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Abstract: Background: Most drug-resistant Escherichia coli isolates in dogs come from diseased
dogs. Prior to this study, the prevalence and risk factors of fecal carriage drug-resistant E. coli and
epidemic clone sequence type (ST) 131 (including subtypes) isolates in dogs were unknown. Methods:
Rectal swabs were used for E. coli isolation from 299 non-infectious dogs in a veterinary teaching
hospital in Taiwan. Antibiotic resistance and multiplex PCR analyses of E. coli for major STs were
performed. Result: There were 43.1% cefazolin-resistant, 22.1% fluoroquinolone-resistant, and 9.4%
extended-spectrum beta-lactamase-producing E. coli in our cohort. In the phylogenetic study, B2 was
the predominant group (30.1%). The cefazolin-resistant group and ciprofloxacin-resistant group
had greater antibiotic exposure in the last 14 days (p < 0.05). The age, sex, and dietary habits
of the antibiotic-resistant and -susceptible groups were similar. In the seven isolates of ST131 in
fecal colonization, the most predominant subtypes were FimH41 and FimH22. Conclusion: Recent
antibiotic exposure was related to the fecal carriage of antibiotic-resistant E. coli isolates. Three major
subtypes (FimH41, H22, and H30) of ST131 can thus be found in fecal carriage in dogs in Taiwan.
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1. Introduction

The close bond between humans and their dogs provides opportunities for the exchange of
multidrug-resistant organisms. Moreover, the clinical infection of extended spectrum beta-lactamase
(ESBL)-producing Escherichia coli in companion animals has been reported [1,2]. ESBL-producing E. coli
have been reported since the late 1990s in companion animals in south-European countries and have
now become widespread, with many nosocomial outbreaks in dogs in recent years [1,3]. Surveillance
for antimicrobial resistance among bacteria isolated from dogs is useful for guiding antibiotic use
when treating canine infections [2,4–6]. The urinary tract disease guidelines for dogs suggest that
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veterinarians should be aware of the pathogen and antimicrobial resistance trends among urinary
pathogens isolated from patients in their clinic [7].

The prevalence of ESBL-producing E. coli was shown to be about 3% in clinical samples from
companion animals in the US [8,9]. ESBL urinary tract infections (UTIs) in dogs have been reported
in China and Switzerland in about 5% of samples [10,11]. In some laboratories (e.g., UK and China),
there is an increasing percentage of extended-spectrum cephalosporin-resistant E. coli found in clinical
isolates from companion animals [12,13].

Thus, beyond human isolates, the global emergence and spread of extraintestinal pathogenic E. coli
O25-ST131 strains in ESBL isolates has also been found in companion animals [14,15]. According to the
literature, ST131 can be found in clinical isolates from dogs in many countries, including the UK [12],
the US [8,16], Canada [17], Japan [18,19], China [13], Germany [20,21], Australia [5,22], France [23],
and Portugal [24–26]. Human–dog co-carriage was also demonstrated in several households [16,22,27].
Two large studies screening for ST131 in clinical samples in dogs determined about a 10% prevalence
of ESBL-producing isolates [20] and 7% for fluoroquinolone-resistant E. coli [28]. In a study from
Japan [19], ST131 constituted 36% of all clinical isolates of ESBL-producing E. coli infection among
dogs and cats, and all subclones were FimH30. In comparison to FimH 30, fimH41 (clade A) and
fimH22 (clade B) are usually antibiotic-susceptible alleles and are thought to be precursor subclones of
FimH30. [29,30].

Few studies systematically collect rectal swabs or fecal carriage information for drug-resistant E. coli
or ST131 in asymptomatic dogs. Moreover, the distribution of fimH type and other antibiotic-resistant
genes in ST131 dog feces in Taiwan remains unclear. In this study, we investigate the prevalence of
fluoroquinolone-resistant and beta-lactam-resistant E. coli in healthy dogs in Taiwan and determine if
any risk factors, such as feeding habits or prior antibiotic use, are related to antibiotic-resistant E. coli.
We also sought to study the subtypes and other antibiotic-resistant genes of the epidemic strain ST131
in asymptomatic dogs in Taiwan.

2. Materials and Methods

Rectal swabs from 299 dogs more than 6 months old were performed when the dogs visited the
hospital for vaccinations and health exams. We collected information about sex, age, antibiotic use,
and dietary habits from the owner. Dogs less than 6 months old or adopted less than 1 month prior to
the study were excluded.

We used a BDTM transport tube for anal/rectal swabbing. E. coli was isolated through a conventional
method, and antibiotic resistance was determined by the disk diffusion method, including resistance
of cefazolin, ciprofloxacin, ceftriaxone, gentamicin, and trimethoprim/sulfamethoxazole (TMP/SMZ).
ESBL confirmation followed the recommendations of the Clinical and Laboratory Standards Institute
(CLSI) by using a combined-disk test for ESBL production in Enterobacteriaceae. This test consists
of measuring the growth-inhibitory zones around both the cefotaxime (CTX) and ceftazidime (CAZ)
disks with or without clavulanate (CA) [31].

DNA was extracted with a MasterPureTM complete DNA and RNA purification kit (Lucigen Corp.,
Middleton, WI, USA). Seven phylogroups were recognized (A, B1, B2, C, D, E, F) by multiplex PCR [32].
All PCR reactions were performed under the following conditions: 5 min at 95 ◦C for denaturation;
25 cycles of 30 s at 95 ◦C and 30 s at 59 ◦C (Quadruplex), 57 ◦C (Group C), or 55 ◦C (Group E); and 5 min
at 72 ◦C for extension. The PCR product was measured with 2% agarose (Cyrusbioscience, Inc., New
Taipei, Taiwan). The nine main Escherichia coli phylogroup B2 lineages involved in extra-intestinal
infections were identified by the allele-specific PCR method [33]. All PCR reactions were performed
under the following conditions: 4 min at 94 ◦C for denaturation and 25 cycles of 5 s at 94 ◦C, 20 s at 63 ◦C,
and 5 min at 72 ◦C for extension. The PCR product was measured with 2% agarose (Cyrusbioscience,
Inc., New Taipei, Taiwan).

In ESBL E. coli isolates, we performed ESBL gene screening including blaCTX-M, blaSHV, blaTEM,
and blaOXA-1 by PCR using previously described methods [34]. In addition to E. coli colonization,
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we also screened for ST131 in some E. coli isolates from diseased dogs. If ST131 was found by the
previous multiplex PCR, whole genome sequencing was performed. A genomic library was constructed
using a Nextera XT DNA library preparation kit (Illumina, San Diego, CA, USA). We performed
sequencing using an Illumina MiSeq platform with paired-end chemistry. All contigs were submitted
to the CGE Finder Series (Centre for Genomic Epidemiology, Technical University of Denmark (DTU),
https://cge.cbs.dtu.dk/services/).

The presence of resistance genes in the whole genome sequences and subtypes of the ST131 E. coli
isolates was investigated by ResFinder and CHtyper [35].

3. Results

Among the 299 dogs, 26 dogs provided two isolates at collection. Fourteen dogs had no
E. coli isolated when we performed the anal swab. We found 311 isolates for further antibiotic
susceptibility tests and PCR studies, including a phylogenetic group and genotype study. In the
antibiotic susceptibility test, there were 43.1% cefazolin-resistant and 22.1% fluoroquinolone-resistant
E. coli colonies. Moreover, ESBL-producing E. coli fecal colonies were found in 9.4% of dogs. In the
28 isolates of ESBL-producing E. coli, ESBL gene can be found in blaSHV (n = 7), blaTEM (n = 2), blaOXA
(n = 3), blaCTX-M group one (n = 19), group two (n = 8) and group nine (n = 9).

In the phylogenetic study, 279 isolates were able to be grouped by PCR. The percentage of
phylogenetic groups is shown in Figure 1. B2 was the predominant group (n = 84, 30.1%), followed by
B1 (n = 73, 26.2%) and A (n = 44, 15.8%).
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Figure 1. Phylogenetic group distribution (including group A, B1, B2, C, D, E, and F) of E. coli in the
anal swabs of dogs.

Among the 84 isolates of the B2 group, further clonal complexes could be found by multiplex
PCR in 71 isolates. The distributions of common sequence type (ST) complexes are shown in Figure 2.
The three most predominant ST complexes were STc372, followed by STc127 and STc131.

In the analysis of the risk factors for ESBL-producing E. coli, the food habits of the animals were
not different. However, the ESBL-producing group had more antibiotic exposure in the last 14 days
prior to the study (39.3% vs. 13.7%, p < 0.05) (Table 1). The cefazolin-resistant E. coli group also had
higher antibiotic exposure than cefazolin-susceptible E. coli (26.4% vs. 8.0%, p < 0.05) (Table 1). In the
comparison between fluoroquinolone-resistant E. coli and fluoroquinolone-susceptible E. coli, the trend
of antibiotic exposure in the last 14 days was similar (40.9% vs. 9.0%, p < 0.05). The dietary habits
were similar between the fluroquinolone-resistant and fluoroquinolone-susceptible groups (Table 1).
Different antibiotic exposure histories were not found in the phylogenetic B2 and non-B2 groups
(Table 2).

https://cge.cbs.dtu.dk/services/
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Table 1. Risk factors of antimicrobial-resistant E. coli in the fecal carriage of dogs.

ESBL-Producing E. coli Non-ESBL-Producing E. coli p

N 28 271
Age, years 8.5(4.7) 9.1(4.7) 0.562

Sex 14.0(50.0) 140(51.7) 0.867
Commercial pet food 9(32.1) 66(24.4) 0.365

Human food use 17(60.7) 178(65.7) 0.599
Recent use of antimicrobial agents 11(39.3) 37(13.7) <0.001

Cefazolin-resistant Cefazolin-susceptible

N 129 170
Age 9.1(4.8) 9.0(4.7) 0.819
Sex 65(50.4) 89(52.4) 0.736

Commercial pet food 33(25.6) 42(24.7) 0.863
Human food use 85(65.9) 110(64.7) 0.831

Recent use of antimicrobial agents 34(26.4) 14(8.2) <0.001

Ciprofloxacin-resistant Ciprofloxacin-susceptible

N 66 233
Age 9.0(4.5) 9.0(4.8) 0.989
Sex 36(54.5) 118(50.6) 0.576

Commercial pet food 18(27.3) 57(24.5) 0.642
Human food use 43(65.2) 152(65.2) 0.990

Recent use of antimicrobial agents 27(40.9) 21(9.0) <0.001

Note: Some dogs had two E. coli isolates in their fecal specimen, and some did not provide any E. coli; ESBL
extended-spectrum β-lactamases.

Table 2. Risk factors of E. coli fecal carriage of phylogenetic B2.

Phylogenetic B2 Carrier Non-Phylogenetic B2 Carrier p

N 79 220
Age 10.1(4.9) 8. 6(4.6) 0.023
Sex 41(51.9) 113(51.4) 0.935

commercial pet food 20(25.3) 55(25.0) 0.956
human food use 55(69.6) 140(63.6) 0.338

recent use of antimicrobial agents 13(16.5) 35(15.9) 0.910
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A further whole genome analysis was performed on 10 ST131 isolates, including seven isolates of
fecal colonization and three isolates of clinical infection. The FimH types and antibiotic-resistant genes
found by Res finder and the antibiotic resistance phenotypes found via the disk diffusion method are
shown in Table 3.

Table 3. The antibiotic resistance profiles (genes and phenotypes) of 7 fecal carriages of ST131 isolates
and 3 clinical isolates from diseased dogs.

FimH
Type

Aminoglycoside R Gene and
Phenotype

TMP/SMZ R Gene and
Phenotype

Cephalosporin R Gene and
Phenotype

(Cefazolin, Ceftriaxone, ESBL)

Quinolone R
Gene and
Phenotype

Fecal Carriage

22 aac(3)-IId-like, aadA12-like R sul2-like, sul3, dfrA12 R blaCTX-M-65, blaTEM-1B-like R, R, + QnrS1-like R
22 nd S nd S nd S, S, - nd S

41 * aac(3)-IId-like R sul2, dfrA14-like R blaCMY-2, blaCTX-M-55 R, R, + QnrS1 S
22 # aac(3)-IId-like, strA, strB-like R sul2-like S nd S, S, - nd R
41 # aac(3)-IId-like, strA, strB-like R sul2-like S blaTEM-1B S, S, - N R
30 aac(3)-IIa-like, aadA5 R sul1, dfrA17 R blaCTX-M-15 R, R, + aac(6’)Ib-cr R
41 aadA5, strA, strB-like S sul1, sul2-like, dfrA17 R blaTEM-1B-like S, S, - nd R

Clinical isolates from diseased dogs

30 aac(6’)-Ib-cr S nd S blaCTX-M-15 R, R, + aac(6’)-Ib-cr S
30 aac(6’)-Ib-cr S nd S blaCTX-M-15 R, R, + aac(6’)-Ib-cr R
30 nd S nd S nd R, R, - nd R

R: resistant S: susceptible; +: ESBL phenotype positive; -: ESBL phenotype negative; nd: not detected; #: recent
antimicrobial agent use history, including cephalexin* and amoxicillin/clavunate#.

Among the seven isolates of ST131 in the fecal colonies, the most predominant subtypes were
FimH41 (42.8%, n = 3) and FimH22 (42.8%, n = 3). Moreover, FimH30 was found in only one (14.3%)
of the fecal isolates but in 100% of the three clinical isolates from dogs with infections. ESBL enzymes
in the fecal colonies included CTX-M15 (n = 1), CTX-M55 (n = 1), and CTX-M65 (n = 1). All of the
infection isolates were caused by CTX-M15-producing E. coli isolates.

4. Discussion

This is the first study on E. coli fecal colonization with a risk factor analysis in Taiwan. We found
that recent antibiotic exposure was associated with cefazolin-resistant, fluoroquinolone-resistant,
and ESBL-producing E. coli. Nearly half of the E. coli isolates were resistant to cefazolin, about 20%
were resistant to fluoroquinolone, and about 10% were ESBL-producing. Among healthy dogs in
France and Spain, the rate of third generation cephalosporin resistance and fluroquinolone resistance
was about 18% according to the anal swab [36]. In Pakistan, the percentage of ESBL-producing E. coli
isolates in dog feces was shown to be as high as 80% [37], while data from the US showed a prevalence
of less than 10% in dogs [38]. Our study illustrates the challenges of emerging drug-resistant pathogens
in companion animals.

The predominant B2 phylogenetic clonal complexes in our cohort were STc372 and STc127.
The predominant role of ST372 in this study was similar to that of the clinical isolates from dogs in
the US [39] and France [40]. In Israel, ST127 was found in ESBL E. coli from a petting zoo [41] and
in infected cats from Australia [42]. In another human study in the US [43], ST127 was significantly
more frequently recovered from UTI samples and was the second most common ST type in young
woman with UTIs in Canada [44]. ST372 was also the second most prevalent clone and the highest
patient-to-patient transmission clone in a study in rehabilitation wards in Israel [45].

Similar to previous studies, the risk factors of underlying disease conditions and the use of prior
antimicrobial agents were the primary risks associated with a UTI presenting MDR (multi-drug-resistant)
E. coli in dogs [5]. In our ESBL E.coli isolates, the most prevalent one was found to be CTX-M group
one. In a study on the ESBL genotype in diseased cats and dogs in China, CTX-M-65 and CTX-M-15
were the most predominant CTX-M enzyme types among E. coli isolates [13]. Furthermore, in the UK
and Japan, CTX-M-15, CTX-M-14, and CTX-M-55 were also found to be prevalent in clinical isolates



Microorganisms 2020, 8, 1439 6 of 9

from companion animals [12,18]. ST131 CTX-M-15-producing E. coli strains are common in the clinical
isolates of companion animals [20]. In addition to clinical isolates from infected animals, CTX-M15
was also found in the asymptomatic fecal carriers of ST131 in our cohort. CTX-M-15, which spreads
pandemically among humans, was only detected in 15% of companion animals [46]. Other CTX-M
types (CTX-M-55 and -65) were also found in our fecal colonized isolates. In a previous study of
households in Sweden, humans carried identical strain of ESBL E. coli to the isolates found in household
dogs, indicating a transfer between humans and dogs [47]

E. coli ST131 adapt to be so successful and is now a major global health issue in both human and
companion animals [48]. This may be explained by high antimicrobial resistance without any fitness
cost [48]. In our cohort, ST131 was found in about 13% of B2 isolates and about 2.3% of all healthy
dogs. In another human fecal carrier study in Taiwan, ST131 was found in 3.0% in healthy adults [49].
The percentage of ST131 carriage in the fecal carrier seems similar between humans and dogs. In a
study from dogs and cats admitted to a veterinary teaching hospital in Taiwan, ST131 was the second
most common ST (15.4%) in isolates with ESBL phenotype [50]. In a previous study of household pets,
the index dog’s urinary tract inflection strain was found to be a prevalent human-associated variant of
E. coli ST131. This suggest a host-to-host transmission of ST131 among household pets [16]. Similar to
the findings for humans, the fecal E. coli colonization of ST131 in our dog cohort demonstrated that
subtype FimH22 and FimH41 strains have the ability to colonize the gut. Moreover, the H30 strains
displayed traits that allow extra-intestinal infection [51]. A recent study showed that H22 accounts for
nearly all ST131 meat isolates and for about 10% of ST131 clinical isolates [52]. In a healthy human
fecal colonization study, O16-ST131 with FimH41 isolates was found to be dominant [53]. In our three
isolates of Fim41, two (66%) were serotype O16 (data not shown).

5. Conclusions

In our E. coli fecal carriage study, the common STs circulating among humans were also found in
dog isolates. The risk factor analysis similarly showed that antibiotic use leads to multidrug-resistant
E. coli colonization. Ultimately, three important subclones of the epidemic clones ST131 (Fim30, Fim22,
and Fim41) were found in canine fecal carriage in Taiwan.
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