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oriental fruit moth (Grapholita molesta), a globally
invasive pest
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Abstract

Background: Invasive pest species have large impacts on agricultural crop yields, and understanding their
population dynamics is important for ensuring food security. The oriental fruit moth Grapholita molesta is a
cosmopolitan pest of stone and pome fruit species including peach and apple, and historical records indicate that
it has invaded North and South America, Europe, Australia and Africa from its putative native range in Asia over the
past century.

Results: We used 13 microsatellite loci, including nine newly developed markers, to characterize global population
structure of G. molesta. Approximately 15 individuals from each of 26 globally distributed populations were
genotyped. A weak but significant global pattern of isolation-by-distance was found, and G. molesta populations
were geographically structured on a continental scale. Evidence does not support that G. molesta was introduced
to North America from Japan as previously proposed. However, G. molesta was probably introduced from North
America to The Azores, South Africa, and Brazil, and from East Asia to Australia. Shared ancestry was inferred
between populations from Western Europe and from Brazil, although it remains unresolved whether an
introduction occurred from Europe to Brazil, or vice versa. Both genetic diversity and levels of inbreeding were
surprisingly high across the range of G. molesta and were not higher or lower overall in introduced areas compared
to native areas. There is little evidence for multiple introductions to each continent (except in the case of South
America), or for admixture between populations from different origins.

Conclusions: Cross-continental introductions of G. molesta appear to be infrequent, which is surprising given its
rapid worldwide expansion over the past century. We suggest that area-wide spread via transport of fruits and
other plant materials is a major mechanism of ongoing invasion, and management efforts should therefore target
local and regional farming communities and distribution networks.
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Background
Global interest in the ecology of agricultural systems has
driven a substantial amount of fundamental research into
plant-herbivore interactions, modes of plant (i.e. weed)
and invertebrate dispersal and adaptation, and the role of
multi-trophic interactions in community dynamics [1]. A
growing need to understand the potential effects of cli-
mate change on cash crop production systems [2], com-
bined with the necessity of increasing worldwide crop
yields in response to projected global population growth
[3], continue to motivate research into fundamental and
applied questions in ecology and evolutionary biology.
The mechanisms that facilitate the establishment and

spread of invasive pests are of particular interest to
ecologists, evolutionary biologists and policy makers for
a number of reasons; agricultural pests are responsible
for substantial yield losses in agricultural systems, and
there are considerable economic incentives to under-
stand mechanisms of pest invasions. Also, because inva-
sions often occur relatively rapidly, they provide useful
case studies to understand the ecological factors (both
biotic and abiotic) that mediate population dynamics
and the establishment of range limits [4,5]. Finally, pest
species often adapt to new selection pressures in their
invaded ranges, and therefore represent contemporary
examples of rapid evolutionary change [5,6].
The oriental fruit moth Grapholita (=Cydia) molesta

Busck (Lepidoptera: Tortricidae) is one example of an in-
sect pest species that continues to cause significant eco-
nomic damage to crops on a global scale [7]. Grapholita
molesta is a major pest of stone and pome fruit species
mainly belonging to the Rosaceae family, including
peach, apple, pear, nectarines, cherries, quince, and per-
simmons (Ebenaceae) [8,9]. Assumed to be native to
China [7], G. molesta is now distributed throughout tem-
perate regions of Asia, Europe, The Americas, Africa,
and Australia.
The global demographic history of G. molesta has not

been accurately traced, although historical records per-
mit the reconstruction of a rough timeline of continental
invasions. In Europe, G. molesta was first recorded in
Slovenia in 1920 [10], in southeastern France and much
of north-central Italy in the early 1920s [11], and has
since dispersed throughout eastern, southern and west-
ern Europe, where stone fruit trees are grown. It is com-
monly assumed that the species was introduced to North
America via a fruit shipment to Washington D.C. from
Japan around 1913 [12], however this assumption is
based on the anecdotal report of a single G. molesta spe-
cimen recovered from a shipment of Japanese pears [12].
After its introduction to Washington D.C., G. molesta is
presumed to have dispersed to the neighboring states of
Virginia and Maryland, and northward to Ontario,
Canada. By the mid-1940s, it had spread from the mid-
West to California, Washington state, and Oregon [13
and references therein]. In Australia, G. molesta was in-
troduced around 1910, and has since spread to most of
the stone and pome fruit growing regions on that con-
tinent [14 and references therein]. The species is as-
sumed to have been present in southern Brazil since at
least the 1940s [15]. In other parts of its range, introduc-
tions are thought to be more recent; G. molesta was first
identified in New Zealand in 1976 [16], and in South Africa
in 1980 [17].
A number of regional studies have yielded some in-

formation about local factors that contribute to the
dispersal and population structuring of G. molesta over
regional spatial scales. Population structure of G. molesta
in a major fruit-growing region of Northern Italy was
relatively low [18], and could be explained by both nat-
ural dispersal [19] and anthropogenic displacement of in-
dividuals between orchards [20]. Based on molecular
genetic analysis of six populations in South Africa, it was
also concluded that anthropogenic movement of fruit,
bins, and nursery material likely drives range expansion
at a regional level [21]. Another study showed that land-
scape features such as rivers might act as ecological bar-
riers to regional dispersal [22]. In spite of substantial
effort to understand the lifecycle of G. molesta and to de-
velop strategies for its control, little is known about its
ongoing global dispersal patterns.
In this study, we used a set of 13 microsatellite loci

(including nine newly developed ones) to characterize
global population structure of G. molesta, in order to
retrace invasion routes, and to investigate global popula-
tion dynamics. We hypothesized that i) patterns of
population structure will reflect evidence of multiple in-
troductions via human-mediated dispersal in the invaded
range of the species, and ii) patterns of isolation-by-
distance will be absent or weak, since international
trade routes likely determine patterns of global popula-
tion structure, and iii) genetic diversity will be reduced
in introduced compared to native populations. We also
tested whether populations are structured according to
host species (predominantly peach and apple).

Methods
Insect sampling
A total of 376G. molesta larvae (sampled from fruits or
shoots) or adult males (captured from pheromone traps)
were collected from fruit trees at 26 worldwide locations
between April and October 2011 (see Table 1; Figure 1).
DNA has been stored, and voucher samples are depos-
ited at the Entomological Collection of ETH Zurich. We
sampled 15 individuals per site in most cases (Table 1).
Upon sampling, geographical coordinates and host plant
species were recorded. To maximize the genetic variabil-
ity of larvae sampled within sites, we collected larvae



Table 1 Sampling information

Sampling location Country N Collector/supplier Host plant Larvae/adults Latitude Longitude

North America

Champaign County, IL USA 15 Richard Weinzierl peach larvae 40.098383 −88.213833

Mills River, NC USA 15 James Welgenbach peach larvae 35.427210 −82.558880

Geneva, NY USA 15 Arthur Agnello apple larvae 44.866360 −77.025430

Biglerville, PA USA 15 Greg Krawczyk peach larvae 39.931694 −77.254531

Kearneysville, WV USA 12 Brent Short apple adults 39.358317 −77.893889

Vineland Station, ON Canada 15 Leo Van Driel peach larvae 43.170808 −79.394003

Asia

Feicheng, Shandong Province China 15 Maohua Chen pear adults 36.233333 116.766667

Yangling, Shaanxi Province China 15 Maohua Chen pear adults 34.266667 108.066667

Taigu, Shanxi Province China 15 Maohua Chen pear larvae 37.433333 112.533333

Pulandian, Dalian Liaoning Province China 15 Jiang Xiaolong peach larvae 39.394378 121.963222

Kitakami, Iwate Japan 15 Hiroshi Hada apple adults 39.286764 141.113192

Gyeonggi-do South Korea 15 Minyoung Kim peach adults 37.266611 126.976664

Europe

Campomarino (Campobasso) Italy 15 Pasquale Trematerra peach larvae 41.957056 15.034703

Vieste Italy 12 Dominique Mazzi peach larvae 41.881803 16.173369

St. Marcel-lès-Valence France 15 Sylvaine Simon peach adults 44.971933 4.956883

Lafitte-sur-Lot France 15 Dolors Bosch apple larvae 44.362833 0.463167

Vràble Slovakia 15 Peter Tòth peach larvae 48.243731 18.308203

Prvacina Slovenia 15 Mojca Rot peach both 41.769782 9.596859

La Portella, Lleida Spain 15 Dolors Bosch peach larvae 41.752917 0.635000

Terceira Island Azores 15 David João Horta Lopes,
Reinaldo Macedo
Soares Pimentel

peach larvae 38.721642 −27.220578

Africa

Swellendam South Africa 5 Monique Rentel Sample A peaches adults −34.016667 20.433333

3 Monique Rentel Sample B persimmon adults −34.016667 20.433333

Australia

Greater Shepparton Australia 15 Alex Il’ichev peach larvae −36.500000 145.350000

South America

Vacaria, Rio Grande do Sul Brazil 15 Priscila Strapasson apple larvae −28.510153 −50.930364

Campos de Holambra Brazil 15 Marcos Botton peach larvae −23.388611 −48.722778

Requínoa Chile 13 Estaban Basoalto Venegas peach adults −34.323817 −71.53395

Cervantes Argentina 15 Esteban Tudela peach larvae −39.063139 −67.360747
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from as many different trees as possible. Samples were
stored in 70% ethanol.

DNA Extraction and Simple Sequence Repeat (SSR)
genotyping
Genomic DNA was extracted from 8–10 mg larvae or
adult male moths (heads and thoraxes) (see Table 1)
using the Nucleospin Genomic DNA from Tissue Kit
(Macherey-Nagel AG, Oensingen, Switzerland). Extraction
was performed according to the bench protocol for animal
tissues. In the final step, DNA was eluted in 200 μLTE buf-
fer and stored at −20°C.
A total of 13 SSR loci were used for genotyping. Pri-

mer sequences and reaction conditions for the amplifi-
cation of four of these loci were previously described
[18], and are given in Table 2. A new set of nine SSR
markers was developed by ecogenics GmbH (Zurich-
Schlieren, Switzerland) using the high-throughput gen-
omic sequencing approach described by [23]. 1.25 μL of
genomic DNA were analyzed on a Roche 454 GS-FLX



Figure 1 Locations of 26 globally sampled Grapholita molesta populations. Approximately 15 individuals were sampled from each
population, and were genotyped at 13 microsatellite loci.
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platform (Roche, Basel, Switzerland) using a 1/16th run
and the GS-FLX titanium reagents. Of these, 2 183
contained a microsatellite insert with a tetra- or a tri-
nucleotide of at least six repeat units or a dinucleotide
of at least 10 repeat units. Suitable primer design was
possible in 564 reads, of which 36 were tested for poly-
morphism in fifteen unrelated individuals derived from
geographically disparate populations. Of these, 27 were
eliminated because they showed failures or high null al-
lele frequencies, were not polymorphic, or had complex
peak patterns that could not be reliably interpreted.
Characteristics of the newly developed microsatellite
DNA markers are given in Table 2.
All polymerase chain reactions (PCRs) were performed

as singleplex reactions. Reactions were performed in a
Labcycler thermocycler (Sensoquest GmbH, Göttingen,
Germany) in a total reaction volume of 10 μL. The for-
ward primers of the loci GM02, GM05, GM07, and
GM10 were fluorescently labeled with joe, fam, fam, and
hex respectively. Reactions for these four loci were car-
ried out in a mix of 5.4 μL ddH2O, 1.0 μL PCR buffer
(Qiagen, Hombrechtikon, Switzerland), 2.0 μL dNTPs
(2.5 mM, Qiagen), 0.5 μL of each forward and reverse pri-
mer (2 μM), 0.1 μL HotstarTaq (5U, Qiagen) and 0.5 μL
DNA (10–35 ng⁄ μL). Reactions for the remaining nine
newly developed loci were carried out in a mix of 5.7 μL
ddH2O, 1.0 μL PCR buffer (Qiagen), 1.0 μL dNTPs
(2.5 mM, Qiagen), 0.2 μL of each forward primer (2 μM),
0.5 μL of each reverse primer (2 μM), 0.5 μL M13 primer
(2 μM, fluorescently labeled with fam, Microsynth, Balgach,
Switzerland), 0.1 μL HotstarTaq (5U, Qiagen) and 0.5 μL
DNA (10–35 ng⁄ μL). Locus-specific PCR conditions are
reported in Additional file 1: Appendix 1.
Genotyping was carried out by denaturing 1 μL

PCR product in 9 μL formamide (deionized, 99.5%
minimum, Sigma-Aldrich, Buchs, Switzerland) with
0.09 μL GENESCAN 500 LIZ size standard (Applied
Biosystems, Foster City, CA, USA), and running the prod-
ucts on a laser detection system (3730xl DNA Analyzer,
Applied Biosystems). DNA sizing and allele definitions
were performed using GENEMAPPER 4.0 software
(Applied Biosystems). SSR data are archived at the Dryad
repository (http://dx.doi.org/10.5061/dryad.h658g).

Statistical Analyses
We identified departures from Hardy–Weinberg equilib-
rium (HWE) using GENALEX v. 6.41 [24]. We calculated
null allele frequencies using the R package GENELAND
3.1.4 [25,26]. We tested for linkage disequilibrium
between all pairs of loci using ARLEQUIN 3.01 [27],
according to [28].

Population genetic structure
Genetic and geographic distances were calculated in
GENALEX using a Euclidean distance metric according
to [29], and missing data were interpolated by the
software. A test of isolation-by-distance was carried
out by applying a Mantel’s test to matrices of genetic
and geographic distances in GENALEX using 999
permutations.

http://dx.doi.org/10.5061/dryad.h658g


Table 2 Characteristics of 13 microsatellite loci in Grapholita molesta

Locus GenBank number Primer sequences 5 0- 3 0 Size range Number of alleles Null allele frequency1 Ta (°C)

GM02* HM177460 F: CTCAGACCTGAGGGAACGAC 75-117 19 0.17 56

R: CAACACACAGTAAGTTGAGTTTTGTC

GM05* HM177463 F: CAAGCAGTAATCGCAAACATC 150-222 28 0.25 56

R: TGAGGACCAAGATGGTAGACAC

GM07* HM177465 F: GCAGGAAGCGATACTGCAAC 82-94 7 0.07 50

R: GAAGCATCGAACCTTGTCG

GM10* HM177468 F: GTAGCGTTGACAGGCGTTG 158-202 24 0.13 50

R: TGCGTTTACTTAGAGTATCTGTGC

GM11 KC573059 F: GATCGCCGAATCAACTTCCC 213-295 19 0.24 56

R: CACAATACTAAGAGTAGGATCTAGTGC

GM12 KC573060 F: GACCTAGTTAGAGTCGCGGG 212-240 8 0.27 56

R: CAAGGAGTTGGGTTGGTTGG

GM13 KC573061 F: ACACTTCTTCATTTTATCCGTCTC 113-145 9 0.21 56

R: TTATACGAAATAGACATGTGTGGG

GM14 KC573062 F: GCAGTGGACGTCTTAACGC 131-163 9 0.18 56

R: TGTAGGTACTTGACTTCCAAATGC

GM15 KC573063 F: CCTACCTCTACTAGTCACACCC 140-166 16 0.05 56

R: CGCGTGGAGTAACCTTGAAC

GM17 KC573064 F: CGACATGTGGAACTGTCTAAC 230-292 18 0.33 56

R: TCCTCTGAGAAATCGCACCG

GM18 KC573065 F: GGAGTTCATCAAGTCTCAGCG 108-140 8 0.25 56

R: ACTTTGCTCCCTTCGTATAGC

GM20 KC573066 F: GTACCTACAGATCTCACAAGTATTAAC 196-248 23 0.27 56

R: GAAGAACCATGTACGGCAGG

GM21 KC573067 F: AAAGTGATGTCGTCCGTGAG 193-255 27 0.33 56

R: TGCATAACGTGTGTAAGAAAGTG
1Estimated in Geneland.
F: forward primer, R: reverse primer, bp: base pairs, Ta: annealing temperature.
*from [18].
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To better understand the partitioning of regional
population genetic structure, we carried out an AMOVA
in GENALEX, using 999 permutations, and also calcu-
lated global (mean) FST value between populations [30].
We defined populations according to the sample sites
listed in Table 1, and we defined eight separate regions:
North America, Europe (excluding The Azores), Asia
(excluding Japan), South America, Australia, South
Africa, Japan, and the Azores. Japan and the Azores
were included as separate regions because we hypoth-
esized that island populations may be significantly dif-
ferentiated from mainland populations. In order to
determine whether host plant species accounted for a
portion of the genetic variation, we carried out an
additional AMOVA for which we defined “region” as
host plant (apple or peach). We removed three samples
that were collected from persimmon (South Africa),
and 45 samples that were collected from pear. The
latter samples were collected from three populations in
China, and are therefore not representative of a broad geo-
graphic sampling range. The final analysis contained 328
samples, 256 of which were collected from peach, and 72
of which were collected from apple.
A Bayesian model-based analysis was performed to

infer population structure using STRUCTURE version
2.3 [31,32]. Although STRUCTURE assumes HWE and
no linkage disequilibrium between loci, the software is
robust to deviations from these assumptions, particularly
if no spurious populations are observed across multiple
runs [33]. Data were analyzed using an admixture ances-
try model with correlated allele frequencies, to estimate
the posterior probabilities L(K) of K groups and the indi-
vidual percentages of membership assigned to them
according to their molecular multilocus profiles [32]. We
examined the probabilities for a range of K (K = 1–10),
using a burn-in period and a run length of the Markov
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Chain Monte Carlo (MCMC) of 30 000 and 100 000 itera-
tions, respectively. Based on a trial run, we found that in-
corporating higher values of K, and longer burn-ins or
MCMC did not appreciably change the results. Five runs
were carried out for each value of K. We calculated ΔK
according to [34]. Figure 2 was drawn using the program
DISTRUCT [35].
We also carried out an independent analysis of spatial

structure using the R package GENELAND 3.1.4 [25,26],
which has been explicitly tested for robustness to the
presence of null alleles. Like STRUCTURE, the software
uses a MCMC strategy [36] to determine the most likely
number of populations (K), and assigns individuals to the
most appropriate population basing on individual
multilocus genotypes. We carried out ten independent
MCMC simulations (100 000 iterations, thinning of 100
iterations) using the non-spatial approach, during which
we allowed K to vary between 1 and 20. Afterwards, the
model with the highest mean logarithm of posterior
probability was post-processed. GENELAND was used to
estimate inbreeding coefficients (FIS) of inferred clusters.
N
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We also attempted to estimate the magnitude and direc-
tion of historical gene flow between our 26 sample popula-
tions using a Bayesian coalescent approach implemented
in the software program MIGRATE-N [37]. However the
lower 0.025 posterior distribution value of the pairwise mi-
gration estimates (M) never differed from 0. In other
words, migration rates between populations never differed
significantly from zero, and the direction of gene flow be-
tween sampling locations could not be inferred using this
approach (results not shown).

Genetic diversity
We calculated expected heterozygosity (HE), observed
heterozygosity (HO), and allelic richness (NA) using
GENALEX. GENALEX was used to identify private alleles
from each continent, and from Japan and the Azores.

Results
All of the nine newly developed markers (Table 2)
proved to be polymorphic and informative. Among the
13 microsatellite loci used for genotyping, the number of
South Am
erica

Asia

S
outh A

frica
A

zores

0 
100 
200 
300 
400 
500 
600 
700 
800 
900 

1000 

1 2 3 4 5 6 7 8 9 

D
el

ta
 K

K 

URE; results for K= 4. Each individual is represented by a line, which is
embership fractions in each of the K clusters. Graphs show mean L(K)
ording to [34].



Kirk et al. BMC Ecology 2013, 13:12 Page 7 of 11
http://www.biomedcentral.com/1472-6785/13/12
alleles per locus ranged from 7 to 28 (Table 2). There
were significant deviations from HWE at multiple loci
from all sampling locations (data not shown), and in all
cases these were the result of heterozygote deficiencies
(Table 3). Null allele frequencies varied from 0.05 to
0.33 among the 13 microsatellite loci (Table 2), which
is typical for lepidopteran DNA loci [38], and lower
than or comparable to other studies that have used
microsatellite markers to determine the genetic struc-
ture of populations [39,40]. Significant linkage disequi-
librium was present in 15 out of 78 pairs of loci overall,
but was unlikely due to physical linkage; patterns of sig-
nificant allelic associations were not consistently re-
stricted to certain pairs of loci within the 26 populations
(data not shown).

Population genetic structure
Global FST across the data set was 0.219. AMOVA results
showed that variation within populations, between popu-
lations, and among regions accounted for 72%, 18%, and
10% of the total variation, respectively (P < 0.001). In-
corporating host species (peach or apple) rather than
geographic region as the “regional” factor revealed that
host species did not account for any of the variation
in the data set, while variation within and between
populations accounted for 70% and 30% of the vari-
ation, respectively (P < 0.001). A significant pattern of
isolation-by-distance was detected (P < 0.001), although
this pattern explained a low proportion of the variation
in the data set (R2 = 0.111).
Bayesian analysis of population genetic structure

conducted with the program STRUCTURE yielded a
Table 3 Number of sampled individuals (N), inbreeding coefficien
(HO), and allelic diversity (NA; corrected for sample size) of Grapho

Geneland cluster Sampling location

1 All North American populations

2 European populations excluding Lafitte-sur-Lot (F
La Portella, (Spain), and The Azores

3 The Azores

4 La Portella, (Spain)

5 Lafitte-sur-Lot France Vacaria, (Brazil)

6 Campos de Holambra, (Brazil)

7 Argentina and Chile

8 Feicheng and Taigu, (China)

9 Yangling, (China)

10 Pulandian, (China)

11 South Korea

12 Japan

13 South Africa

14 Australia
modal value of ΔK at K = 4 (Figure 2), and different runs
at K = 4 produced consistent clustering solutions
(Figure 2). Populations from the Azores, South Africa,
Argentina, and Chile clustered with populations from
North America. Australian and Japanese populations
clustered with populations from mainland Asia. Most
European populations clustered together, except for sin-
gle populations from France (Lafitte-sur-Lot) and Spain,
which clustered with populations from Brazil. There was
little evidence for substantial admixture between popula-
tions that clustered separately (Figure 2).
Based on analysis in GENELAND, the most likely

number of inferred populations was K = 14 consistently
across all ten independent runs (Table 3). Although the
results from GENELAND indicated a greater degree of
population structure compared to the STRUCTURE
results, there were no qualitative disagreements between
the two analyses. In other words, populations that
clustered together based on the GENELAND analysis
(Table 3) always clustered together in the STRUCTURE
analysis (Figure 2). Pairwise FST values between clusters
derived from the GENELAND analysis are reported in
Additional file 2: Appendix 2.
In order to further investigate the relationship between

the two Brazilian and the two European populations that
clustered together based on the STRUCTURE analysis,
we used the private allele function in GENALEX to
check whether the sets of alleles from the two Brazilian
populations were a subset of the alleles found in France
(Lafitte-sur-Lot) and Spain, or vice versa, which would
allow us to infer the direction of gene flow between con-
tinents. We found a similar number of private alleles
t (FIS), expected heterozygosity (HE), observed heterozygosity
lita molesta individuals from 26 sampling sites

N FIS HE HO NA

87 0.493 0.618 0.316 7.46

rance), 72 0.514 0.622 0.306 7.00

16 0.338 0.551 0.381 4.69

15 0.433 0.331 0.280 2.23

30 0.417 0.537 0.258 4.00

15 0.208 0.232 0.191 2.00

28 0.545 0.524 0.246 4.54

30 0.412 0.716 0.432 8.77

15 0.373 0.532 0350 4.54

15 0.426 0.696 0.420 6.85

15 0.384 0.699 0.453 6.92

15 0.455 0.616 0.357 4.85

8 0.354 0.192 0.137 1.92

15 0.519 0.684 0.347 5.31
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among the Brazilian versus the French/Spanish popula-
tions; compared to Brazilian populations, there were 11
alleles that were specific to France (Lafitte-sur-Lot)/
Spain, with allele frequencies that varied between 0.033,
and 0.310. Similarly, there were 13 alleles that were spe-
cific to Brazil compared to France (Lafitte-sur-Lot)/
Spain, with allele frequencies that varied between 0.017
and 0.433. The direction of gene flow between Brazil
and Europe could therefore not be unambiguously
traced using molecular genetic data.

Genetic diversity and inbreeding
Measures of genetic diversity were high in native as well
as in many introduced populations (Table 3). Measures
of genetic diversity were substantially lower in one
population from Brazil (GENELAND Cluster 6), one
population from Spain (GENELAND Cluster 4), and the
South African population (GENELAND Cluster 13).
The number of private alleles was more than six times

greater among Asian populations compared to European
and North American populations (Table 4), even though
fewer individuals and populations were sampled from
Asia compared to either of the latter two continents. FIS
estimates corrected for null alleles (computed using
GENELAND), were high across the range of sampled pop-
ulations, and did not differ appreciably among populations
from the introduced versus invaded ranges (Table 3).

Discussion
Grapholita molesta populations are structured on a glo-
bal scale, and geographic structure generally reflects
continental divisions; these data, combined with know-
ledge gleaned from historical records, provide important
information regarding dispersal and population genetic
structure of this invasive species throughout its range.

Population genetic structure and migration
Populations were highly differentiated, with a global FST
value of 0.219. In comparison, population genetic
Table 4 Private alleles from each geographic region

Pop N1 N2 Private alleles

North America 6 87 7

Europe (excluding Azores) 7 102 10

Asia (exluding Japan) 5 75 62

Australia 1 15 2

South Africa 1 8 0

South America 4 58 8

Azores 1 16 1

Japan 1 15 1
1Number of populations sampled.
2Number of individuals sampled.
structure of the codling moth (Cydia pomonella), which
belongs to the same tribe (Grapholitini) as G. molesta
[41] and is also a major pest of fruit crops, varies from
absent/low (France [42]; Chile [43]) to moderate
(Switzerland [44]) to high (South Africa [45]; Italy [46])
among different geographic areas. However, the present
study was carried out at a global scale, while individual
studies of C. pomonella were carried out at scales varying
from a few to several hundred kilometers, impairing
comparisons between the two species. Nonetheless, low
levels of population structure among C. pomonella popu-
lations from some regions relative to G. molesta could be
the combined result of higher dispersal abilities of the
former species compared to the latter [19,47-49] and the
frequent use of pesticides against C. pomonella in some
countries, which can stimulate flight in this species
(reviewed by [44]).
In the present study, clustering outcomes from two dis-

tinct Bayesian approaches were largely congruent, except
that the analysis from GENELAND suggested greater
population substructure compared to the analysis from
STRUCTURE. Evidence indicates that G. molesta was in-
troduced to Australia from mainland Asia. The data also
support a North American source of G. molesta in
Argentina and Chile, The Azores and South Africa, since
historical records indicate that G. molesta was present in
North America from the beginning of the 20th century,
but arrived much later in the latter three regions. How-
ever, a previous study [21] suggested that South African
populations were unlikely to be derived from Canadian
populations, since the genetic distance estimates from
these two regions were relatively high.
Unexpectedly, Brazilian populations clustered together

with two European populations (STRUCTURE), and
shared ancestry between Western European and Brazilian
populations was also supported by results from
GENELAND. The two European populations that shared
ancestry with populations from Brazil showed little evi-
dence of admixture with other European populations. It is
possible that these two populations from Europe were de-
rived from the same source as other European populations,
but were isolated from other populations on the same con-
tinent, and therefore became differentiated over time. If
this is the case, Brazilian populations are likely derived
from European origins. However, it is also possible that
G. molesta was recently re-introduced to Europe from
the South American part of its range. Chile is the pri-
mary source of off-season peach and nectarine imports
to Europe, and Brazil exports nearly 90% of its apple
crop to Europe [50,51]. In contrast, stone and pome fruit
exports from Europe to South America are negligible
[50,51]. This latter interpretation of our data is in line with
recent findings [42] of C. pomonella individuals with puta-
tive South American origin in France, suggesting that
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South America may be a common source of introduction
for important stone and pome fruit pests to Western
Europe. Moreover, other invertebrate pests of distantly
related plant host species have recently been introduced
from South America to Europe, including the pine-
infesting woodwasp Sirex noctilio, which was introduced
from Chile to Switzerland [52]. Although most invasive
species in Europe are assumed to originate from North
America or Asia, there is growing evidence that a num-
ber of invasive invertebrates in Europe come from South
America (e.g. [42], [52], this manuscript).
Although it has been suggested that G. molesta was in-

troduced to North America from Japan [7,12,13,53], we
did not find evidence to support this hypothesis. The sin-
gle Japanese population incorporated in this study clus-
tered with other Asian populations, and did not show
evidence of shared ancestry with North American popu-
lations. However, it is possible that limited sampling of
populations in Japan prevented us from capturing a likely
source population from that region, or that a historical
bottleneck followed by high rates of mutation since the
North American introduction have generated divergence
levels that prevent the detection of shared ancestry. Our
data did not provide an alternative hypothesis regarding
the source of North American G. molesta populations.
We found an overall (albeit weak) pattern of isolation-

by-distance, suggesting that regional introductions occur
in a relatively stepwise manner. Also, we found little evi-
dence for substantial admixture between populations
sampled from different continents, which, combined
with the clustering outcomes, implies that multiple
cross-continental introductions are unlikely. We note
however, that sampling from Australia and Africa was
limited to one population each, and we cannot make de-
finitive continent-wide conclusions for these regions
based on these sample sizes.
It has earlier been suggested that G. molesta disperses

primarily through the movement of fruit, bins and plant
material between orchards [18,21]. The natural dispersal
ability of both males and females is limited, even
though certain environmental factors can increase flight
capacity [54]. Flights between non-contiguous orchards
are possible, however they are generally short [19,47],
and human-mediated dispersal is implicated as the
main mode of dispersal [20]. The poor natural dispersal
ability of G. molesta likely accounts for the high levels
of inbreeding observed in our study, since close rela-
tives are probably geographically constrained to the
same or neighboring orchards. Combined, these findings
suggest that improved management of this invasive pest
at regional and community levels (e.g. by area-wide pest
management) and at the national level (e.g. by quarantine
regulations) may be efficient strategies to limit its on-
going spread.
We did not find any evidence that G. molesta popula-
tions are structured according to host plant species. Al-
though G. molesta has been shown to perform better on
peach, its primary host, compared to apple [55], serial
generations of a population sometimes infest different
hosts as the growing season progresses [56]. Such sea-
sonal host shifts may preclude adaptation of populations
to any specific host, particularly if several suitable hosts
are available within close geographic proximity.

Genetic diversity and inbreeding
Estimates of genetic diversity among different geo-
graphic regions were high overall. A six times higher
number of private alleles among Asian populations com-
pared to populations from other continents provides, for
the first time, convincing evidence that Asia is indeed
the native range of this species, as is frequently sug-
gested in the literature. We found that genetic diversity
levels are surprisingly high across most of the invaded
range, except for a few populations (Brazil, The Azores,
and South Africa). It is therefore unlikely that founder
effects impair the adaptive potential of G. molesta in
most non-native areas, as is suggested to occur in other
invasive species. Levels of genetic diversity were reported
from the non-native range of 14 species of invasive in-
sects [6], and of these only four species (Ceratitis rosa,
Drosophila pseudoobscura, Polistes dominulus, and
Rhagoletis completa) exhibited HE values above 0.3. In
our study, HE exceeded 0.5 in most populations from
both the native and invaded range. High levels of genetic
diversity observed in this study could be a result of
high microsatellite mutation rates in lepidopterans [57],
and/or may result from the introduction of many indi-
viduals at each founding event.
High levels of genetic diversity may account for

high levels of heritable phenotypic variation within
G. molesta populations, and may contribute to the abil-
ity of G. molesta to adapt to pest management regimes.
For example, there is considerable genetic variation
within G. molesta populations with regard to olfactory
response of female moths to their host plants [58].
Similarly, intra- and inter-population variation in other
traits may enable adaptation to new environments and/
or pest control regimes, although heritable variation in
such traits has not yet been quantified. Nonetheless, a
number of authors have demonstrated that G. molesta
has developed insecticide resistance in at least some
parts of its invaded range [59,60].

Conclusions
Unlike many other invasive pests (reviewed by [61]),
which have high dispersal abilities and/or are otherwise
predisposed to multiple introductions, we found little
evidence for frequent introductions between different
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continents in the case of G. molesta, with the possible
exception of a reintroduction to Europe from South
America, or two independent introductions to South
America. This is likely a result of the poor natural dis-
persal abilities of G. molesta, combined with stringent
international trade regulations that aim to prevent its
movement across international borders. Although bottle-
necks have occurred in a subset of introduced popula-
tions, we argue that, overall, reductions in genetic
diversity will not prevent G. molesta from adapting to
new control measures or changes in climatic conditions,
and we therefore suggest that improved community-
based control measures, in addition to more stringent
national and intracontinental regulations regarding the
regional transport of plant material, will be most effect-
ive for containing its ongoing spread.
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