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Cell cycle regulators, such as cyclins, 
are often upregulated in many pro-

liferative disorders and Cyclin A2 is gen-
erally considered as a marker of aggressive 
cancers. Our recent work, which revealed 
decreased expression of Cyclin A2 upon 
metastasis of colorectal cancer, suggests 
a more complicated situation. Consistent 
with this, we identified a role for Cyclin 
A2, via RhoA, in regulation of the actin 
cytoskeleton and the control of cell inva-
sion. Cyclin A2 also regulates spindle ori-
entation which, when misoriented, could 
disrupt cell polarity and favor cancer cell 
detachment from the tumor as part of 
a transforming process, such as epithe-
lial to mesenchymal transition (EMT). 
During EMT, cells undergo morphologi-
cal and molecular changes toward a mes-
enchymal phenotype. Upregulation, or 
increased activity of some Rho GTPases, 
such as Cdc42, Rac1 or RhoC, increases 
the invasive potential of these cells. This 
correlates with the inverse relationship 
between RhoA and RhoC activities 
we observed in an epithelial cell type. 
Altogether, these observations raise the 
possibility that Cyclin A2 is instrumen-
tal in preventing EMT and therefore 
cancers of epithelial tissues.

Recent data pointing to a novel function of 
Cyclin A2 add another component to the 
complex regulatory network that involves 
cell cycle regulators and cytoskeletal struc-
tures participating in the control of cell 
movement.1 As already known, Cyclin A2 
is a key regulator of cell division, since it 
controls both S phase and G

2
/M transition 

in association with CDK2 and CDK1, 
respectively.2 During S phase, Cyclin A2 
regulates the initiation and progression of 
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DNA synthesis, and at the G
2
/M transi-

tion, it plays a critical role in triggering 
Cyclin B1-CDK1 activation.3-5 In mice, it 
is essential in embryonic cells and in the 
hematopoietic lineage, yet dispensable in 
fibroblasts.6,7

Surprisingly, depletion of Cyclin A2 
is sufficient to increase cell motility of 
fibroblasts in 2D assays and cooper-
ates with oncogenic transformation to 
increase their invasiveness in 3D colla-
gen matrixes.1 Cyclin A2-deficient cells 
contain a perturbed cytoskeleton, where 
Actin filaments are cortical and the dis-
tribution of focal adhesions is altered. 
Interestingly, these defects are corrected 
by a Cyclin A2 mutant unable to activate 
its cognate kinases, CDK1 and CDK2. 
This is associated with a downregula-
tion of the RhoA-ROCK pathway and 
decreased phosphorylation of Cofilin, 
which is involved in the reorganization of 
Actin filaments, consecutively leading to 
an increased cell migration and invasion. 
Importantly, pharmacological inhibition 
of ROCK in control fibroblasts leads to an 
increase in migration velocity similar to 
that of Cyclin A2-depleted cells.

Cyclin D1 and the CDK inhibitors 
p21, p27 and p57 had also previously 
been shown to impinge upon the RhoA/
ROCK pathway. Cyclin D1 binds directly 
to p27 and thereby blocks RhoA activation 
by inhibiting interaction with its GEF.8-11 
Similarly, cytoplasmic p21 has been shown 
to bind and inhibit ROCK1, which pro-
motes neurite extension by neuroblas-
toma cells and hippocampal neurons,12 
while p57 was shown to sequester LIMK 
(Fig. 1).13 Within this scheme, Cyclin A2 
binds directly to RhoA and facilitate its 
GTP loading by GEFs.1 This is consistent 
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consistent with its known functions dur-
ing the cell cycle, it is frequently overex-
pressed in highly proliferative cancers.3 
However, our observations indicate that 
Cyclin A2 protein levels are significantly 
lower in an invasive colon carcinoma cell 
line derived from lymph node metasta-
sis relative to a less-invasive counterpart 
issued from the primary site. More impor-
tantly, the same is observed upon metas-
tasis of colon adenocarcinoma.1 Studies of 
renal, colorectal carcinoma and prostate 
cancer, found that proliferative tumors 
with low levels of Cyclin A2 were more 
aggressive than those with high Cyclin 
A2 expression.21-23 Moreover, Wang et 
al. established that Cyclin A2 levels were 
inversely correlated with invasiveness of 
oral squamous cell carcinoma (OSCC) 
both in vitro and in vivo.24

Altogether, these data indicate that 
Cyclin A2 downregulation could be 
an important step in the acquisition of 
an invasive property by epithelial cells, 
and thereby call for more studies on the 
involvement of this cyclin in the morpho-
logical changes that occur during metas-
tasis. Along these lines, the epithelial to 
mesenchymal transition (EMT) appears to 
be instrumental in pathological situations 
such as fibrosis, tumor development and 
metastasis spreading.25-27 In the context of 
epithelial cancer, EMT provides one mech-
anism for tumor cells to invade the local 
tissue and blood vessels, setting the stage 
for metastatic spread. Therefore, EMT is 
hypothesized to contribute to tumor pro-
gression and clinical evidence suggests that 
upregulation of EMT regulators in cancer 
cells correlates with poor patient outcome 
and tumor aggressiveness.28-30 EMT is 

to be instrumental in centrosome organi-
zation and positioning, and microtubules 
nucleated at the centrosome seem to play 
the same role for the Golgi. CyclinA2 has 
also been shown to localize to the centro-
some in a CDK-independent manner, and 
through binding of MCM5 and Orc1, 
prevents the formation of supernumerary 
centrosomes.18 Since Cdc42 plays a cen-
tral role in cell polarization, this raises the 
question of its role in the potential cou-
pling of this process to centrosome dupli-
cation and spindle orientation. A partial 
answer to this question was provided 
recently. Bray et al. showed that Cdc42 
controls spindle orientation to position 
the apical surface during epithelial mor-
phogenesis, at least in vitro.19

These data highlight thus another 
aspect of Cyclin A2 function in the con-
trol of cytoskeleton dynamics, which 
places this cyclin at the crossroads of 
intracellular processes, such as mitosis, 
and extracellular cues emanating from 
neighboring cells or from the extracellular 
matrix (Fig. 2).

If we place these observations within 
the context of the epithelium, the orien-
tation of the mitotic spindle with respect 
to the lamina is a major issue, since this 
has been proposed to be instrumental in 
the determination of the fate of the two 
daughter cells. Moreover, in tumors, basal 
extrusion of a daughter cell could initiate 
metastasis in some situations.20 Therefore, 
mutations that couple spindle misorentia-
tion with oncogene activation could facili-
tate tumor progression and metastasis 
spreading.

Until recently, Cyclin A2 was solely 
considered as a proliferation marker since, 

with the involvement of this GTPase in 
early mitosis, since its increased activity at 
that time leads to cortical retraction and 
cell rounding via its downstream effec-
tor ROCK.14 Moreover, formation of the 
contractile ring during cytokinesis has also 
been shown to depend upon RhoA activa-
tion in a precise zone at the cell equator.15

Knockdown of Cyclin A2 and inhibi-
tion of CDK2 prevent cells from forming 
stable attachments of their mitotic spindle 
to the cell cortex.16 This resulted in the 
spindles failing to locate to the central 
position in the cells and undergo dramatic 
rotation. Moreover, Cyclin A2-CDK2 
specifically associated with APC in late G

2
 

phase and phosphorylated it on Ser1360. 
Mutation of this serine to alanine results 
in identical off-centered mitotic spindles. 
Thus, this Cyclin A2-CDK2-dependent 
phosphorylation within the mutation 
cluster region of APC affects astral micro-
tubule attachment to the cortical surface 
in mitosis.

Another potential player in this com-
plex ballet appears to be the Golgi appa-
ratus. Recent studies suggest the existence 
of functional interactions between this 
organelle and the centrosome, the struc-
ture responsible for the nucleation of the 
mitotic spindle. The Golgi and the centro-
some are in a close proximity at interphase 
and this intimacy is transiently lost dur-
ing mitosis, when the Golgi is fragmented, 
and the two newly duplicated centrosomes 
migrate. Golgi-centrosomes interactions 
may play a central role in cell polariza-
tion, since both structures undergo re-
orientation toward the leading edge of 
a migrating cell (reviewed in ref. 17). 
Proteins of the Golgi apparatus are likely 

Figure 1. Cell cycle regulators and the Rho/ROCK pathway. Whereas Cyclin D1, p27, p21 and p57 collectively define the inhibitory arm of a regulatory 
loop linking the cell cycle to the RhoA/ROCK pathway, Cyclin A2 appears to be the first component in its activator arm.
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