
minima in the central part of the weak noncovalent bonds (Figure 7). Each of these minima
characterizes the positions in which the ability to form a pair of electrons is slightly higher
in comparison to the local maxima or barriers. Note that the minimum from the side of
Hal–, υP(r)min1, is always deeper than the next neighboring minimum υP(r)min2 located
at the side of the Tt atom, providing its local electrophilic region for bonding. While the
enhanced local positive electrostatic potential favors the electron transfer to the electrophilic
region of the Tt atom, the Pauli potential, υP(r), indicates the unfavorable regions for the
entry of electrons into this region controlling the electron pair formation.

For weak Hal– . . . Tt bonds, the minima υP(r)min1 and υP(r)min2 are separated by a
small barrier which apparently indicates that a common region for an sharing electron
pair cannot yet be formed, and the electronic features of Hal– and Tt atoms still retain
their originality. An important finding was that two or more minima of Pauli potential,
υP(r), which were formed for weak Hal– . . . Tt interactions satisfied the condition (xst –
xes) > (xρ – xst) or ∆x > 0. At the same time, the positions of the electrostatic and total
static potentials extremes, υes(r)min and υst(r)min, could not coincide with the υP(r)min1
or υP(r)min2 positions. In only two cases for the H2N–Sn(CH3)3 . . . Cl– and F–Ge(CH3)3
. . . Cl– complexes, for which ∆x > 0, we observed the absence of the second minimum
υst(r)min2.
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(a) Cl–SiCl3 . . . Cl–, (b) Cl–Si(CH3)3 . . . Cl–, (c) Cl–SnCl3 . . . Cl–, and (d) Cl–Sn(CH3)3 . . . Cl–.

In all cases of strong bonds of Hal– . . . Tt, for which the condition ∆st-es < ∆ρ-st or
∆x < 0 is satisfied, the Pauli potential forms only one minimum between the Hal– and Tt
atoms. This fact can be interpreted as the presence of a common region in which electron
pair formation is allowed; such a case indicates the covalent nature of the bond.

Thus, our finding that the gap widths between positions of extremes for the static
potential, υst(r), and electrostatic potential, υes(r), is in accordance with the behavior of the
Pauli potential, υP(r), along the bond line, gives evidence that the threshold demarcation
of the covalent and noncovalent bonds in the series of Hal– . . . Tt interactions has a
physical basis.

4. Conclusions

A need to determine the range of properties for typical TtB bonds prompted us to
analyze the electronic properties in a series of Y–TtX3 . . . Hal– complexes with a gradual
increase of Hal– . . . Tt bonds’ strength under the influence of various substituents. As
a rule, the energy characteristics and quantum-topological features of electron density
rather indicate the absence of a clear threshold between not very strong and not so weak
chemical bonds. It might seem that in a series illustrating the smooth strengthening of
bonds under the influence of various substituents it makes sense to talk about interactions
of intermediate nature. Nevertheless, the summary of our observations of the electrostatic
potential, υes(r), static potential, υst(r), and Pauli potential, υP(r), distributions between the
Hal– and Tt atoms do not support this supposition.

One or two minima of the Pauli potential, υP(r), along the bond line Hal– . . . Tt
suggest that the balance of forces and the features of electron distribution between the Hal–

and Tt atoms is different for strong bonds, approaching the covalent type, and for weak
noncovalent bonds. One minimum of υP(r) favors the formation of a common electron pair,
while two minima of υP(r) indicate the preservation of the specificity of atomic shells in
a typical noncovalent bond. In addition, we did not observe noticeable differences in the
behavior of the Pauli potential, υP(r), for weak interactions with a bond critical point and
cage critical point between the atoms.

The gap ∆st-es between positions of extremes for electrostatic, υes(r), and static, υst(r),
potentials along the Hal– . . . Tt line is wide for weak bonds and narrow for strong ones.
It is in very good agreement with the number of minima of the Pauli potential, υP(r), at
the middle of a bond. This observation allowed us to propose a criterion based on the
comparison of the gap widths ∆st-es and ∆ρ-st, which can serve as an informative descriptor
for the express establishment of the type of bond. For covalent bonds, ∆st-es < ∆ρ-st, whereas,
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on the contrary, for noncovalent TtB bonds, ∆st-es > ∆ρ-st. The gap width ∆st-es exponentially
correlates with the exchange-correlation component of static potential in a series of the
bonds Hal– . . . Tt with the fixed nucleophilic fragment Hal–.

Thus, the analysis of the electrostatic, static, and Pauli potentials along the line between
the Hal– and Tt atoms has made it possible to verify that a priori attribution of interactions
to covalent or noncovalent bonds and their categorization according to the electrophilic
region has all the physical grounds supported by quantitative data.

A preliminary check confirms the transferability of the suggested criteria to the series
of complexes between the neutral molecules with strong and weak tetrel bonds. The results
will be reported later.
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