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The GABAergic system is thought to play an important role in the control

of cognition and emotion, such as fear, and is related to the pathophysiol-

ogy of psychiatric disorders. For example, the expression of the 67-kDa

isoform of glutamate decarboxylase (GAD67), a GABA-producing enzyme,

is downregulated in the postmortem brains of patients with major depres-

sive disorder and schizophrenia. However, knocking out the Gad1 gene,

which encodes GAD67, is lethal in mice, and thus, the association between

Gad1 and cognitive/emotional functions is unclear. We recently developed

Gad1 knockout rats and found that some of them can grow into adult-

hood. Here, we performed fear-conditioning tests in adult Gad1 knockout

rats to assess the impact of the loss of Gad1 on fear-related behaviors and

the formation of fear memory. In a protocol assessing both cued and con-

textual memory, Gad1 knockout rats showed a partial antiphase pattern of

freezing during training and significantly excessive freezing during the con-

textual test compared with wild-type rats. However, Gad1 knockout rats

did not show any synchronous increase in freezing with auditory tones in

the cued test. On the other hand, in a contextual memory specialized pro-

tocol, Gad1 knockout rats exhibited comparable freezing behavior to wild-

type rats, while their fear extinction was markedly impaired. These results

suggest that GABA synthesis by GAD67 has differential roles in cued and

contextual fear memory.

Gamma-aminobutyric acid (GABA) is an inhibitory

neurotransmitter in the brain that is thought to be

involved in the pathogenesis of neuropsychiatric disor-

ders such as depression [1–4], anxiety disorders [5,6],

and schizophrenia [7–10]. GABA is synthesized by

enzymes that are independently encoded by two genes,

the glutamate decarboxylase 67-kDa isoform (GAD67)

and the 65-kDa isoform (GAD65) [11–13]. In rodents,

the corresponding genes are Gad1 and Gad2. The

expression level of GAD67 is downregulated in the

cerebral cortex of patients with major depressive disor-

der [1] and schizophrenia [14], and this possibly con-

tributes to the neural basis of these disorders. Anxiety

and fear, which are common symptoms observed in a

wide range of psychiatric disorders, also correlate with

the GABAergic system [15,16]. A decrease in GABA

levels in the tissue or blood has been reported in anxi-

ety disorder [5], post-traumatic stress disorder [17,18],
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and mood disorders [19], suggesting that decreased

GABA neurotransmission may underlie the neural

basis of anxiety in these disorders. This is also consis-

tent with the findings that benzodiazepines, which are

stimulants of GABAA receptors, reduce anxiety [20].

The mechanism by which the GABA-producing sys-

tem contributes to anxiety and fear has been studied

primarily in Gad2 knockout (KO) mice [15,21–27].
This is partly because Gad1 KO mice exhibit a cleft

palate and die on the first postnatal day [28]. In Gad2

KO mice, phasic inhibition in the basolateral amyg-

dala, which is related to fear memory, is significantly

reduced [15]. Consistent with these clinical findings,

Gad2 KO mice exhibit increased anxiety-like behavior

[22] and enhanced active defensive behavior during the

fear-conditioning test [23]. Gad2 KO mice also display

generalized fear [15,24] and impaired fear extinction

[25]. In summary, enhanced fear response or fear

memory has been consistently reported in Gad2 KO

mice.

However, the role of Gad1 (and GAD67) in anxiety

and fear is unclear. A study reported that the expres-

sion of GAD67 and GAD65 is differentially controlled

in fear extinction; GAD67 is upregulated in the pre-

frontal cortex, while GAD65 is downregulated in the

hippocampus during fear memory extinction, suggest-

ing that they have a distinct role in the processing of

fear memory [29]. Although fear conditioning is yet to

be assessed, Gad1 ‘heterozygous’ KO mice show anxi-

ety levels comparable to those of wild-type (WT) mice

[30,31]. It is unclear whether this suggests that GAD67

does not play a significant role in fear and anxiety, or

whether a slight reduction in GAD67 levels in

heterozygous KO mice is not sufficient to affect their

behavior.

We recently obtained a novel tool to address this

issue. Using genome editing technology [32], we suc-

cessfully developed a Gad1 KO rat line in the Long-

Evans background (Fujihara et al. [33]). The perinatal

lethality of Gad1 KO rats was not as severe as that of

Gad1 KO mice; approximately 33% of KO rats could

grow up to adulthood. Therefore, in the present study,

we characterized the behavioral phenotype of Gad1

KO rats using the fear-conditioning test to reveal the

role of GAD67 in fear expression, fear memory, and

fear extinction.

Materials and methods

Animals

Gad1 KO rats were generated by a previously reported

method [32]. The details of the generation procedure are

reported elsewhere (Fujihara et al. [33]). The animals are

available from NBRP-Rat (https://www.anim.med.kyoto-

u.ac.jp/nbr/Default.aspx). Briefly, the exon 6 of the Gad1

gene was deleted in the Long-Evans background using the

CRISPR/Cas9 system [34]. The rats used in the present

study were obtained by crossing male and female Gad1+/−

rats. Only male Gad1−/− (Gad1 KO) rats were used for

behavioral analysis. Littermate Gad1+/+ (Gad1 WT) rats

were also used as a control group. Approximately 66% of

these rats died at P0, while the remaining 33% survived

and were able to grow into adulthood. None of the rats

had epileptic seizures during the observation period. Geno-

typing PCR was performed using the following primers

[33]:

50-ACTGGGCCATTGTTCCAGCTCCA-30,
50-GCTCTCTCACGAGTATGCCCTTGCT-30,
and 50-CGAGCTGGAGAAGGGGGAAGAAGAT-30.

The rats were housed in a room maintained at

22 � 3 °C with a 12-h light–dark cycle (lights on at 6:00,

lights off at 18:00). Food (CLEA Rodent Diet CE-2, Clea

Japan, Meguro, Tokyo, Japan) and water were provided

ad libitum. All the experiments in this study were approved

by the Animal Care and Experimentation Committees of

Gunma University and the Animal Research Committee of

Osaka University. Every effort was made to minimize the

number of animals used and their suffering.

Western blot analysis

Brain tissue was taken from adult rats, and the S1 fraction

was prepared to confirm the Gad1 knockout. Western blot

analysis using a standard protocol was performed as

described previously [35]. An antibody that recognizes both

GAD65 and GAD67 proteins was used as the primary anti-

body (1 μg�mL−1) [36]. β-Actin was detected as an internal

control using a mouse anti-β-actin antibody [1 : 10 000,

#AC-15 (ab6276); Abcam, Cambridge, UK]. The results of

the analysis are shown in Fig. S1, and details of the knock-

out validation are reported elsewhere [33].

Behavioral analysis

Fear-conditioning test for contextual and cued memory

(C-C experiment)

We refer to this experiment as the C-C (contextual and

cued memory) experiment to discriminate it from another

experiment. Five-month-old rats were used for the analysis

(WT, n = 12; KO, n = 11). We used a modified version of

our previous protocol for mice [35]. In the modification

process, we also referred to a protocol by Ueno et al. [37].

The contextual and cued fear-conditioning test was con-

ducted in a box surrounded by a sound-attenuated cham-

ber (O’Hara & Co., Ltd., Tokyo, Japan). This test
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consisted of a conditioning trial (day 1), a contextual test

trial (day 2), and 4-day cued test trials (day 3 to day 6)

(Fig. 1). The rats were placed in a clear acrylic conditioning

chamber (33 cm × 25 cm × 28 cm) equipped with a stain-

less-steel grid floor connected to an electric shock genera-

tor. The brightness of the chamber was 120 lux. On day 1,

rats were habituated to the conditioning chamber for 180 s.

Immediately after the habituation, they received five audi-

tory tone presentations (CS; 10 kHz, 65 dB, duration: 20 s)

with an 80-s interval, each of which was delivered concomi-

tantly with a foot shock at the end of it (US; 0.7 mA, dura-

tion: 1 s). Because the acoustic startle response was

comparable between Gad1 KO and WT rats [33], we can

assume that the auditory function is not affected in Gad1

KO rats. One hundred seconds after the last foot shock,

the rats were returned to their home cages (Fig. 1A). A day

after the conditioning training, a contextual test (day 2)

was performed in the same conditioning chamber for 600 s

in the absence of the tone-shock pairings. Furthermore, a

cued test was performed in a novel chamber with different

contexts from those of the conditioning chamber to mini-

mize freezing caused by contextual fear conditioning. The

test chamber differed from the conditioning chamber in

brightness (30 lux), color (black), and shape (triangular

prism, 33 cm on one side, and 31.5 cm high). The cued test

(day 3) was conducted 24 h after the contextual test. The

schedule for the cue test was the same as that for the con-

ditioning, except that no foot shock was administered. In

the first 3 min of the exploration period (no CS), we evalu-

ated nonspecific contextual fear. The acquired cued fear

was tested through 5 CS periods (no foot shock). On day 4

to day 5, we repeated the same cued test to assess extinc-

tion learning (Fig. 1B). The percentage of time that mice

exhibited a freezing response (immobility excluding respira-

tion and heartbeat) was measured as an index of fear mem-

ory. The data were collected and analyzed using TimeFZ1

(O’Hara & Co., Ltd.). The freezing time was determined

automatically by the software every 10 s.

Fear-conditioning test specialized in contextual memory

(CTX experiment)

We refer to this experiment as the CTX (contextual mem-

ory) experiment to discriminate it from the C-C experi-

ment. Different cohorts other than the C-C group were

used (WT, n = 8; KO, n = 8). At least 1 week before the

test, we performed an open field test, elevated plus-maze

test, and flinch–jump test as described in the following. We

used the same apparatus as the C-C experiment. This test

consisted of a conditioning trial (day 1) and 4-day contex-

tual test trials (day 2 to day 5) (Fig. 6). In the CTX experi-

ment, we assessed only contextual memory. Therefore, we

omitted auditory cues, and the electric shocks were given at

random intervals (210, 370, 470, 520, and 615 s from the

start of the experiment). The total duration of the experi-

ment on day 1 was the same as that in the C-C experiment

(700 s). The contextual tests (day 2 to day 5) were per-

formed in the same conditioning chamber for 600 s in the

absence of electric shocks to evaluate fear extinction.

Open field test

A 90 cm × 90 cm open field box (O’Hara) was used for the

test. The brightness at the center was 120 lux. Each rat was

allowed to walk freely for 10 min in the box. The behavior

of the rats was recorded by a CCD camera attached to the

ceiling. The distance travelled during a session and the stay

time in the central area (25% of the field) were measured

using the automated software TIMEOFCR1 (O’Hara).

Elevated plus-maze test

The apparatus consisted of two open arms and two closed

arms (O’Hara). The size of each arm was 10 cm × 50 cm.

The closed arm had 35-cm high transparent walls. The

arms were placed 50 cm above the floor. The brightness

of the center region of the maze was 120 lux. The rats
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Fig. 1. Schematic representation of the fear-conditioning paradigm for contextual and cued fear memory (C-C experiment). (A) Following

habituation (180 s), 5 tone-shock pairings were delivered. At the end of the 20-s tone (conditioned stimulus, CS), an electric shock of

0.7 mA for a duration of 1 s (unconditioned stimulus, US) was delivered. The interval between each tone-shock pairing was 80 s. After the

last shock, rats were left in the conditioning chamber for an additional 100 s. (B) The schedule of the fear-conditioning test. On the first day

of the experiment, we performed a conditioning in (A). On the second day, we performed a contextual test in the same chamber (600 s).

From the third day to the sixth day, the same tones as the first day were delivered to the rats in a different chamber with a different shape

and context (cued test and fear extinction).
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were allowed to walk freely on the entire maze for

10 min. The durations spent in the closed and open arms

were measured. The open-arm ratio was defined as fol-

lows: Open-arm ratio = (the duration spent in the open

arm � the total duration spent in the open and closed

arms) × 100 (%).

Flinch–Jump test

Pain sensitivity can affect the results of the fear-condition-

ing test. To determine the sensitivity to the electric shock,

we carried out a flinch–jump test based on Lehner et al.

[38]. Shock naı̈ve rats were given a series of ascending foot

shocks from 0.1 to 0.7 mA with a 0.1 mA increment to

determine the threshold current for flinch and jump. The

interval between shocks was 10 s, and each animal was

tested only once. The test was carried out in a different

environment from the fear-conditioning test.

Statistical analysis

Graphs were generated using GRAPHPAD PRISM (GraphPad

Software, Inc., La Jolla, CA, USA). We compared the two

genotypes using Welch’s t-test and two-way ANOVA with a

simple main effect test. For the ANOVA, we first examined

the interaction between the genotype and intraindividual

factors. If the interaction was statistically significant, we per-

formed simple main effect tests with Bonferroni correction.

If the interaction was not significant, we assessed the main

effect of each factor. We also calculated effect size Cohen’s d

for the t-test and partial η-squared (η2p) for ANOVA.

Welch’s t-test and ANOVA were performed using R soft-

ware (https://www.r-project.org/) and SPSS (SPSS Inc., Chi-

cago, IL, USA), respectively. In addition, we calculated a

cross-correlation function between the time course of the

tones and freezing to evaluate their synchronization. We

also performed analyses using general linear models (GLM)

to assess the relationship between two or more parameters.

The cross-correlation function and GLM analyses were cal-

culated using R software. P-values less than 0.05 were con-

sidered significant in all statistical tests in the present study.

Results

Altered freezing behavior of Gad1 KO rats during

the conditioning process in the C-C experiment

We confirmed the loss of GAD67 protein in the whole

brain of Gad1 KO rats using western blot analysis

(Fig. S1; Fujihara et al. [33]). Then, we performed the

fear-conditioning test, as shown in Fig. 1. On day 1,

after 180 s of habituation to the conditioning chamber,

the rats were exposed to five tone-shock pairings

(Fig. 1A). During the first 180 s (baseline), no

significant difference in freezing time was observed

between the two genotypes (Fig. 2A,D; t = 1.3622,

df = 18.85, P = 0.1892, Cohen’s d = 0.5751). However,

the responsiveness to tone-shock pairings differed

between the genotypes (Fig. 2A). To compare the two

genotypes more easily, the time courses of freezing

around tone-shock pairings were averaged, as shown

in Fig. 2B. WT rats showed increased freezing with the

onset of tone, and freezing increased again after a

transient decrease caused by the shock (Fig. 2A,B:

blue line). In contrast, KO rats showed a partial ‘an-

tiphase’ pattern; higher freezing during the pretone

period and decreased freezing with the onset of the

tone. Immediately after the shock, the freezing time of

KO rats rapidly increased to a higher level than that

of WT rats (Fig. 2A,B: red line).

We assessed the above-mentioned differences using

cross-correlation analysis. Cross-correlation is a well-

known tool for detecting the synchronicity of neuronal

activities [24]. In the present study, we utilized this

method to assess the similarity between the tone signal

(Fig. 2A: green line) and the time course of the freez-

ing behavior. The cross-correlation function of WT

rats had positive peaks every 100 s around lag = 0 s.

This reflected the synchronous increases in the freezing

time of WT rats with the tones. However, in KO rats,

these positive peaks disappeared and had negative val-

ues. This is consistent with a downward trend in freez-

ing with the onset of the tone. The shapes of the

cross-correlation functions of the two genotypes were

significantly different (genotype × lag, F (28,

588) = 6.628, P < 0.001, η2p = 0.249), and a simple

main effect test revealed several areas that were signifi-

cantly different between the two groups, mainly at the

positive peaks in WT rats (Fig. 2C).

The mean freezing values during the pretone (20 s

before the tone) and tone (20 s) periods are summa-

rized in Fig. 2D. There was a significant interaction

between genotype and time period (pretone or tone),

with a large effect size (genotype × period, F (1,

21) = 17.335, P < 0.001, η2p = 0.452). A simple main

effect test showed that pretone freezing was signifi-

cantly higher in KO rats than in WT rats (P = 0.005).

In addition, WT rats showed significantly increased

freezing from the pretone to tone (P = 0.003), while

KO rats showed significantly decreased freezing from

pretone to tone (P = 0.018). The total freezing time

during the entire conditioning process was also signifi-

cantly longer in KO rats than in WT rats, with a large

effect size (WT, 25.63 � 16.27%; KO, 36.74 � 7.55%;

t = 2.1278, df = 15.811, P = 0.04945, Cohen’s

d = 0.8625). In summary, although responsiveness to

the tone was unusual, the fear response itself was
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increased in KO rats. Furthermore, at the very least,

Gad1 KO rats were considered to have normal hearing

as they responded to the tones.

Increased freezing of Gad1 KO rats in the

contextual test in the C-C experiment

A contextual test was performed 24 h after the training

(Fig. 1B). The total freezing time was significantly pro-

longed in KO rats compared with that in WT rats,

and a very large effect size was observed (Fig. 3A;

t = 4.498, df = 19.866, P < 0.001, Cohen’s

d = 1.8499). The freezing time during the pretone per-

iod on day 1 was positively associated with the freez-

ing time during the contextual test (Fig. 3B;

standardized regression coefficient B = 0.7958,

t = 6.023, df = 21, P < 0.001, adjusted R2 = 0.6159).

Considering that the baseline freezing level on day 1

was slightly higher (although not statistically

significant) in KO rats with a moderate effect size, the

baseline activity might have affected the result on day

2. Thus, we performed multiple regression analyses

using the baseline freezing level as a covariate. The

standardized partial regression coefficient (β) for the

pretone freezing time was still significant (βpretone =
0.9540, t = 5.349, df = 20, P < 0.001, Adjusted

R2 = 0.6279), and that for the baseline freezing was

not significant (βbaseline = −0.2311, t = 1.296, df = 20,

P = 0.21). These results indicate that pretone freezing

during conditioning was a good predictor of freezing

in the contextual test; in other words, the fear response

on day 1 was recalled in the contextual test.

Altered fear response of Gad1 KO rats during the

cued test

We conducted a cued test on day 3 (Fig. 1B). The tone

schedule for the cued test was the same as that for the
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Fig. 2. Altered freezing behavior in Gad1 KO rats during the conditioning process. (A) The time series of freezing behavior during

conditioning on day 1 (WT, n = 12; KO, n = 11). The arrows indicate the timing of the electric shocks. (B) The inverted freezing response of

KO rats around the tone-shock period. The tone period is shaded in yellow. The freezing time courses of all five tone-shock pairings were

averaged to depict the characteristic change in KO rats. (C) Cross-correlation function between the tone and the freezing time courses. The

positive peaks at lag 0 and �100 s seen in WT rats were undetectable in KO rats. (D) Summary of freezing behavior in each time period.

While the freezing behaviors during baseline (0–180 s) and the tone period in KO rats were comparable to those of WT rats, KO rats

exhibited significantly excessive freezing during the pretone period. The results are presented as the average � SEM. Data were analyzed

using two-way ANOVA (C, D) or t-test (D; baseline only). *P < 0.05, **P < 0.01, ***P < 0.001. In (D), red and blue asterisks represent

intragroup significant differences. WT, wild-type; KO, knockout.
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training, except that no foot shock was given. Unlike

on day 1, the baseline freezing time was significantly

higher in KO rats than in WT rats (Fig. 4A,D;

t = 5.0168, df = 17.884, P < 0.001, Cohen’s

d = 2.1260). Although WT rats showed an increase in

freezing time after the tone, the trend was not clear in

KO rats (Fig. 4A,B).

Cross-correlation analysis revealed a peak every

100 s around lag = 0 s in WT rats. This implied an

increase in freezing in response to the tone. However,

this synchronization was not observed in KO rats. The

shape of the cross-correlation function of the two

genotypes was significantly different (genotype × lag, F

(28, 588) = 2.531, P < 0.001, η2p = 0.108), and the sim-

ple main effect test revealed several areas that were

significantly different between the two groups, mainly

at the peaks in WT rats (Fig. 4C).

The mean freezing values during the pretone period

(20 s before the tone) and during the tone period

(20 s) are summarized in Fig. 4D. There was a signifi-

cant interaction between the genotype and time period

(pretone or tone), with a large effect size (geno-

type × period, F (1, 21) = 5.783, P = 0.025,

η2p = 0.216). Freezing during the tone period was sig-

nificantly lower in KO rats than in WT rats

(P = 0.042). Although WT rats showed increased

freezing when transitioning from pretone to tone

(P < 0.001), KO rats showed no change (P = 0.545).

Although the increase in freezing evoked by audi-

tory cues was lost in Gad1 KO rats, the average freez-

ing during the tone period significantly increased from

the baseline in both genotypes (KO, paired t-test,

t = 7.0176, df = 10, P < 0.001, Cohen’s d = 2.4253;

WT, t = 10.885, df = 11, P < 0.001, Cohen’s

d = 2.7307). These results suggest that KO rats may

also express a certain amount of fear during the tone

period.

Cued fear extinction in Gad1 KO rats

Repetition of the cued test for a total of 4 days up to

day 6 resulted in a decrease in freezing during the tone

period in WT rats, but there was no change over time

in KO rats (Fig. 5A). We found a significant interac-

tion between the genotype and day (genotype × day, F

(3, 63) = 2.838, P = 0.045, η2p = 0.119), and a simple

main effect test showed a significant difference between

the two groups only on day 3 (P = 0.042). However,

freezing during pretone was constant in both geno-

types (Fig. 5B; genotype, F (1, 21) = 0.974, P = 0.335,

η2p = 0.044; day, F (3, 63) = 0.874, P = 0.460,

η2p = 0.040; genotype × day, F (3, 63) = 1.687,

P = 0.179, η2p = 0.074). When calculating the ratio

between the two freezing times (during the tone and

pretone periods), the value was still constant and

almost 1.0 in KO rats, whereas it decreased from

1.72 � 0.89 on day 3 to 1.07 � 0.40 on day 6 in WT

rats (Fig. 5C). However, the interaction was not signif-

icant in the ANOVA, and only an effect of the geno-

type and day was found (genotype effect, F (1,

21) = 6.702, P = 0.017, η2p = 0.242; day, F (3,

63) = 2.794, P = 0.047, η2p = 0.117; genotype × day, F

(3, 63) = 1.493, P = 0.225, η2p = 0.066).

Impaired contextual fear extinction of Gad1 KO

rats during the CTX experiment

Next, we assessed fear extinction in contextual mem-

ory. Because the freezing level in the contextual test

was relatively low in the C–C experiment (Fig. 3A), we
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modified the protocol to be specialized for contextual

memory in the CTX experiment (Fig. 6). The baseline

freezing was similar in both genotypes on day 1

(t = 0.0081, df = 13.937, P = 0.9937, Cohen’s

d = 0.0040). Although the average freezing time during

the shock period (210–700 s) in KO rats was signifi-

cantly lower than that in WT rats (t = 3.3198, df =
13.947, P < 0.01, Cohen’s d = 1.6599), the freezing

time in both genotypes increased after the shocks com-

pared with their baseline levels (Fig. 7A,B).

A contextual test was performed 24 h after condi-

tioning, as in the C-C experiment (Fig. 6A). Unlike in

the C-C experiment, the total freezing time in KO rats

was comparable to that in WT rats (Fig. 7C;

t = 0.1174, df = 10.683, P = 0.9087, Cohen’s

d = 0.0587). Repetition of the contextual tests for a

total of 4 days up to day 6 resulted in a significant

decrease in freezing time in WT rats. On the other

hand, KO rats showed no decrease in freezing time for

4 days (Fig. 7D). We found that the genotype and day

had significant main effects, and there is a subthresh-

old interaction between genotype and day (genotype

effect, F (1, 14) = 6.622, P = 0.022, η2p = 0.321; day, F

(3, 42) = 3.341, P = 0.028, η2p = 0.193; geno-

type × day, F (3, 42) = 2.739, P = 0.055, η2p = 0.164).

Simple main effect tests showed a subthreshold differ-

ence on day 3 (P = 0.071) and significant differences

between the two groups on day 4 (P = 0.031) and day

5 (P = 0.004). These results indicated that fear extinc-

tion of contextual memory was impaired in Gad1 KO

rats.

Open field test and elevated plus-maze test

Because locomotor activity and anxiety level can

affect fear-related behaviors, we performed an open

field test and elevated plus-maze test in the same sub-

jects as in the CTX experiment. Although Gad1 KO

rats showed significantly reduced locomotor activity

in the open field test, their anxiety-like behaviors in

the elevated plus-maze test were not altered (Fig. S2).

To adjust for possible confounding by the difference

in locomotor activity between the two genotypes, we

reanalyzed the data of contextual fear extinction using

GLMs, which include the distance travelled in the

open field test as a covariate. The results are shown

in Table S1. Particularly on day 5 in the CTX experi-

ment, the genotype still had a significant effect

(P < 0.05) after adjusting for the distance travelled.

On the other hand, the distance travelled itself had

no significant effect on freezing (P = 0.8132).

Although we should acknowledge the confounding

effect of locomotor activity on freezing as a limitation

of the present study, these GLM results suggest that

the higher level of freezing might be independent of

hypoactivity in KO rats.

Flinch–jump test

Shock sensitivity is also a possible confounding factor

in the fear-conditioning test. We assessed shock sensi-

tivity in the same animals as in the CTX test using the

flinch–jump test. The thresholds for flinch and jump

were not significantly different between the two geno-

types (Table 1).

Discussion

In the present study, we assessed fear expression and

fear memory for the first time in Gad1 KO animals

and found the following results. In Gad1 KO rats, (a)

the overall freezing time was prolonged, but (b) the

freezing level decreased with the onset of tone during

the training in the C-C experiment. (c) The freezing

level was higher than that in WT rats during the con-

textual test of the C-C experiment. (d) The baseline
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freezing was increased in KO rats in the cued test. (e)

KO rats displayed no increase in freezing level in

response to the tones in the cued test, as if the cued

memory was specifically disturbed. (f) KO rats dis-

played no change in freezing behavior during the fear

extinction session in cued fear memory. (g) In the

CTX experiment, KO rats displayed slightly lower

freezing during the training, while (h) they showed

comparable freezing in the contextual test. (i) KO rats

showed an impaired contextual fear extinction.

In the C-C experiment, the responses of Gad1 KO

rats during training for fear-conditioning and contex-

tual test differed from those of Gad2 KO mice

[15,21–27]. Two studies have reported that Gad2 KO

mice exhibited a decreased freezing and increased

active defensive behavior and risk assessment behavior

during both training and retrieval, as mentioned above

[22,24]. Another study reported a comparable level of

freezing between Gad2 KO mice and WT controls

using a different protocol [25]. Unlike these findings,

Gad1 KO rats exhibited a unique pattern of increased

freezing during the pretone period and decreased freez-

ing from the pretone level with the onset of the tone.

On the other hand, it is of note that Gad1 KO rats

showed lower levels of freezing than WT rats during

the training of the CTX experiment as in Gad2 KO

mice. In Gad2 KO mice, the inhibitory input is

impaired in the basolateral amygdala [15]. The
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Table 1. Shock sensitivity in Gad1 KO rats. The threshold currents for flinch and jump are expressed as mean � SEM (mA). The four right

columns are the results of Welch’s t-test for group comparison. No significant differences were observed. WT; wild-type, KO, knockout.

WT (n = 8) KO (n = 8) Df t P d

Flinch (mA) 0.238 � 0.035 0.213 � 0.028 13.27 0.524 0.61 0.26

Jump (mA) 0.413 � 0.037 0.375 � 0.029 13.27 0.74 0.47 0.37
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basolateral amygdala consists mainly of excitatory

neurons and a small population of GABAergic neu-

rons. Hyperexcitability of the basolateral amygdala is

associated with pathological anxiety [39]. However,

almost all neurons in the central amygdala are

GABAergic, and both its inhibition and its excitation

cause freezing [39]. These circuit-level findings are con-

sistent with the higher level of freezing observed in

Gad1 KO rats in the C-C training, although the reason

for these differences in freezing behaviors between

Gad1 KO rats and Gad2 KO mice is unknown at pre-

sent. Species differences between mice and rats should

be considered, as this can affect the results. Gad2

knockout rats in the Long-Evans background are

desirable for a direct comparison. GAD65 is known as

an activity-dependent GAD that produces GABA in

response to increased neuronal activity in the

GABAergic terminal [11]. However, GAD67 is primar-

ily distributed in the soma and constantly produces

GABA. At the very least, the present results imply

that this baseline production of GABA is also required

for regulating an adequate level of fear expression.

Gad1 KO rats showed abnormally higher freezing in

the contextual test of the C-C experiment, and normal

freezing levels in that of the CTX condition. Generally,

the freezing level of the contextual test in the CTX experi-

ment is higher than that in the C-C experiment [40–42].
This phenomenon is associated with ‘context salience’,

which is controlled by hilar perforant path-associated

(HIPP) cells in the dentate gyrus. Under the suppression

of HIPP cells, mice show abnormally high freezing in the

C-C condition without affecting freezing in the CTX con-

dition [40]. This phenotype is similar to that observed in

Gad1KO rats. Because HIPP cells are GABAergic, a defi-

cit in the neurotransmission of the cells might contribute

to the phenotype of Gad1KO rats.

During the first 180 s of the cued test in the C-C

experiment, Gad1 KO rats showed remarkably higher

freezing than WT rats. Since the freezing behaviors

during the baseline period on day 1 did not greatly dif-

fer between the two genotypes, we can speculate that

the experimental procedure affected the increased

freezing on day 3. One possible explanation is fear

generalization as seen in Gad2 KO mice [25], although

not necessarily in the same pattern. Gad2 KO mice dis-

play fear generalization to a tone that was not associ-

ated with an unconditioned stimulus during training,

while Gad1 KO rats showed higher freezing in the con-

text different from that of training. In any case, these

findings suggest that impaired production of GABA is

associated with enhanced fear.

Contextual fear memory is dependent on both the hip-

pocampus and the amygdala, while cued fear memory is

amygdala-dependent [43]. The amygdala contains an

abundance of GABAergic neurons and forms a complex

circuit [39]. This circuit may be the site responsible for the

altered response in the cued test observed in Gad1 KO

rats. However, a well-known lesion study reported that

destroying the amygdala caused profound contextual

memory deficits simultaneously [43]. Although we should

be cautious in drawing conclusions, the peculiar result

from the current study may suggest the existence of

GABAergic neurons that are largely dependent on

GAD67 and are specifically responsible for the associa-

tion between the tones and electric stimuli. However, cued

fear memory was not altered in amygdala-specific Gad1

knockdown mice [44], which is inconsistent with our cur-

rent results. This discrepancy may be attributed to the fact

that more than half of the GAD67 proteins remained in

the amygdala of the knockdown mice. Due to technical

problems, it is still impossible to determine the effects of

selective and complete GAD67 elimination in the amyg-

dala. Of course, we should note that there is a possibility

that the alteration in freezing in the cued test was due to

an alteration in fear expression rather than a deficit in the

cued memory itself. Further studies are needed to over-

come this limitation of the present experiment.

The contextual fear extinction was severely impaired

in Gad1 KO rats in the present study. Fear extinction

is also impaired in amygdala-specific Gad1 knockdown

mice, although this is assessed in cued memory rather

than in contextual memory [44]. Interestingly, parval-

bumin neuron-specific Gad1 knockdown mice have the

same phenotype [45]. Parvalbumin neurons are the lar-

gest population in cortical GABAergic neurons [46]

and are implicated in the pathogenesis of schizophre-

nia [9,35]. In addition, Gad2 KO mice also show a

delay in fear extinction of cued memory [25]. These

findings suggest that both GAD67 and GAD65 are

crucial for extinction learning.

Gad1 KO rats are also important in other aspects.

Very recently, patients with intellectual disability with

a null mutation of GAD1 were described for the first

time [47,48]. The phenotype of patients differed from

Gad1 KO mice; some patients survived up to 10 years

of age, and 30% of patients did not have a cleft

palate. These patients were epileptic, whereas no sei-

zures were exhibited in Gad1 KO rats as far as we

have observed. Although the patients also had joint

contractures and pes equinovarus, Gad1 KO rats did

not show these comorbidities and are capable of walk-

ing, running, and even swimming [33]. Taken together,

the severity of the human GAD1 null mutation can be

considered between that of Gad1 KO mice and Gad1

KO rats. It is also noteworthy that all known patients

with Gad1 null mutations exhibit mental retardation.

349FEBS Open Bio 11 (2021) 340–353 ª 2020 The Authors. FEBS Open Bio published by John Wiley & Sons Ltd on behalf of

Federation of European Biochemical Societies.

K. Fujihara et al. GAD67 deletion and fear memory



It has been postulated that a reduction in GAD67 in

the cerebral cortex and hippocampus in schizophrenia

may cause cognitive impairment; this is consistent with

patients with complete loss of GAD67 function show-

ing mental retardation as a more severe form of cogni-

tive impairment. Considering this, it is also possible

that the impaired cued memory found in Gad1 KO

rats reflects a more generalized memory impairment

rather than a fear memory-selective one. Further char-

acterization of the cognitive function of Gad1 KO rats

will be needed.

In summary, the current study provides the first

direct evidence that the loss of function of Gad1

altered conditioned fear behavior in adult rats. Fur-

thermore, it is possible that it could have selectively

impaired cued fear memory. Utilizing this novel model

animal, further research should be conducted to reveal

the differential role of GAD65 and GAD67 in the reg-

ulation of fear.
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Fig. S1. Western blot analysis of GAD67 and GAD65

(whole brain taken from 3-months-old rats). GAD67

protein was undetectable in Gad1 knockout (KO) rat,

while GAD65 remains expressed. β-Actin was also

evaluated as an internal control. +/+, wild-type; +/–,
heterozygous Gad1 KO; –/– homozygous Gad1 KO.

Fig. S2. Gad1 KO rats showed hypoactivity in open

field test and no alterations in anxiety-like behaviors in

elevated plus maze test. a–b Open field test (n = 8 for

each genotype). (a) Gad1 KO rats exhibited decreased

distance traveled compared with Gad1 WT rats (t

(13.735) = 3.0368, p < 0.01, Cohen’s d = 1.518424). (b)

The center time of Gad1 KO rats was not significantly

different from that of WT rats (t (11.239) = 1.4057,

p = 0.1869, Cohen’s d = 0.702844). c–h Elevated plus

maze test (n = 8 for each genotype). Neither the dis-

tance traveled (c), the number of entries into arms (d),

the time on open-arms (e), the time on closed-arms (f),

the time on center (g), nor the open-arms ratio (h) were

significantly different between two genotypes (distance

traveled, t (10.293) = 0.12119, p = 0.9059, Cohen’s

d = 1.518424; number of entries into arms, t (13.998) =
1.016, p = 0.3269, Cohen’s d = 0.5080204; time on

open-arms, t (13.674) = 0.044551, p = 0.9651, Cohen’s

d = 0.02227566; time on closed-arms, t (13.771) =
0.6048, p = 0.5551, Cohen’s d = 0.3024024; time on

center, t (13.962) = 1.0515, p = 0.3109, Cohen’s

d = 0.5257378; open-arms ratio, t (13.778) = 0.34131,

p = 0.738, Cohen’s d = 0.1706572). The results are pre-

sented as the average � SEM. * p < 0.05, **p < 0.01.,
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***p < 0.001. WT: wild-type; KO: knockout; OF: open

field; EP: elevated plus maze.

Table S1. General linear models describing the rela-

tionships between the freezing time on each day and

genotype in the CTX experiment. The distance trav-

eled in the open field test was included as a covariate.

β, standardized partial regression coefficient; SE, stan-

dard error. †p < 0.1, * p < 0.05.
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