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Abstract: Grafting with pumpkin rootstock could improve chilling tolerance in watermelon, and
salicylic acid (SA) as a signal molecule is involved in regulating plant tolerance to chilling and
other abiotic stresses. To clarify the mechanism in pumpkin rootstock-induced systemic acquired
acclimation in grafted watermelon under chilling stress, we used self-grafted (Cl/Cl) and pumpkin
rootstock-grafted (Cl/Cm) watermelon seedlings to study the changes in lipid peroxidation, photo-
system II (PSII) activity and antioxidant metabolism, the spatio–temporal response of SA biosynthesis
and H2O2 accumulation to chilling, and the role of H2O2 signal in SA-induced chilling tolerance in
grafted watermelon. The results showed that pumpkin rootstock grafting promoted SA biosynthesis
in the watermelon scions. Chilling induced hydrolysis of conjugated SA into free SA in the roots and
accumulation of free SA in the leaves in Cl/Cm plants. Further, pumpkin rootstock grafting induced
early response of antioxidant enzyme system in the roots and increased activities of ascorbate peroxi-
dase and glutathione reductase in the leaves, thus maintaining cellular redox homeostasis. Exogenous
SA improved while the inhibition of SA biosynthesis reduced chilling tolerance in Cl/Cl seedlings.
The application of diphenyleneiodonium (DPI, inhibitor of NADPH oxidase) and dimethylthiourea
(DMTU, H2O2 scavenger) decreased, while exogenous H2O2 improved the PSII activity in Cl/Cl
plants under chilling stress. Additionally, the decrease of the net photosynthetic rate in DMTU- and
DPI-pretreated Cl/Cl plants under chilling conditions could be alleviated by subsequent application
of H2O2 but not SA. In conclusion, pumpkin rootstock grafting induces SA biosynthesis and redistri-
bution in the leaves and roots and participates in the regulation of antioxidant metabolism probably
through interaction with the H2O2 signal, thus improving chilling tolerance in watermelon.
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1. Introduction

Watermelon (Citrullus lanatus) is a warmth-loving plant originating from tropical
Africa. It requires a higher temperature in the whole process of growth and development,
being not resistant to temperatures below 15 ◦C. Watermelon plants usually suffer from
chilling (0~15 ◦C) or freezing (<0 ◦C) stress when grown in the greenhouse in winter and
early spring. As a stress factor affecting crop yield and quality, low temperature will cause
a series of visible symptoms such as leaf wilting, chlorosis, or necrosis accompanied by
many changes in physiological and biochemical cell functions [1]. Grafting, as important
agricultural production technology, has been widely used in the production of horticultural
crops to overcome soil-borne diseases caused by continuous cropping and improve the
adaptability of horticultural crops to abiotic stresses such as low temperature.

Grafting tomatoes onto a cold-tolerant wild species increased the relative growth
rate of shoots due to higher root mass ratios at suboptimal (15 ◦C) air/root zone tempera-
tures [2]. The phytohormones of abscisic acid (ABA) and cytokinins (CTKs) were reported
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to transport from chilling-tolerant figleaf gourd (Cucurbita ficifolia) roots and protect leaf
photosynthesis in chilling-sensitive cucumber plants [3]. Li et al. [4] found that under
sub-optimal conditions, figleaf gourd rootstock with low-temperature tolerance induced
increased expression of stress-responsive genes and activities of antioxidant enzymes, thus
improving the photosynthetic efficiency of grafted cucumber plants. For watermelons, the
most commonly used grafting rootstocks are pumpkins and gourds. Watermelon (‘Zaojia
8424’) grafted onto cold-tolerant gourds showed higher chlorophyll and proline content
and lower malondialdehyde (MDA) content accompanied by enhanced antioxidant activity
and higher expression of enzymes related to the Calvin cycle under cold stress [5]. Further,
increased accumulation of melatonin, methyl jasmonate (MeJA), and hydrogen peroxide
(H2O2) were observed in pumpkin or figleaf gourd-grafted watermelon plants, and the
melatonin-MeJA self-amplifying feedback loop combined with H2O2 signal demonstrated
a novel regulatory mechanism of rootstock-induced cold tolerance in watermelon [6].

As a phenolic phytohormone and signal molecule widely present in higher plants, sal-
icylic acid (SA) affects water metabolism, mineral nutrient absorption, and photosynthesis,
and participates in regulating physiological processes such as seed germination, flowering,
and ion transmembrane transport [7,8]. In plants, SA biosynthesis has now been fully
known to originate from two pathways: the isochorismate synthase (ICS) pathway and
the phenylalanine ammonia–lyase (PAL) pathway [9–11]. Both are biosynthetic pathways
starting in plastids from chorismate and then transferring to cytosol to finally synthesize
SA [12]. ICS is the major pathway, contributing to more than 90% of SA biosynthesis involv-
ing ICS enzyme and Enhanced Disease Susceptibility 5 (EDS5)-, avrPphB Susceptible 3 (PBS3)-,
and Enhanced Pseudomonas Susceptibility 1 (EPS1)-encoded enzymes [9,13]. Additionally,
plants utilize the PAL pathway to synthesize a minor fraction (~10%) of SA [12]. Recent
studies have found that SA plays a regulatory role in abiotic stresses, and exogenous SA
treatment can improve plant tolerance to drought, low/high temperature, salinity, heavy
metals, and other stresses [14–17]. In addition, low temperature induced the increased
accumulation of endogenous free and conjugated SA in cucumber and watermelon plants,
which was attributed to the increased gene expression and enzyme activities of PAL and
benzoic acid 2-hydroxylase (BA2H) [18,19]. Co-inoculation of arbuscular mycorrhizal
fungi and the plant growth-promoting rhizobacteria was reported to improve growth
and photosynthesis by increasing the activity of PAL and accumulation of phenols and
flavonoids in tobacco under drought stress [20]. Moreover, increased phenols content and
improved growth were observed in exogenous melatonin-pretreated mallow plants under
cadmium stress, which could be due to the induction of PAL activity and an increase in
shoot soluble carbohydrates [21]. Glutathione and ascorbic acid in cells are important
buffering agents that regulate cell redox homeostasis and prevent redox state imbalance
caused by changes in environmental conditions [22]. Interestingly, evidence indicates
that SA interplayed with reactive oxygen species (ROS) and glutathione in stressed plants
to induce defense responses [23]. However, how endogenous SA responds to chilling
stress in grafted watermelon plants and whether SA mediates chilling tolerance of grafted
watermelon by changing the cellular redox status has not been illustrated.

In order to clarify the mechanism of pumpkin rootstock grafting in improving chilling
tolerance of watermelon, we investigated the spatio–temporal response of chlorophyll
fluorescence, membrane lipid peroxidation, antioxidant enzyme activities, cellular redox
status, SA biosynthesis, and H2O2 accumulation to chilling stress in self-grafted and
pumpkin rootstock-grafted watermelon plants. Additionally, by using SA biosynthesis
inhibitor and H2O2 inhibitors, we found that the chilling tolerance in pumpkin rootstock-
grafted watermelon depended on the interaction between the H2O2 signal and SA.

2. Materials and Methods
2.1. Plant Materials and Experimental Design

Watermelon inbred line [Citrullus lanatus (Thunb.) Matsum. and Nakai var. lanatus]
‘97103’ was taken as scion and ‘Qingyan No.1’ pumpkin was taken as rootstock. Pumpkin
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rootstock-grafted seedlings (Cl/Cm) and watermelon ‘97103’ self-grafted seedlings (Cl/Cl)
were obtained using hole insertion grafting method. Seedlings were grown at 28/18 ◦C
(day/night), photoperiod of 12 h/12 h, light intensity of 300 µmol m−2 s−1, and relative
humidity of 70~85%. When the scion grew to four-leaf stage, half of the Cl/Cm or Cl/Cl
seedlings were treated under 10/5 ◦C (day/night) as chilling stress, and the other halves
were still grown under 28/18 ◦C (day/night) as control. After 0, 1, 3, 5, and 7 days of
low-temperature treatment, leaf chlorophyll fluorescence was measured and leaf and root
samples were taken at indicated times, respectively. After freezing with liquid nitrogen,
the samples were stored at −80 ◦C before lipid peroxidation, antioxidant, SA content, PAL
activity, and H2O2 accumulation assays.

To examine the effects of exogenous SA on chilling tolerance of grafted watermelon
seedlings, 2/3 of the Cl/Cl or Cl/Cm seedlings at the four-leaf stage were pretreated with
water. While 1/3 of the Cl/Cl or Cl/Cm seedlings were pretreated with 50 µM SA. After
24 h, half of the water-treated and totally SA-treated Cl/Cl or Cl/Cm plants were placed in
growth chambers at 10/5 ◦C for 5 days. The remaining water-treated Cl/Cl or Cl/Cm plants
were maintained in a growth chamber at 28/18 ◦C to serve as the control. The chlorophyll
fluorescence imaging was taken at 0, 1, 3, 5 d after chilling stress. Further, endogenous
SA biosynthesis was inhibited by spraying with 50 µM L-α-aminooxy-β-phenylpropionic
acid (AOPP), and SA recovery experiment for chilling tolerance in Cl/Cl seedlings was
conducted as previously described [19].

To examine the role of H2O2 signaling in SA-induced chilling tolerance, firstly, Cl/Cl
seedlings were sprayed with 1 mM H2O2, 20 µM diphenyleneiodonium (DPI, an NADPH
oxidase inhibitor) and 20 mM dimethylthiourea (DMTU, a H2O2 and •OH scavenger),
respectively, prior to chilling stress [24], and leaf chlorophyll fluorescence was measured
after 3 days of chilling stress. Secondly, the DPI- and DMTU-pretreated plants were
subsequently sprayed with water, H2O2, or SA before cold treatment, and photosynthetic
gas exchange was again determined after 3 days of chilling stress. For all the exogenous
spraying treatments, Tween-20 was mixed into each solution and an aliquot of 10 mL was
applied per plant using a plastic sprayer.

2.2. Analysis of Chlorophyll Fluorescence and Photosynthetic Gas Exchange

Chlorophyll fluorescence at the whole area of the third leaf from the bottom was
measured by using Pulse-Amplitude Modulation (PAM) imaging (MAXI; Heinz Walz,
Effeltrich, Germany). The seedlings were adapted in the dark for at least 30 min before the
measurements were taken. The intensities of the actinic light and saturating light were set
at 280 and 4000 µmol m−2 s−1, respectively. The maximum quantum yield of PSII (Fv/Fm)
and effective quantum yield of PSII (ΦPSII) were measured and calculated in accordance
with the method described by [25]. Fv/Fm = (Fm − Fo)/Fm and ΦPSII = (F’m − Fs)/F’m.
The net photosynthetic rate (Pn) was measured between 9:00–12:00 in the morning with an
open gas exchange system (LI-6400 XT; Li-Cor, Lincoln, NE, USA) on the third leaf of each
plant with a CO2 concentration of 410 µmol mol−1, a photosynthetic photon flux density of
300 µmol m−2 s−1, a leaf temperature of 25 ± 1.5 ◦C, and a relative air humidity of 80–90%.

2.3. Determination of Lipid Peroxidation and Antioxidant Enzyme Activities

For lipid peroxidation and antioxidant enzyme assays, leaf or root tissues (0.3 g) were
ground with a 2 mL ice-cold buffer containing 50 mM phosphate-buffered saline (pH 7.8),
0.2 mM EDTA, 2 mM L-ascorbic acid, and 2% (w/v) polyvinylpyrrolidone. Homogenates
were centrifuged at 12,000× g for 20 min, and the resulting supernatants were used to
determine the MDA content and enzyme activities. The samples for MDA determination
were mixed with 10% trichloroacetic acid that contained 0.65% 2-thiobarbituric acid (TBA)
and heated at 95 ◦C for 25 min. Then, MDA equivalents were corrected for the non-
MDA compounds by subtracting the absorbance at 532 nm of a TBA-less solution that
contained the plant extract [26]. Catalase (CAT) activity was measured as a decline in A240
in accordance with the method described by Patra et al. [27]. Peroxidase (POD) activity was
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measured as an increase in A470 by using guaiacol as a substrate [28]. Ascorbate peroxidase
(APX) activity was measured as a decrease in A290, as described by [29]. Glutathione
reductase (GR) activity was measured based on the decrease of NADPH at A340 according
to Halliwell and Foyer [30]. Total antioxidant capacity (T-AOC) was determined with
the ability to reduce Fe3+ to Fe2+, as previously described [19]. All spectrophotometric
analyses were conducted on an Infinite M200 PRO Multi-Detection Microplate Reader
(Tecan, Männedorf, Zürich, Switzerland).

2.4. Measurements of Glutathione and Ascorbate Contents

For the measurement of reduced glutathione (GSH) and oxidized glutathione (GSSG),
plant leaf tissue (0.3 g) was homogenized in 2 mL of 6% metaphosphoric acid containing
2 mM EDTA and centrifuged at 4 ◦C for 10 min at 12,000× g. After neutralization with
0.5 M phosphate buffer (pH 7.5), 0.1 ml of the supernatant was added to a reaction mixture
containing 0.2 mM NADPH, 100 mM phosphate buffer (pH 7.5), 5 mM EDTA, and 0.6 mM
5,5′-dithio-bis (2-nitrobenzoic acid). The reaction was initiated by adding 3 U of GR and
was monitored by measuring the changes in absorbance at 412 nm for 1min. For the GSSG
assay, GSH was masked by the addition of 40 µL of 2-vinylpyridine to the neutralized
supernatant, whereas 40 µL of water was added for the total glutathione assay. The
GSH concentration was obtained by subtracting the GSSG concentration from the total
concentration [31].

Reduced (AsA) and oxidized (DHA) forms of ascorbate were measured following
Law et al. [32]. The total AsA was determined by initially incubating the extract for 50 min
with 200 mM phosphate buffer solution (pH 7.4) and 1.5 mM dithiothreitol (DTT) to reduce
all DHA to AsA. After incubation, 200 µL of 0.5% (w/v) N-ethylmaleimide (NEM) was
added to remove excess DTT. AsA was analyzed in a similar manner except that 400 µL
deionized H2O was substituted for DTT and NEM. Color was developed in both series
of reaction mixtures (total and reduced ascorbate) with the addition of 400 µL 10% (w/v)
trichloroacetic acid, 400 µL 44% o-phosphoric acid, 4% α′-dipyridyl in 70% ethanol, and
200 µL 3% (w/v) FeCl3. The reaction mixtures were then incubated at 40 ◦C for 40 min in
a water bath and the absorbance was recorded at 525 nm. The DHA concentration was
obtained by subtracting the AsA concentration from the total concentration.

2.5. Measurements of SA Content and PAL Activity

Free and conjugated SA measurements in leaf and root tissues were conducted using a
rapid biosensor-based method, as described by DeFraia et al. [33]. Leaf tissues were ground
in liquid nitrogen and then left at room temperature for 5 min. Acetate buffer (0.1 M, pH 5.6)
was added at a ratio of 2.5 µL/mg tissue at room temperature before samples were mixed
and centrifuged for 15 min at 16,000× g. Half (100 µL) of the supernatant was stored on
ice for free SA measurement, and the other half was incubated at 37 ◦C for 90 min with
4 U of β-glucosidase (3.2.1.21, Sigma-Aldrich, St. Louis, MO, USA) for conjugated SA
measurement. An overnight biosensor culture of Acinetobacter sp. ADPWH_lux was
diluted in 37 ◦C LB (1:20) and grown for ~3 h at 200 rpm to an OD600 of 0.4. Up to 20 µL of
crude extract that was stored at room temperature (20–22 ◦C) was added to 60 µL of LB
and 50 µL of biosensor culture in a black 96-well cell culture plate. The plate was incubated
at 37 ◦C for 1 h without shaking before luminescence was read on an Infinite M200 Pro
Multi-Detection Microplate Reader (Tecan, Männedorf, Zürich, Switzerland).

For the PAL activity, leaf or root tissues (0.3 g) were ground in liquid nitrogen and
then added with 1.5 mL of ice-cold buffer containing 50 mM Tris-HCl (pH 8.5), 5 mM
EDTA, 15 mM β-mercaptoethanol, 1 mM 4-(2-Aminoethyl) benzenesulfonyl fluoride hy-
drochloride (AEBSF), and 0.15% (w/v) polyvinylpyrrolidone (PVP). Homogenates were
centrifuged at 12,000× g for 20 min at 4 ◦C, and the resulting supernatants were used to
determine PAL activity on the basis of the formation of trans-cinnamic acid monitored at
290 nm [34].
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2.6. Determination of Electrolyte Leakage

Electrolyte leakage of the third fully expanded leaves was measured after chilling stress
according to Hong et al. [35] with minor modifications. Briefly, 0.1 g of leaf samples were
cut into 1-centimeter2 fragments, rinsed with deionized water, and then shaken for 3 h at
22 ◦C. The electrolyte leakage was calculated by the percentage of conductivity before (EL1)
and after (EL2) boiling of the leaf fragments. Electrolyte leakage (%) = EL1/EL2 × 100.

2.7. Determination of H2O2 Content

To determine the H2O2 content, 0.3-gram leaf tissues were sampled and ground in
3 mL of 1 M HClO4. Then, the mixture was transferred to a 10-mililiter plastic tube.
The homogenate was centrifuged at 6000× g for 5 min at 4 ◦C and the supernatant was
collected, adjusted to pH 6.0 with 4 M KOH, and centrifuged at 110 g for 1 min at 4 ◦C.
The supernatant was placed onto a AG 1-X8 prepacked column (Bio-Rad, Hercules, CA,
USA), and H2O2 was eluted with 4 mL of double-distilled H2O. The sample (800 µL) was
mixed with 400 µL of reaction buffer containing 4 mM 2,2′-azino-di (3-ethylbenzthiazoline-
6-sulfonic acid) and 100 mM potassium acetate at pH 4.4, 400 µL of deionized water, and
0.25 U of horseradish peroxidase. The H2O2 content was measured at OD412 [36].

2.8. Statistical Analysis

The experiment involved a completely randomized block design with four replicates,
and each replicate consisted of 10 grafted watermelon seedlings. Statistical analysis was
performed using the SAS statistical package. The differences between the treatment means
were separated using Tukey’s test at a significance level of p < 0.05.

3. Results
3.1. Pumpkin Rootstock Alleviated the Oxidative Damage Caused by Chilling Stress in Grafted
Watermelon Seedlings

At normal temperature (28/18 ◦C), the MDA content in leaves and roots of pumpkin
rootstock-grafted (Cl/Cm) seedlings was similar to that of watermelon self-grafted (Cl/Cl)
seedlings (Figure 1A,B). However, MDA content in leaves and roots of Cl/Cl seedlings
increased significantly after chilling stress, while the content in Cl/Cm seedlings showed
no significant accumulation after five days of chilling treatment. At seven days of chilling
stress, the MDA content in leaves and roots of Cl/Cl seedlings increased by 154.55% and
67.50%, respectively compared with the control. By contrast, 56.67% increase in leaves and
47.50% increase in roots in MDA content were observed in Cl/Cm plants in comparison with
control (Figure 1A,B). Similarly, the Fv/Fm and ΦPSII, two popular metrics for quantifying
photo-oxidative stress, in the leaves of Cl/Cl and Cl/Cm seedlings showed no significant
differences and remained relatively stable at normal temperature (Figure 1C,D). The Fv/Fm
decreased promptly in Cl/Cl seedlings after one day of chilling stress, while that in Cl/Cm
seedlings decreased more sluggishly in chilling-stressed plants compared with control
(Figure 1C). As shown in Figure 1E, the image of Fv/Fm showed more serious photo-
oxidative damage in Cl/Cl leaves compared with Cl/Cm leaves after seven days of chilling
stress. Additionally, the ΦPSII showed constant decrease in Cl/Cl seedlings within seven
days of chilling stress, while that in Cl/Cm seedlings decreased slightly in comparison with
control (Figure 1D). These results indicated that pumpkin rootstock alleviated the oxidative
damage of chilling stress in grafted watermelon seedlings.

3.2. Chilling-Induced Changes in Antioxidant Enzyme System and Cellular Redox Homeostasis in
Grafted Watermelon Seedlings

To investigate the antioxidative response to chilling stress in Cl/Cl and Cl/Cm seedlings,
we examined the changes in activities of four antioxidant enzymes and total antioxidant
capacity (T-AOC). The activities of CAT, POD, APX, GR, and T-AOC of the roots increased
significantly in Cl/Cm seedlings, peaked at one day after chilling stress. However, the
activities of POD, APX, GR, and T-AOC, except for CAT decreased gradually with chilling
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treatment in the roots of Cl/Cl seedlings (Figure 2B,D,F,H,J). After 1 d of chilling treat-
ment, the CAT activity in leaves of Cl/Cl and Cl/Cm seedlings increased significantly,
then decreased under the level of control after three days of chilling stress (Figure 2A).
Interestingly, the activities of APX and GR increased significantly and peaked at three days
of chilling treatment in the leaves of both Cl/Cl and Cl/Cm seedlings, with the highest
level in chilling-stressed Cl/Cm leaves (Figure 2E,G). On the contrary, POD activity in the
leaves of Cl/Cl and Cl/Cm plants showed lower levels of control within the seven days of
chilling stress (Figure 2C). The T-AOC reached the highest level in leaves of Cl/Cm plants
after five days of chilling treatment, then decreased to a similar level of that in leaves of
Cl/Cl plants after seven days of chilling treatment (Figure 2I).
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Figure 1. Pumpkin rootstock-induced chilling tolerance in grafted watermelon plants. (A) Changes
in malondialdehyde (MDA) content in the leaves under chilling stress. (B) Changes in MDA content
in the roots under chilling stress. (C) Average values of the maximum quantum yield of PSII (Fv/Fm).
(D) Average values of the effective quantum yield of PSII (ΦPSII). (E) Images of Fv/Fm under chilling
stress. Leaf or root samples were collected at indicated times under control (28/18 ◦C) and chilling
(10/5 ◦C) conditions. Cl/Cl, self-grafted watermelon plants; Cl/Cm, pumpkin rootstock-grafted
watermelon plants. The data are the means of four replicates with SEs. The color gradient of the
images in Fv/Fm provided at the bottom of Figure 1E ranged from 0 (black) to 1.0 (purple).
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Figure 2. Dynamic changes in the activities of antioxidant enzyme system in grafted watermelon
plants in response to chilling stress. (A) Catalase (CAT), (C) Peroxidase (POD), (E) Ascorbate
peroxidase (APX), and (G) Glutathione reductase (GR) activities in the leaves. (B) CAT, (D) POD,
(F) APX, and (H) GR activities in the roots. (I) Total antioxidant capacity (T-AOC) in the leaves.
(J) T-AOC in the roots. Leaf or root samples were collected at indicated times under control (28/18 ◦C)
and chilling (10/5 ◦C) conditions. Cl/Cl, self-grafted watermelon plants; Cl/Cm, pumpkin rootstock-
grafted watermelon plants. The data are the means of four replicates with SEs.



Antioxidants 2021, 10, 2024 8 of 17

Glutathione and ascorbate are important non-enzymatic antioxidants and play pivotal
roles in cellular redox homeostasis. In the present study, no significant differences were
observed in the content of GSH and GSSG, and GSH/GSSG ratio between Cl/Cl and Cl/Cm
leaves at normal temperature (Figure 3A,C,E). Chilling induced a significant increase in
the GSH content and peaked at three days in stressed Cl/Cm plants compared with
control. However, the GSH content in Cl/Cl leaves showed minor changes in response
to chilling stress (Figure 3A). Importantly, the GSSG was shown to accumulate after
three days of chilling stress in both Cl/Cl and Cl/Cm leaves with a higher level in Cl/Cl
plants (Figure 3C). Therefore, the ratio of GSH/GSSG in leaves of Cl/Cm plants increased
significantly and peaked at three days of chilling treatment. While the GSH/GSSG ratio in
Cl/Cl leaves decreased as a result of the increased accumulation of GSSG under chilling
stress (Figure 3E). Moreover, the AsA content continuously increased in both Cl/Cl and
Cl/Cm leaves within seven days of chilling stress, with a higher level in Cl/Cm plants
(Figure 3B). On the contrary, chilling induced a significant decrease of DHA content at one
day or three days of chilling stress in Cl/Cl and Cl/Cm leaves, respectively (Figure 3D). As
a result, a significant increase in the ratio of AsA/DHA in Cl/Cl and Cl/Cm leaves was
observed at one day or three days of chilling stress, respectively (Figure 3F). These results
suggested that pumpkin rootstock induced early response of antioxidant enzyme system in
the roots under chilling stress, and the subsequently increased activities of the antioxidant
enzyme system and changes in cellular redox status in the leaves jointly regulated chilling
tolerance of grafted watermelon.

3.3. SA Was Involved in the Regulation of Chilling Tolerance in Pumpkin Rootstock-Grafterd
Watermelon Seedlings

To determine the role of SA in chilling stress response in grafted watermelon plants,
we examined the free and conjugated SA contents in the leaves and roots of Cl/Cl and
Cl/Cm seedlings during chilling stress (Figure 4). At normal temperature, the content of
free and conjugated SA in leaves and roots of Cl/Cm plants was significantly higher than
that of Cl/Cl plants (Figure 4A,C). The content of free and conjugated SA in the roots of
Cl/Cl plants increased slightly and then decreased under the level of control after seven
days of chilling stress, while the free and conjugated SA in the roots of Cl/Cm plants
showed increased and decreased accumulation in response to chilling stress, respectively
(Figure 4C,D). Under chilling conditions, the content of free SA in leaves of both Cl/Cm
and Cl/Cl plants continued to increase, while the content of conjugated SA did not change
significantly compared with the control (Figure 4A,B). These results indicated that pumpkin
rootstock induced SA biosynthesis in the leaves and roots of grafted watermelon seedlings,
and chilling induced hydrolysis of conjugated SA into free SA in the roots combined
with increased accumulation of free SA in the leaves of Cl/Cm plants, probably serve to
improve chilling tolerance. In addition, the activity of PAL in the leaves of Cl/Cm plants
was significantly higher than that in Cl/Cl plants under normal temperature (Figure 5A).
Chilling induced a significant increase in PAL activity in the leaves and roots of Cl/Cl and
Cl/Cm plants, which showed that PAL activity in the roots of Cl/Cm plants peaked at three
days of chilling stress in comparison with control (Figure 5).

The Fv/Fm and electrolyte leakage are commonly used indicators to evaluate chilling
tolerance in plants. Here, we analyzed the SA-induced changes in Fv/Fm and electrolyte
leakage after chilling stress (Figure 6). Water and 50 µM of SA were pretreated before the
Cl/Cl and Cl/Cm seedlings were exposed at 10/5 ◦C for five days. As shown in Figure 6A,
the images of Fv/Fm in the leaves of Cl/Cl and Cl/Cm seedlings exhibited no significant
differences when grown at normal temperature. Chilling induced a substantial decrease in
Fv/Fm in water-treated Cl/Cl plants, while SA pretreatment alleviated the PSII damage
in Cl/Cl plants as indicated by better performance of Fv/Fm imaging. Furthermore, the
mitigation of PSII damage in pumpkin rootstock-grafted Cl/Cm plants under chilling
stress was compromised in SA-pretreated Cl/Cl and Cl/Cm plants, implying an important
role of SA in pumpkin rootstock-induced chilling tolerance. The electrolyte leakage in
self-grafted Cl/Cl leaves in response to chilling stress was also determined by altering the
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cellular SA levels (Figure 6B). Chilling induced 172.8% increase in the electrolyte leakage
in water-treated Cl/Cl plants, while SA pretreatment alleviated the electrolyte leakage
in chilling-stressed Cl/Cl leaves. Exogenous treatment of 50 µM AOPP (inhibitor of SA
biosynthesis) induced 257.4% increase in the electrolyte leakage in chilling-stressed Cl/Cl
plants as compared with the control. However, the increase of electrolyte leakage in AOPP-
treated leaves was compromised by the subsequent application of SA under chilling stress
(Figure 6B).
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Figure 3. Chilling-induced changes in glutathione and ascorbate homeostasis in grafted watermelon
leaves. (A) Reduced (GSH) and (C) Oxidized glutathione (GSSG) content. (B) Reduced (AsA) and
(D) Oxidized ascorbate content. (E) The ratio of GSH/GSSG content. (F) The ratio of AsA/DHA
content. Leaf samples were collected at indicated times under control (28/18 ◦C) and chilling
(10/5 ◦C) conditions. Cl/Cl, self-grafted watermelon plants; Cl/Cm, pumpkin rootstock-grafted
watermelon plants. The data are the means of four replicates with SEs. rootstock induced SA
biosynthesis in the leaves and roots of grafted watermelon seedlings, and chilling induced hydrolysis
of conjugated SA into free SA in the roots combined with increased accumulation of free SA in the
leaves of Cl/Cm plants probably serve to improve chilling tolerance. In addition, the activity of
PAL in the leaves of Cl/Cm plants was significantly higher than that in Cl/Cl plants under normal
temperature (Figure 5A). Chilling induced significant increase in PAL activity in the leaves and roots
of Cl/Cl and Cl/Cm plants, which showed that PAL activity in the roots of Cl/Cm plants peaked at
3 d of chilling stress in comparison with control (Figure 5).
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Figure 4. The spatio–temporal response of salicylic acid (SA) content to chilling stress in grafted
watermelon plants. (A) Free and (B) Conjugated SA content in the leaves. (C) Free and (D) Conjugated
SA content in the roots. Leaf or root samples were collected at indicated times under control
(28/18 ◦C) and chilling (10/5 ◦C) conditions. Cl/Cl, self-grafted watermelon plants; Cl/Cm, pumpkin
rootstock-grafted watermelon plants. The data are the means of four replicates with SEs.
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Figure 5. The time-course response of phenylalanine ammonia-lyase (PAL) activity to chilling stress
in grafted watermelon plants. (A) PAL activity in the leaves. (B) PAL activity in the roots. Leaf or root
samples were collected at indicated times under control (28/18 ◦C) and chilling (10/5 ◦C) conditions.
Cl/Cl, self-grafted watermelon plants; Cl/Cm, pumpkin rootstock-grafted watermelon plants. The
data are the means of four replicates with SEs.

3.4. The H2O2 Signal Was Involved in SA-Induced Chilling Tolerance in Grafted
Watermelon Seedlings

Cellular ROS signaling plays important roles in the acclimation of plants to various
abiotic stresses. We used different concentrations of DPI (inhibitor of NADPH oxidase),
DMTU (H2O2 scavenger), and exogenous H2O2 to examine the role of H2O2-induced
chilling tolerance in self-grafted Cl/Cl plants (data not shown). Our results showed that
20 µM DPI and 20 mM DMTU significantly inhibited the PSII activity and increased the
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sensitivity of Cl/Cl seedlings to chilling stress as indicated by lower values of Fv/Fm
imaging compared with water-treated plants (Figure 7A). On the contrary, exogenous
spraying of different concentrations of H2O2 effectively improved the PSII activity in
chilling-stressed Cl/Cl seedlings (data not shown), and the optimal H2O2 concentration
to protect the leaves from photo-oxidative damage was 1mM (Figure 7A). These results
suggested that H2O2 could reduce PSII damage in watermelon leaves under chilling stress,
and thus enhances the chilling tolerance of watermelon. We also detected the H2O2 content
in response to chilling stress in grafted watermelon leaves (Figure 7B). The results showed
that the H2O2 content in Cl/Cl and Cl/Cm plants remained stable within seven days at
normal temperature (28/18 ◦C). However, H2O2 accumulation in Cl/Cl seedlings was
continuously induced by chilling stress, while that in Cl/Cm seedlings peaked at one
day of chilling treatment, and then began to decrease under the level of control within
seven days of chilling stress (Figure 7B). Therefore, we speculated that H2O2 signal was
likely involved in the early response of grafted watermelon to chilling stress and played a
role in the downstream of SA to regulate chilling tolerance in pumpkin rootstock-grafted
watermelon plants.
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Figure 6. The role of SA-induced chilling tolerance in grafted watermelon plants. (A) Images of Fv/Fm in water or
SA-pretreated Cl/Cl and Cl/Cm plants under chilling stress. Leaf samples were collected at indicated times under control
(28/18 ◦C) and chilling (10/5 ◦C) conditions. (B) Electrolyte leakage in the leaves of water, AOPP, AOPP+SA, and SA-
pretreated Cl/Cl plants after 3 days of chilling stress. AOPP, L-α-aminooxy-β-phenyl propionic acid. Both SA and AOPP
were treated at 50 µM. The data are the means of four replicates with SEs. Different letters indicate significant differences
according to Tukey’s test (p < 0.05). Cl/Cl, self-grafted watermelon plants; Cl/Cm, pumpkin rootstock-grafted watermelon
plants. The color gradient of the images in Fv/Fm provided at the bottom of Figure 6A ranged from 0 (black) to 1.0 (purple).

We used self-grafted Cl/Cl seedlings as materials to study the role of H2O2 in SA-
induced chilling tolerance in grafted watermelon plants (Figure 7C). The Pn in Cl/Cl
leaves decreased significantly under chilling stress in comparison with control (28/18 ◦C).
DMTU and DPI pre-treatment further reduced the Pn in chilling-stressed Cl/Cl leaves, and
subsequent exogenous H2O2 treatment could effectively alleviate the decrease of Pn under
chilling stress. Importantly, the role of SA-induced increase in Pn under chilling conditions
was eliminated in DMTU and DPI pre-treated Cl/Cl plants, respectively (Figure 7C). These
results suggested that the H2O2 signal was involved in SA-regulated chilling tolerance in
pumpkin rootstock-grafted watermelon plants.
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Figure 7. H2O2 signal mediates SA-induced chilling tolerance in grafted watermelon plants. (A) Images of Fv/Fm in water,
DPI, DMTU, and H2O2-pretreated Cl/Cl plants under chilling stress. Plants were pretreated with 20 µM DPI or 20 mM
DMTU for 8 h, while water and H2O2 (1 mM) were pretreated for 24 h. Leaf samples were collected after 3 days of chilling
(10/5 ◦C) stress for chlorophyll fluorescence analysis. (B) H2O2 accumulation in response to chilling stress. (C) Changes in
the net photosynthetic rate (Pn) in the leaves of Cl/Cl plants under chilling stress. Plants were pretreated with 20mM DMTU
or 20 µM DPI for 8 h, and then treated with water, H2O2 (1 mM), and SA (50 µM), respectively. The Pn was determined after
3 days of chilling stress. The data are the means of four replicates with SEs. Different letters indicate significant differences
according to Tukey’s test (p < 0.05). Cl/Cl, self-grafted watermelon plants; Cl/Cm, pumpkin rootstock-grafted watermelon
plants. The color gradient of the images in Fv/Fm provided at the bottom of Figure 7A ranged from 0 (black) to 1.0 (purple).

4. Discussion
4.1. SA Biosynthesis Participates in Chilling Stress Response in Grafted Watermelon Plants

SA in plants exists in two main forms: its active free form and its inactive vacuolar
storage form, including SA glucoside (SAG) and SA glucose ester (SGE). Conjugated
SAG and SGE accumulate in the cell vacuoles in large quantities and can form active,
usable forms by hydrolysis [37]. Promoted SA biosynthesis due to pathogen attack played
important roles in the regulation of defense response in Arabidopsis, tobacco, and citrus
fruit [38–40]. Additionally, SA functions as a signal of several types of abiotic stresses
such as high light exposure, salinity, drought, and low temperature [16,41–43]. Here, our
results demonstrated that chilling induced a significant increase in free SA in both the
leaves and roots of Cl/Cm plants (Figure 4A,C). Similarly, higher SA accumulation was
observed in the leaves, roots, and xylem sap of pumpkin rootstock-grafted than self-grafted
cucumber plants due to increased expression of PAL, ICS, and SABP2 genes involved in
SA biosynthesis and activity of PAL under chilling stress [44]. Furthermore, our previous
iTRAQ-based quantitative proteomic study showed a more significant accumulation of
PAL protein (Cla008727) in pumpkin rootstock-grafted than self-grafted watermelon plants
after exposure to chilling for 48 h [45]. The virus-induced gene silencing of PAL in cotton
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plants showed reduced levels of both free SA and SAG content, suggesting that the SA
biosynthesis is critically dependent on the PAL pathway [46]. Many chemical modifications
of SA can occur in cells, and glucose conjugation at the hydroxyl group of SA leads to the
biosynthesis of inactive SAG which is stored in the vacuolar [47]. In the present study, a
significant decrease in the conjugated SA content was shown in the roots of Cl/Cm plants
(Figure 4D), implying the possible formation of active free SA from hydrolyzed SAG in the
roots under chilling conditions. Several studies support the notion that both N-hydroxy-
pipecolic acid and SA are mobile between local and systemic tissue in Arabidopsis and
tobacco for systemic acquired resistance (SAR) [48–51]. Accordingly, chilling-stimulated
free SA accumulation in the watermelon leaves probably came from the transport of SA
from the pumpkin rootstock (Figure 4A,C). These results thus suggest a potential role of SA
biosynthesis in the systemic regulation of chilling tolerance in grafted watermelon plants
at transcriptional, translational, and subcellular levels.

4.2. Differential Response of Antioxidant Enzyme System and Cellular Redox Homeostasis
Synergistically Function in Pumpkin Rootstock-Induced Chilling Tolerance in Watermelon

Several types of ROS including Superoxide (O2
•−), hydroxyl (•OH), singlet oxygen

(1O2), and H2O2 are important for plants and play a dual role under various abiotic
stresses; a small amount of those acts as a signal for inducing stress responses, while excess
generation of those causes oxidative damage to membranes, proteins, DNA, RNA, and
even the whole cell [52]. The plant antioxidant defense system comprises enzymatic and
non-enzymatic antioxidants in different subcellular localization. Superoxide dismutase
(SOD), CAT, POD, APX, monodehydroascorbate reductase (MDHAR), dehydroascorbate
reductase (DHAR), GR, and glutathione peroxidase (GPX) are well known antioxidant
enzymes, while AsA, GSH, carotenoids, tocopherols, flavonoids, etc. are some commonly
known non-enzymatic antioxidants [53]. The AsA-GSH cycle comprises AsA, GSH, APX,
MDHAR, DHAR, and GR, which play a vital role in detoxifying ROS. Our present study
showed remarkably increased activities of CAT, POD, APX, and GR after 1 day of chilling
stress in the roots of Cl/Cm plants (Figure 2B,D,F,H), suggesting an early response of the
antioxidant enzyme system in the pumpkin roots to chilling stress. AsA and GSH are strong
antioxidants, but the maintenance of their redox homeostasis is important in conferring
stress tolerance in plants, which largely depends on the activities of APX, MDHAR, DHAR,
and GR involved in the AsA-GSH cycle [54,55]. Here, it is obvious that chilling induced
a substantial increase in the ratios of GSH/GSSG and AsA/DHA after three days of
chilling stress in Cl/Cm leaves, which was mainly attributed to the increase of GSH content
and decrease of DHA content, respectively (Figure 3). The antioxidant enzymes usually
showed differential responses in tolerant and sensitive varieties due to cold stress. Javadian
et al. [56] showed significant low temperature-induced elevation in activities of CAT and
POD in leaves of winter cultivar rather than in spring cultivar in wheat. Differential
responses of the activities in SOD, CAT, POD, and APX were also reported in four cultivars
of banana, and higher cold tolerance may correlate with the long-term cold adaptation
of the antioxidative enzymes such as SOD, POD, and APX that alleviate oxidative stress
caused by low temperature [57]. Our present results indicated significantly decreased
POD activity in the leaves of chilling-stressed Cl/Cl and Cl/Cm plants compared with the
control, which could be attributed to the reduced accumulation of POD proteins (Cla002251,
Cla003190, Cla014013) as reported in our previous study [45]. However, the specifically
increased activities of APX and GR after three days of chilling stress in Cl/Cm leaves
suggest an important role of the AsA-GSH cycle in pumpkin rootstock-induced chilling
tolerance in watermelon.

4.3. H2O2 Signal Mediates the Regulation of SA on Chilling Tolerance of Grafted Watermelon

H2O2 has emerged as a signaling molecule in plants, and its role in early signaling
events initiated by environmental stimuli is well established [58,59]. A prominent source
of H2O2 production in the apoplast is Respiratory Burst Oxidase Homologues (RBOHs)-
encoded NADPH oxidases, which use electrons from cytosolic NADPH to reduce oxygen
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to O2
− in the apoplast [59]. Here, our results exhibited significantly increased H2O2

accumulation at one day of chilling stress in Cl/Cm leaves (Figure 7B), which implies
early H2O2 signaling in response to chilling stress. In cases of mechanical wounding,
excessive light, drought, low/high temperature, and salt stress, the H2O2 bursts are mainly
produced via the NADPH oxidase pathway, resulting in the activation of the antioxidant
system containing SOD, CAT, APX, and GR, thus alleviating the oxidative damage on PSII
activity and photosynthesis [60,61]. Many phytohormones like auxin, brassinosteroids,
gibberellins, ABA, ethylene, strigolactones, jasmonic acid, and also SA generate ROS as part
of the mechanism that regulates plant growth and development and stress response [62].
The crosstalk of phytohormones in response to abiotic stresses was reported to induce
antioxidant defense via distinguished pathways [63]. In Arabidopsis, a spatial–temporal
interaction of the ROS wave with ABA accumulation in systemic tissues mediates the
systemic acquired acclimation (SAA) of plants to heat stress [64]. It is emphasized here that
in the present study, the inhibition of H2O2 by application of DMTU and DPI increased,
while exogenous H2O2 reduced the sensitivity to chilling stress in Cl/Cl plants (Figure 7A),
suggesting a positive role of H2O2 in the chilling tolerance of grafted watermelon plants. A
few studies reported that the SA levels increased upon heat or cold stress in plants, which
were shown to improve the photosynthetic capacity by protecting the PSII complex from
higher levels of ROS [18,65,66]. Additionally, exogenous application of SA enhanced heat
or cold tolerance through activation of antioxidant enzymes such as SOD, CAT, POD, APX,
and GR in tomato and watermelon plants [67,68]. In this study, the decrease in Pn in DMTU
and DPI-pretreated Cl/Cl plants under chilling stress was alleviated by subsequent H2O2
treatment but not SA (Figure 7C), indicating that SA-induced chilling tolerance in grafted
watermelon plants is dependent on the H2O2 signal. Thus, a spatial–temporal interaction
of the SA accumulation with H2O2 signal in the distant shoot may mediate the SAA of
grafted watermelon plants to chilling stress.

5. Conclusions

Overall, we conclude that after a grafted watermelon plant is subjected to chilling
stress, the pumpkin root may transmit SA signal to the watermelon shoot, thereby enhanc-
ing the activities of APX and GR and modulating the glutathione and ascorbate homeostasis
through interaction with H2O2 signaling, thus improving the photosynthetic efficiency
under chilling stress. In the future, we need to further study how the SA interacts with
H2O2 signal in response to chilling stress in plants, and the transcriptome and metabolome
analysis in watermelon or pumpkin with varied chilling sensitivity could shed light on the
link between phytohormones and antioxidant system in response to chilling stress.
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