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Breast cancer (BC) is the most common malignant tumor in women. There are different
risk characteristics and treatment strategies for different subtypes of BC. The tumor
microenvironment (TME) is of great significance for understanding the occurrence,
development, and metastasis of tumors. The TME plays an important role in all stages
of BC metastasis, immune monitoring, immune response avoidance, and drug resistance,
and also plays an important role in the diagnosis, prevention, and prognosis of BC. Smart
nanosystems have broad development prospect in the regulation of the BC drug delivery
based on the response of the TME. In particular, TME-responsive nanoparticles cleverly
utilize the abnormal features of BC tissues and cells to achieve targeted transport, stable
release, and improved efficacy. We here present a review of the mechanisms underlying
the response of the TME to BC to provide potential nanostrategies for future
BC treatment.

Keywords: nanomaterial, nanotechnology, nanobiosensors, drug delivery, tumor microenvironment,
smart nanoparticles
INTRODUCTION

Breast cancer (BC) is a common cancer that affects women’s health worldwide, and is also the most
common malignant tumor among women (1, 2). According to the Report of the American Cancer
Society, BC is second only to lung cancer in the number of cancer-related deaths among women. In
recent years, the incidence of BC has been increasing at an annual rate of approximately 0.3%, with
2.3 million new cases worldwide in 2020 and a significant increase in mortality from 1990 to 2015
(3, 4). According to Surveillance, Epidemiology and End Results (SEER) data, the 5-year survival
rate of patients with stage IIIA and stage IIIB BC was 52% and 48%, respectively, and the median
survival of patients with stage III BC was 4.9 years (2, 5–8).

The histological types of BC are (1) non-invasive carcinoma, including ductal carcinoma in situ
and lobular carcinoma in situ; and (2) invasive cancer, including no special type of invasive cancer,
invasive lobular carcinoma, tubular carcinoma, and mucinous carcinoma (9–12). Based on
molecular evidence, BC can be categorized into three groups: hormone receptor [estrogen
Abbreviations: BC, breast cancer; TME, tumor microenvironment; HER2, human epidermal growth factor receptor 2; ER,
estrogen receptors; PR, progesterone receptors; TNBC, triple negative breast cancer; CAFs, cancer-associated fibroblasts; ECM,
extracellular matrix; NPs, nanoparticles; ROS, reactive oxygen species; DOX, doxorubicin.
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receptor (ER) or progesterone receptor (PR)]-positive, human
epidermal receptor 2 (HER2) or ERBB2 receptor-positive, and
triple-negative BC (TNBC; ER−, PR−, HER2−). Among them,
the luminal subtype can be further divided into luminal A and
luminal B tumors, and TNBC can be further divided into six
subtypes: basal-like1/basal-like2, mesenchymal, mesenchymal
stem-like, immunomodulatory, luminal androgen receptor, and
an unspecified group (11, 13–17). The luminal A subtype has the
best clinical prognosis, accounting for 40% of all subtypes, and is
characterized by high levels of ER expression; therefore, patients
with luminal A BC are more likely to benefit from hormone
therapy alone. Another less common subtype, luminal B BC
(accounting for approximately 20% of all subtypes), is
characterized by low levels of ER expression but high
expression levels of proliferation-related genes and may require
chemotherapy. HER2-enriched tumors (accounting for 15–20%
of subtypes) are also characterized by overexpression of
proliferation-related genes. The basal-like subtype is
characterized by up-regulated expression of genes expressed in
basa l /myoep i the l i a l c e l l s . The spec ific molecu l a r
pathophysiological mechanism of TNBC tumors is still
unclear, accounting for about 15% of all subtypes, and 71% of
TNBC tumors are in the basal-like group (18–20).

The three main tumor subtypes of BC, characterized by ER or
PR expression and amplification of the ERBB2 gene, have
different risk characteristics and treatment strategies, with the
optimal treatment for each patient depending on the tumor
subtype, anatomic tumor stage, and patient preference (11, 21–
25). In addition, the role of genomic analyses such as detection of
BRCA1 or BRCA2 germline mutations in treatment decisions has
been shown to play an important role in clinical outcomes in BC
(26–29).

For patients without metastatic disease, treatment aims to
eradicate the tumor from the breast and regional lymph nodes
and to prevent recurrence. According to the clinical setting,
systemic therapy for non-metastatic BC is mainly based on the
molecular characteristics (30–33): patients with hormone
receptor-positive tumors receive endocrine therapy and a few
patients also receive chemotherapy. Patients with ERBB2-
positive tumors are typically treated with ERBB2-targeted
antibodies or small-molecule inhibitors (trastuzumab-based) in
combination with chemotherapy. Patients with TNBC tumors
receive only chemotherapy (6, 14, 18). In addition, local
treatment in patients with non-metastatic BC includes surgical
excision (including axillary lymph node sampling or excision),
and postoperative radiotherapy should be considered if
lumpectomy is performed. However, the local treatment of
patients with non-metastatic BC is increasingly being
performed with some systemic therapy prior to surgery, such
as neoadjuvant chemotherapy, followed by postoperative
treatment tailored to the preoperative response (18, 34). In
contrast, treatment for metastatic BC is also based on
molecular subtypes, with the goal of prolonging life and
reducing symptoms, which is more complex and personalized
(7, 17). Metastatic BC also has a poor prognosis, with a median
overall survival of approximately 1 year for metastatic TNBC,
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compared with approximately 5 years for the other two
subtypes (8).
THE TME OF BC

The proliferation of cancer cells and their spread to other parts of
the body depend on the microenvironment of the organ, which is
also known as the “seed and soil” hypothesis. In brief, cancer-
associated fibroblasts (CAFs) in the tumor microenvironment
(TME) promote metastasis and secrete large amounts of pro-
inflammatory cytokines and chemokines, growth factors, and
extracellular matrix (ECM) components. In addition to binding
to adjacent tumor cells, CAFs interact with other stromal
components in the microenvironment through complex
crosstalk. These cells are involved in various activities such as
angiogenesis and ECM remodeling, which contribute to tumor
growth and metastasis. Thus, the TME is, to some extent, the
protagonist of cancer progression, and is more genetically stable
than the cancer itself. Therefore, increasing studies aiming
toward anticancer drug development are currently focused on
strategies targeting the TME (35–37). For example, owing to the
genetic and phenotypic heterogeneity of BC cells, the cells or
pathways vary among patients or at different periods in the
disease course in the same patient, which poses a challenge in
conducting targeted research for treatment (38). TME-targeted
therapies that use tumor cells, key TME components, or secreted
bioactive molecules alone or in combination as therapeutic
targets are gaining increasing attention.

Here, we focus on research progress in the development of
innovative nanomaterials delivery systems as the key to
providing intelligent delivery systems based on active targeting
and internalization in the TME and cancer cells (39, 40). In
particular, the size and versatility of nano-loaded particles allow
for chemical or genetic modification of their surfaces with
various targeting groups or active ligands that trigger the
specific orientation and recognition of biological targets,
enabling them to deliver a steady amount of drugs at the
tumor site and control their ability to deliver the drugs
effectively (41–43). This review therefore provides an overview
of the mechanisms of the TME response to BC, along with
examples of the diversity of nanoparticle (NP)-based drug
delivery systems developed to date or with potential to target
the TME, which can offer an effective dual targeting strategy for
BC cells and the TME as the potential key to realizing the
successful treatment of BC (44, 45).

The TME is the internal environment in which tumor cells
generate and live, which includes not only the tumor cells
themselves but also fibroblasts, immune and inflammatory
cells, glial cells, and other cells closely related to and
interacting with tumor cells. The TME also includes interstitial
cells, microvessels, and biomolecules such as secretory factors,
proteins, and RNA in the surrounding area (46–49). The TME
has long been a key focus of research and the core direction
toward gaining a comprehensive understanding of the
occurrence and development of tumors. In particular, the TME
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plays an important role in the transfer process, immune escape,
and drug resistance in tumor metastasis, requiring immune
monitoring of the TME at various stages (50) for the diagnosis,
prevention, and prognosis of tumors (51–54).

Moreover, the TME plays a key role in several malignant
phenotypes associated with tumor progression, including the
acquisition of aggressive phenotypes, cell migration ability,
chemotherapy resistance, protection from anti-tumor immune
responses, and neovasculogenesis (46, 47, 55). The TME can also
recombine with the ECM to enhance the permeability of
chemotherapeutic drugs, as well as with NPs that enable the
intelligent coupling of chemotherapy and immunotherapy by
increasing immunogenicity and stimulating anti-tumor
immunity (35).
SMART NP-BASED SYSTEMS FOR BC
TREATMENT BASED ON THE TME

Nanotechnology has developed rapidly in recent years, providing
a good means to overcome the bottleneck problem of non-
specific and non-selective damage to body tissues caused by
traditional therapies (e.g., chemotherapy, radiotherapy and
immunotherapy), and exhibiting unique advantages in
improving the effects of drugs and radiation therapy while
reducing adverse reactions (44, 56–58). On the one hand,
multifunctional nanocarriers can selectively transport
therapeutic drugs by utilizing the difference between the tumor
tissue and normal tissue to enhance drug permeability and
retention. On the other hand, a series of unique physical and
chemical properties produced by the TME, such as weak acidity,
a reducing environment, abnormal temperature gradient,
overexpressed proteins and enzymes, and hypoxia, can be used
to regulate the release of loaded drugs by nanocarriers (44, 59).

Reactive Oxygen Species (ROS)-
Responsive NPs
Dr. Otto Heinrich Warburg’s work on sea urchin embryology led
to pioneering research on the physiological effects of ROS. His
discoveries in the field of oxidative respiration earned him a
Nobel Prize in 1931, and in 1926, Warburg also pioneered a
model of tumor maintenance of oxidation and energy, hoping to
exert a profound influence on cell physiology and metabolism by
deeply exploring the basic properties of ROS (33).

ROS represent the products of single electron reduction of
oxygen in the body, as a form of electron leakage before passing
to the terminal oxidase respiratory chain, consuming
approximately 2% of the oxygen generated, including the
single-electron reduction product of oxygen superoxide anion
(O2·–), two-electron reduction product hydrogen peroxide
(H2O2), three-electron product hydroxyl free radical (·OH),
and nitric oxide, among other highly reactive agents (60).
Intracellular ROS are by-products of mitochondrial processes,
metabolism, and enzyme activity. Under normal physiological
conditions, a large number of electrons are released and reduced
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by oxygen molecules in the high-oxygen environment and the
highly reduced respiratory chain of mitochondria during the
transition from state III to state IV (31).

Under normal physiological conditions, ROS can be
effectively neutralized by the enzymes superoxide dismutase,
catalase, glutathione, and thioredoxin to control the
equilibrium oxidation-reduction (redox) state. However, when
redox homeostasis is destroyed or relieved, changes in ROS levels
will lead to physiological and pathological changes (61, 62). In
addition, ROS play a positive role in regulating intracellular
signal transduction pathways, with numerous biological conduits
being constrained by a variety of ROS species, which are the key
to maintaining cellular homeostasis. Any skew in this delicate
balance is accompanied by a wave of events that can have either
negative or positive impacts for the cell.

From the perspective of cancer, the conventional view that
ROS cause widespread damage and chaos within cells has long
been debated in the scientific community (63–65). Recently,
great progress has been made in the understanding of ROS
biology, and there is increasing evidence that the effects of ROS
are gradient-dependent, with a threshold of habituation, which
affects their signal transduction and toxicity induction function,
thus resulting in either “good” or “bad” ROS (33). For example,
ROS play a key role in the activation of tumor-promoting
signaling pathways (64, 66, 67). Moreover, abnormal
production of ROS and ineffective neutralization of excessive
ROS levels can lead to tumor growth and progression through
different signaling pathways, including phosphatidylinositol 3-
kinase/protein kinase inhibitor/mammalian target of rapamycin
(PI3/Akt/mTOR), vascular endothelial growth factor (VEGF)/
VEGF receptor, phosphatase and tensin congeners (PTEN), and
matrix metalloproteinase (MMP) pathways (68). Therefore, an
intelligent collaborative treatment system can be developed to
ensure the release of chemotherapeutic drugs on demand and
reduce ROS production.

pH-Responsive NPs
The acidic microenvironment caused by massive anaerobic
glycolysis is one of the important characteristics of malignant
tumors, and is also an important factor inducing the occurrence,
metastasis, and drug resistance of BC. In recent years, with
increasing understanding of the acidic TME, it has been
considered a new target for tumor diagnosis and treatment,
which is of great significance for the design of pH-responsive
nanomedicine and nano-diagnosis (69).

Gong et al. (70) developed a pH-responsive co-delivery
platform for metformin and small interfering RNA (siRNA)
targeting the immune checkpoint inhibitor FGL1 (siFGL1) based
on hybrid biomimetic membrane-camouflaged poly (lactic-co-
glycolic acid) NPs. This pH-triggered CO2 gas generation
nanoplatform was developed using the metformin guanidine
group, which can react reversibly with CO2 to produce a
metformin-CO2 complex. Moreover, the capture/release of
CO2 depends on the pH value, thus improving the in vivo
lysotic escape of the siRNA to achieve the cytoplasmic transfer
of siRNA. Metformin promotes programmed death ligand 1
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(PD-L1) by activating adenosine monophosphate-induced
protein kinase degradation, and then blocks the inhibitory
signal of PD-L1, while siFGL1 can silence the FGL1 gene,
promote the T cell-mediated immune response, and enhance
anti-tumor immunity. The combination of these two drugs
exhibited a high synergistic therapeutic effect on BC in vivo
and in vitro (70).

In addition, Shen et al. (71) developed a robust nanoplatform
fabricated from a TME pH-responsive polymer (MEO-PEG-B-
PPMEMa) and a cationic lipid compound (G0-C14) for the in
vivo delivery of cytotoxic saponins in BC treatment. The
nanoplatform responds to the TME-specific pH with the rapid
release of the saporin/G0-C14 complex, which significantly
enhanced the cytoplasmic uptake of saporin and subsequent
intracellular escape by tumor cells, thereby effectively inhibiting
tumor growth (71).

Enzyme-Responsive NPs
Enzymes play an important role in metabolism. Thus, abnormal
metabolism in the TME will result in the overexpression of
certain enzymes. Typical examples are MMPs, which are
calcium- and zinc-dependent endopeptidases secreted by
cancer cells, tumor blood vessels, and CAFs, and play a key
role in cancer cell ECM remodeling (72). Other overexpressed
enzymes in the TME include hyaluronidase and lysyl oxidase,
along with other enzymes that are overexpressed in specific
tumors (73).

Kashyap et al. (74) synthesized a hydrophobic acrylate
monomer from the natural resource 3-pentachylphenol by
enzyme and thermal reactions, which was co-polymerized with
the hydrophilic monomer polyethylene glycol acrylate. This
copolymer core-shell NP system was then used for the
extracellular and intracellular delivery of doxorubicin (DOX)-
responsive polymer nanoscaffolds to improve cancer treatment.
In the presence of esterase (pH = 7.4, 37°C), the amphiphilic
copolymer broke down in a slow and controlled manner within
12 h, releasing >95% of the drugs and achieving controlled
release of the drugs in cells (74). For breast cancer, MNPs were
successfully conjugated with MTX by Nosrati et al. and this drug
delivery system is dependent on the release of the MTX within
the lysosomal compartment for BC cells treatment (75).

Hypoxia-Activated NPs
The partial pressure of oxygen (PO2) in various tumors is
generally below 60 mmHg and gradually decreases with tumor
progression. This reduction mainly occurs because the structure
and function of tumor microvessels are abnormal, and the
diffusion distance between blood vessels and the tumor cells
increases, thereby preventing the effective transport of O2 to
specific sites. Moreover, the reduced blood oxygenation capacity
due to tumor growth or therapeutic anemia also contributes to
the local PO2 reduction (72). The resulting hypoxic environment
not only promotes tumor growth, progression, metastasis and
damage normal tissues but also reduces the efficacy of
radiotherapy and chemotherapy (76).
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Mpekris et al. (77) found that the blood vessels of lung
metastases of BC were compressed, leading to hypoxia. Based
on this principle, mechanical tranilast therapy was used to
decompress the blood vessels of lung metastasis in mice so as
to restore perfusion and relieve hypoxia. This strategy enabled
the immune checkpoint blocker atezolizumab and the nanodrug
doxil to more effectively exert cytotoxic effects on metastases and
stimulate an antitumor immune response (77).

Thermo-Responsive NPs
Compared with normal tissue, the tumor tissue has a higher
temperature, which makes it possible to control and release drugs
by external heating at the tumor site, and this property has been
exploited in the development of smart drug delivery systems
(SDDSs) targeting tumors (74, 78–82). Ding et al. (79) designed a
multifunctional SDDS with a double-layer structure: a thermo-
sensitive copolymer as the building block of the core-shell
structure, two chemotherapeutic drugs [paclitaxel (PTX) and
DOX; NP-PD) were encapsulated to form copolymers, and the
siRNA (NP-PD-S) affecting survival was absorbed on the surface
to form nanostructures, which were finally wrapped by self-
polymerizing dopamine (PDA) membranes (NP-PD-S-PDA).
This PDA film not only exhibited a photothermal therapeutic
effect but also had a protective effect against the uncontrolled
release of the drugs. In vitro experiments with the MDA-MB-231
BC cell line showed that the survival rate of NP-PD-S-PDA was
significantly decreased after 5 min of laser irradiation, indicating
that this is an effective combination therapy. In vivo experiments
with female BALB/C nude mice also showed that in tumors
irradiated by NP-PD-S-PDA plus near infrared light, PDA
generated sufficient heat, and thermal ablation led to collapse
of the NPs, thereby triggering the release of PTX and DOX
within the tumor to ultimately achieve antitumor effects (79).

In addition, Hu et al. (80) developed a system for delivery of
the hydrophobic chemotherapy drug PTX and the biological
macromolecule interleukin (IL)-12 through the low-temperature
expansion effect of the acid-sensitive material MPEG-Dlinkm-
PDLla and pluronic F127 co-delivered NPs. PTX and IL-12
jointly activated T lymphocytes and natural killer cells to
release interferon-gamma, selectively inhibited regulatory T
cells, induced the M1-type differentiation of tumor-associated
macrophages, improved the tumor immunosuppressive
microenvironment, significantly inhibited the growth and
metastasis of 4T1 BC cells, and prolonged the overall survival
of tumor-bearing mice (80).

CAF-Regulating NPs
The tumor microenvironment is the ecosystem that surrounds a
tumor inside the body. It includes immune cells, the extracellular
matrix, blood vessels and other cells, like fibroblasts. CAFs are
the most abundant cells in the TME matrix, secreting a large
number of growth factors (e.g., transforming growth factor-b,
VEGF, platelet-derived growth factor), cytokines, interleukins,
chemokines, and ECM proteins (e.g., MMPs), which all have an
impact on tumor development. CAFs actively reconstruct the
May 2022 | Volume 12 | Article 907684
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cellular and stromal components of the TME. M2-polarized
macrophages promote metastasis and contribute to the
development of an immunosuppressive environment.
Endothelial cells and pericytes contribute to tumor
angiogenesis and handle the oxygen supply. The interstitial
ECM supports the tumor structure and regulates drug
penetration. The external matrix basement membrane acts as a
barrier around the tumor. Both the external matrix and blood
vessels contribute to increased interstitial fluid pressure and
tumor hypoxia, which is a major barrier to tumor treatment.
MMP also supports tumor growth, creates physical barriers to
drugs and immune invasion, and promotes cancer invasion (83,
84). In short, normal fibroblasts inhibit tumor formation,
whereas CAFs promote BC cell proliferation, angiogenesis, and
the inflammatory response, and remodeling the ECM promotes
the malignant phenotype of BC cells, resulting in a poor
prognosis (85, 86).

Some biological markers of CAFs can be used to identify and
target CAFs in the BC TME, which creates opportunities for
nanodelivery systems to specifically target the BC metastatic
TME. These proteins include fibroblast activating protein (FAP),
alpha-smooth muscle actin, fibroblast-specific protein, vimentin,
and proline 4-hydroxylase (87, 88). As the most common tumor-
targeting CAF antigen, FAP is overexpressed on the surface of
CAFs, and nanoparticles can specifically target FAP to promote
the infiltration and accumulation of nano-loaded drugs in tumor
tissues, thus playing an anti-tumor role. Zhen et al. (89)
developed a photoimmunotherapy nanostrategy using ferritin
as a photosensitizer carrier and a single-chain variable fragment
of anti-FAP antibody conjugated with ferritin.
Frontiers in Oncology | www.frontiersin.org 5
CONCLUSIONS AND PERSPECTIVES

There has been great progress in the development of intelligent
NPs for the effective loading of anti-BC drugs, specific
enrichment of tumor cells and tissues, and the controlled
release and efficient delivery of drugs. In particular, regulation
based on the response of the TME including multifunctional
nanoparticles has a broad development prospect for improving
BC drug delivery. TME-responsive NPs cleverly utilize the
abnormal features of BC tissues to achieve targeted transport,
stable release, and improved drug efficacy.

However, there is still room for improvement in TME-
responsive nanotechnology. First, there are limitations of the
nanomaterials themselves, including limited understanding of the
mechanism underlying the interaction between materials and other
systems in the body, which makes clinical translation difficult. In
addition, the interaction and influence of different components in
the nanosystem represent important questions that have not yet
been elucidated. Therefore, the design of improved NPs including
multifunctional NPs is a promising direction in the future.
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