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chemotherapy using peritumoral and intratumoral
ultrasound radiomics in breast cancer subtypes

Jiejie Yao,1,3 Xiaohong Jia,1,3 Wei Zhou,1,3 Ying Zhu,1 Xiaosong Chen,2 Weiwei Zhan,1 and Jianqiao Zhou1,4,*
SUMMARY

To explore machine learning (ML)-based breast tumor peritumoral (P) and intratumoral ultrasound radio-
mics signatures (IURS) for predicting axillary response to neoadjuvant chemotherapy (NAC) in patients
with breast cancer (BC) with node-positive. A total of 435 patients were divided into hormone receptor
(HR)+/human epidermal growth factor receptor (HER)2-, HER2+, and triple-negative (TN) subtypes. ML
classifiers including random forest (RF), support vector machine (SVM), and linear discriminant analysis
(LDA) were applied to construct PURS, IURS, and the combined P-IURS radiomics models. SVM of the
TN subtype obtained the most favorable performance with an AUC of 0.917 (95%CI: 0.859, 0.960) in
PURS models, RF of the HER2+ subtype yielded the highest efficacy in IURS models [AUC = 0.935 (95%
CI: 0.843, 0.976)]. The RF-based combined P-IURS model of the HER2+ subtype improved the efficacy
to a maximum AUC of 0.952 (95%CI: 0.868, 0.994). ML-based US radiomics can be a promising biomarker
to predict axillary response.
INTRODUCTION

For patients with breast cancer (BC) with node-positive, neoadjuvant chemotherapy (NAC) is the standard therapeutic option to reduce tumor

burden, eliminate lymph node metastasis, and improve the probability of breast and axillary conservation surgery.1 Axillary nodal patholog-

ical complete response (pCR) is associated with excellent local regional and survival outcomes.1,2 Previous studies had indicated that axillary

pCR was a more important indicator as compared with primary tumor response for predicting prognosis.1–3 Ideally, for patients who are ex-

pected to achieve nodal pCR, axillary lymph node dissection (ALND) can be spared, andminimally invasive approaches are recommended.4,5

However, in clinical practice, ALNDwas still regarded as the standard procedure for patients with node-positive BC after NACdue to the high

false-negative results of sentinel lymph node biopsy (SLNB) reported in previous studies.6,7 ALND is notable for its morbidity and complica-

tions such as pain, lymphedema, shoulder dysfunction, and hypesthesia.8 Accurate and non-invasive methods to predict axillary pCR could

assist clinicians in stratifying patients from the avoidance of over-treatment axillary surgery.

Previous studies have used clinical and pathological factors,2 breast MRI,9,10 or US10 to predict axillary response after NAC. Recent re-

searchers applied deep learning US radiomics for the prediction of treatment response.11 However, most of the previous studies mainly

focused on the tumor heterogeneity of intratumoral structure, the considerations about the peritumoral region which contained peripheral

tumor lymphatic, micro-vascular infiltration and marginal inflammatory factors were limited. Moreover, to our knowledge, no prior study had

applied peritumoral US radiomics signatures (PURS) of breast tumors for the prediction of axillary pCR. So, can PURS be utilized to predict

axillary response after NAC? In addition, as a high heterogeneity disease, BC is well known for its diverse response to NAC according to

different molecular subtypes. For example, the introduction of HER-targeted drugs (i.e., trastuzumab and pertuzumab) improved the rate

of tumor pCR of patients with HER2+ than patients with HR+/HER2-and TNBC.12,13 However, what are the rates of axillary pCR for patients

with BC with node-positive in different biological subtypes?

Machine learning (ML) algorithms such as random forest (RF), support vector machine (SVM), and linear discriminant analysis (LDA) have

been introduced for the analysis of medical images, and can effectively generate quantitative biomarkers.14,15 A prior study of our team has

applied four ML classifiers-based US radiomics for the preoperative prediction of axillary sentinel lymph node metastasis burden in patients

with early-stage BC.16 However, what are the efficacy of variousML-based PURS and IURS for the prediction of axillary nodal response?More-

over, it is curious about the predictive performance of the combination of PURS and IURS (P-IURS) models.
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Table 1. Clinicopathologic data in relation to axillary pCR in molecular subtypes

Characteristics

HR+/HER2- (n = 174) No. (%) HER2+ (n = 165) No. (%) TN (n = 96) No. (%)

(n = 28)

pCR

(n = 146)

Non-pCR p value

(n = 86)

pCR

(n = 79)

Non-pCR p value

(n = 40)

pCR

(n = 56)

Non-pCR p value

Age, years 48.0 G 11.7 49.8 G 13.8 0.516 47.5 G 12.5 50.9 G 14.2 0.497 48.2 G 12.9 51.1 G 14.7 0.588

Tumor size (mm) 37.2 G 11.3 39.5 G 12.7 0.715 36.8 G 11.5 38.7 G 13.3 0.681 35.9 G 12.2 39.0 G 14.1 0.694

Family history of breast cancer 0.330 0.493 0.663

No 20 (71.4) 116 (79.5) 60 (69.8) 59 (74.7) 26 (65.0) 39 (69.6)

Yes 8 (28.6) 30 (20.5) 26 (30.2) 20 (25.3) 14 (35.0) 17 (30.4)

Symptom 0.510 0.263 0.531

Palpable mass 17 (60.7) 100 (68.5) 50 (58.1) 53 (67.1) 21 (52.5) 34 (60.7)

others 11 (39.3) 46 (31.5) 36 (41.9) 26 (32.9) 19 (47.5) 22 (39.3)

Tumor location 0.652 0.424 0.675

Outer upper quadrant 13 (46.4) 58 (39.7) 35 (40.7) 27 (34.2) 17 (42.5) 21 (37.5)

others 15 (53.6) 88 (60.3) 51 (59.3) 52 (65.8) 23 (57.5) 35 (62.5)

Clinical T stage 0.473 0.08 0.229

I 2 (7.1) 5 (3.4) 7 (8.1) 2 (2.5) 3 (7.5) 2 (3.6)

II 15 (53.6) 69 (47.3) 48 (55.8) 37 (46.9) 23 (57.5) 25 (44.6)

III 11 (39.3) 72 (49.3) 31 (36.1) 40 (50.6) 14 (35.0) 29 (51.8)

Histologic type 0.776 0.679 0.575

Invasive ductal carcinoma 23 (82.1) 124 (84.9) 73 (84.9) 65 (82.3) 35 (87.5) 46 (82.1)

Others 5 (17.9) 22 (15.1) 13 (15.1) 14 (17.7) 5 (12.5) 10 (17.9)

Tumor grade 0.252 0.121 0.437

Low/medium 5 (17.9) 44 (30.1) 13 (15.1) 20 (25.3) 6 (15.0) 13 (23.2)

High 23 (82.1) 102 (69.9) 73 (84.9) 59 (74.7) 34 (85.0) 43 (76.8)

Ki67 levels 0.644 0.566 0.458

%20% 6 (21.4) 39 (26.7) 16 (18.6) 18 (22.8) 7 (17.5) 14 (25.0)

>20% 22 (78.6) 107 (73.3) 70 (81.4) 61 (77.2) 33 (82.5) 42 (75.0)

The analyses of clinicopathologic data found no significant difference between axillary pCR and non-pCR groups in HR+/HER2-, HER2+, and TN subtypes, p

value >0.05 for all.
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Based on the above questions, this study aimed to construct variousML classifiers-based PURS, IURS, and the combined P-IURSmodels in

different molecular subtypes, and explore the value of these novel approaches, for the early prediction of axillary pCR after NAC in patients

with node-positive.
RESULTS

Clinicopathologic characteristics

The axillary pCR rate was 35.4% (154/435) in all patients. Among the subtypes, the axillary pCR rate was higher in patients with HER2+ [52.2%

(60/115) and 52.0% (26/50)] than in patients with TN [40.3% (27/67) and 44.8% (13/29)], and patients with HR+/HER2-[16.5% (20/121) and 15.1%

(8/53)] in the training and test set, respectively. However, no significant difference was found in terms of age, tumor maximum size, family

history of BC, symptom, tumor location, clinical T stage, histologic type, tumor grade, and Ki-67 levels between the axillary pCR and non-

pCR groups in three molecular subtypes (p > 0.05 for all) (Table 1).
Machine learning-based peritumoral US radiomics signatures, intratumoral ultrasound radiomics signatures, and

peritumoral US radiomics signatures-intratumoral ultrasound radiomics signaturesmodels according tomolecular subtypes

Predictive performance in the hormone receptor+/human epidermal growth factor receptor 2-subtype

Figures 1–3 show the study design, the examples of peritumoral and intratumoral ROIs, and the procedure of the workflow, respectively. For

the PURSmodels, the RF classifier achieved a better AUCof 0.838 (95%CI: 0.761, 0.897), than SVM [AUC= 0.781 (95%CI: 0.711, 0.850], and LDA

[AUC = 0.748 (95%CI: 0.669, 0.825)] in the training set. In the test set, the AUCs were 0.823 (95%CI: 0.708, 0.916) for RF, 0.757 (95%CI: 0.596,

0.870) for SVM, and 0.681 (95%CI: 0.500, 0.805) for LDA. The RF classifier yielded a SEN of 76.6%, SPE of 82.6%, ACC of 80.9%, PPV of 63.7%,
2 iScience 27, 110716, September 20, 2024



Figure 1. Flowchart shows patient recruitment and study design
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and NPV of 91.7% in the training set, and a SEN of 85.0%, SPE of 84.3%, ACC of 84.2%, PPV of 62.2%, and NPV of 94.0% in the test set, respec-

tively (Table 2).

For the IURS models, the RF classifier obtained a higher AUC of 0.847 (95%CI: 0.789, 0.906), compared with SVM [AUC = 0.823 (95%CI:

0.759, 0.882)], and LDA [AUC = 0.782 (95%CI: 0.701, 0.856)] in the training set. In the test set, the AUCs were 0.851 (95%CI: 0.732, 0.918)
Figure 2. Examples of the regions of interest (ROIs) segmentation in different molecular subtypes

(A) The baseline grayscale US image of a 61-year-old woman with the right axillary node-positive and HR+/HER2-subtype invasive ductal carcinoma in the right

breast, attained axillary non-pCR after NAC, (E) the baseline grayscale US image of a 49-year-old woman with the right axillary node-positive and HER2+ subtype

invasive ductal carcinoma in the right breast yielded axillary pCR after NAC, (I) The baseline grayscale US image of a 44-year-old woman with the left axillary node-

positive and TN subtype invasive ductal carcinoma in the left breast achieved axillary pCR after NAC, (B, F, and J) the corresponding ROIs were manually

delineated along the contour of the tumor, (C, G, and K) the ROIs of peritumoral regions (purple), and (D, H, and L) the ROIs of intratumoral regions (blue).

iScience 27, 110716, September 20, 2024 3



Figure 3. The overview of the workflow

(1) The peritumoral and intratumoral ROIs of 435 breast tumors according to the molecular subtype.

(2) Features extraction including shape features, first-order features, texture features (i.e., GLCM, GLDM, GLRLM, GLSZM, and NGTDM), and wavelet-related

features.

(3) Features selection by using SMOTE, Z score, Mean normalization, PCA, PCC, and RFE methods.

(4) RF, SVM, and LDA classifiers were applied to construct PURS, IURS, and the combined P-IURS radiomics models for the prediction of axillary pCR after NAC.

(5) The performance of predictive models in three subtypes.
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for RF, 0.802 (95%CI: 0.698, 0.866) for SVM, and 0.709 (95%CI: 0.591, 0.818) for LDA. The RF classifier also obtained a SEN of 77.7%, SPE of

83.1%, ACC of 81.8%, PPV of 61.2%, and NPV of 89.9% in the training set, and a SEN of 83.3%, SPE of 86.2%, ACC of 84.8%, PPV of

69.2%, and NPV of 93.8% in the test set, respectively (Table 2).

For the combined P-IURSmodels, in the training set, the AUCs were 0.852 (95%CI: 0.776, 0.890) for RF, 0.864 (95%CI: 0.790, 0.908) for SVM,

and 0.859 (95%CI: 0.784, 0.901) for LDA. In the test set, the RF classifier yielded a better AUC of 0.857 (95%CI: 0.726–0.903) than SVM [AUC =

0.819 (95%CI: 0.700, 0.875)], and LDA [AUC = 0.765 (95%CI: 0.601, 0.859)] (Figures 4A–4I). The RF classifier achieved a SEN of 76.9%, SPE of

82.9%, ACC of 80.6%, PPV of 62.3%, and NPV of 89.4% in the training set, and a SEN of 83.7%, SPE of 85.4%, ACC of 85.0%, PPV of 67.4%, and

NPV of 92.9% in the test set, respectively (Table 2). Two, 3, and 4 optimal radiomics features were selected for the RF classifier-based PURS,

IURS, and P-IURS models, respectively. The details and coefficients of the selected features are shown in Table 3.

Predictive performance in the human epidermal growth factor receptor 2+ subtype

For the PURSmodels, the SVM classifier yielded a favorable AUCof 0.888 (95%CI: 0.834, 0.936), comparedwith RF [AUC= 0.873 (95%CI: 0.819,

0.923)], and LDA [AUC= 0.804 (95%CI: 0.739, 0.871])] in the training set. However, in the test set, the AUCs were 0.867 (95%CI: 0.772, 0.952) for

RF, 0.816 (95%CI: 0.697, 0.933) for SVM, and 0.781 (95%CI: 0.644, 0.901) for LDA (Figures 5A–5C). The SVM classifier yielded a SEN of 78.9%,

SPE of 86.0%, ACC of 86.7%, PPV of 66.3%, and NPV of 93.1% in the training set, and the RF classifier obtained a SEN of 86.5%, SPE of 88.9%,

ACC of 86.5%, PPV of 70.1%, and NPV of 95.5% in the test set, respectively (Table 4).

For the IURS models, the RF classifier achieved a better AUC of 0.944 (95%CI: 0.868, 0.990), than SVM [AUC = 0.882 (95%CI: 0.826, 0.937)],

and LDA [AUC = 0.819 (95%CI: 0.744, 0.873)] in the training set. In the test set, the AUCs were 0.935 (95%CI: 0.843, 0.976) for RF, 0.883 (95%CI:

0.779, 0.944) for SVM, and 0.824 (95%CI: 0.712, 0.890) for LDA (Figures 5D–5F). The RF classifier also obtained a favorable SENof 95.0%, SPE of

90.1%, ACC of 92.6%, PPV of 73.3%, and NPV of 98.9% in the training set, and a SEN of 87.5%, SPE of 93.1%, ACC of 92.3%, PPV of 70.0%, and

NPV of 96.7% in the test set, respectively (Table 4).

For the combined P-IURSmodels, in the training set, the AUCs were 0.954 (95%CI: 0.870, 0.992) for RF, 0.933 (95%CI: 0.857, 0.974) for SVM,

and 0.852 (95%CI: 0.761, 0.880) for LDA classifier. In the test set, the RF classifier also obtained a higher AUC of 0.952 (95%CI: 0.868–0.994)

compared with SVM [AUC = 0.906 (95%CI: 0.801, 0.957)], and LDA [AUC = 0.857 (95%CI: 0.771, 0.892)] (Figures 5G–5I). The RF classifier

achieved a substantial SEN of 95.5%, SPE of 91.2%, ACC of 93.0%, PPV of 74.8%, and NPV of 98.7% in the training set, and a SEN of

88.8%, SPE of 95.0%, ACC of 93.4%, PPV of 73.6%, and NPV of 98.5% in the test set, respectively (Table 4). Five, 9, and 10 optimal features

were selected for the RF classifier-based PURS, IURS, and P-IURS models, respectively. The details and coefficients of the selected features

are shown in Table 5.

Predictive performance in the triple-negative subtype

For the PURS models, the SVM classifier yielded a better predictive efficacy with an AUC of 0.928 (95%CI: 0.880, 0.964), compared with RF

[AUC = 0.886 (95%CI: 0.831, 0.939)], and LDA [AUC = 0.876 (95%CI: 0.828, 0.926]) in the training set. In the test set, the AUCs were 0.917
4 iScience 27, 110716, September 20, 2024



Figure 4. The ROC curves in the HR+/HER2-subtype

The PURS model with RF (A), SVM (B), and LDA (C) classifiers. The AUCs for the three classifiers were 0.838, 0.781, and 0.748 in the training set, and 0.823, 0.757,

and 0.681 in the test set, respectively. The IURSmodel with RF (D), SVM (E), and LDA (F) classifiers. The AUCs for the three classifiers were 0.847, 0.823, and 0.782 in

the training set, and 0.851, 0.802, and 0.709 in the test set, respectively. The combined P-IURSmodel with RF (G), SVM (H), and LDA (I) classifiers. The AUCs for the

three classifiers were 0.852, 0.864, and 0.859 in the training set, and 0.857, 0.819, and 0.765 in the test set, respectively.
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(95%CI: 0.859, 0.960) for SVM, 0.815 (95%CI: 0.694, 0.920) for RF, and 0.773 (95%CI: 0.664, 0.901) for LDA (Figures 6A–6C). The SVM classifier

obtained a satisfactory SEN of 93.5%, SPE of 81.2%, ACC of 85.3%, PPV of 70.8%, and NPV of 96.1% in the training set, and SEN of 90.5%, SPE

of 85.5%, ACC of 88.2%, PPV of 73.1%, and NPV of 95.9% in the test set, respectively (Table 6).

For the IURS models, the SVM classifier yielded a better AUC of 0.903 (95%CI: 0.855, 0.962), than RF [AUC = 0.875 (95%CI: 0.820, 0.923)],

and LDA [AUC = 0.825 [95%CI: 0.760, 0.891)] in the training set. In the test set, the AUCs were 0.866 (95%CI: 0.739, 0.943) for SVM, 0.789 (95%

CI: 0.701, 0.887) for RF, and 0.750 (95%CI: 0.637, 0.842) for LDA (Figures 6D–6F). The SVM classifier achieved an acceptable SEN of 85.7%, SPE

of 89.7%, ACC of 88.8%, PPV of 85.7%, and NPV of 90.1% in the training set, and a SEN of 81.6%, SPE of 84.3%, ACC of 82.2%, PPV of 68.6%,

and NPV of 92.3% in the test set, respectively (Table 6).

For the combined P-IURSmodels, in the training set, the AUCs were 0.873 (95%CI: 0.818, 0.925) for RF, 0.923 (95%CI: 0.866, 0.971) for SVM,

and 0.886 (95%CI: 0.803, 0.939) for LDA. In the test set, the SVM classifier achieved amore satisfactory AUC of 0.934 (95%CI: 0.877, 0.983) than

RF [AUC = 0.918 (95%CI: 0.862, 0.970)], and LDA [AUC = 0.849 (95%CI: 0.745, 0.900)] (Figures 6G–6I). The SVM classifier achieved a substantial

SEN of 88.9%, SPE of 91.2%, ACC of 90.4%, PPV of 79.5%, and NPV of 93.1% in the training set, and a SEN of 91.4%, SPE of 85.7%, ACC of

90.2%, PPV of 75.6%, andNPV of 95.9% in the test set, respectively (Table 6). Six, 4, and 6 optimal radiomics features were selected for the SVM

classifier-based PURS, IURS, and P-IURS models, respectively (Table 7).

Comparison of predictive models

Delong test showed that among the PURSmodels, SVMof the TN subtypeobtained the highest predictive performance than RF of theHER2+

subtype (AUCof 0.917 vs. 0.867, z = 2.581,p< 0.05), and RF of theHR+/HER2-subtype (AUCof 0.917 vs. 0.823, z = 5.243,p< 0.001). Among the

IURSmodels, RF of the HER2+ subtype achieved the best ability than the SVM of the TN subtype (AUC of 0.935 vs. 0.866, z = 4.447, p < 0.001),

and RF of the HR+/HER2-subtype (AUC of 0.935 vs. 0.851, z = 4.890, p < 0.001). Among the combined P-IURS models, RF of the HER2+ sub-

type achieved the most favorable efficacy than SVM of the TN subtype (AUC of 0.952 vs. 0.934, z = 2.073, p < 0.05), and RF of the HR+/HER2-

subtype (AUC of 0.952 vs. 0.857, z = 5.103, p < 0.001) for the prediction of axillary pCR in the test sets. Encouragingly, the RF-based combined

P-IURSmodel in the HER2+ subtype improved the performance of RF-based IURS and yielded the highest predictive efficacy (AUCof 0.952 vs.

0.935, z = 2.003, p< 0.05). Meanwhile, the LDA-based PURS in theHR+/HER2-subtype obtained the lowest ability (AUCof 0.681, 95%CI: 0.500,

0.805) to predict axillary response in the test sets among all radiomics models.
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Table 2. The predictive performance ofML classifiers-based PURS, IURS and the combined P-IURSmodels in the HR+/HER2-subtype in the training and

test sets

Training set SEN (%) SPE (%) ACC (%) PPV (%) NPV (%) AUC (95% CI)

PURS model

RF 76.6 82.6 80.9 63.7 91.7 0.838 (0.761–0.897)

SVM 74.5 71.8 72.7 47.5 90.6 0.781 (0.711–0.850)

LDA 73.3 71.2 71.5 43.4 89.3 0.748 (0.669–0.825)

IURS model

RF 77.7 83.1 81.8 61.2 89.9 0.847 (0.789–0.906)

SVM 73.8 82.0 81.0 56.7 90.7 0.823 (0.759–0.882)

LDA 72.3 77.1 76.2 50.2 90.3 0.782 (0.701–0.856)

P-IURS model

RF 76.9 82.9 80.6 62.3 89.4 0.852 (0.776–0.890)

SVM 77.6 83.5 78.2 60.1 90.1 0.864 (0.790–0.908)

LDA 77.5 79.8 81.0 59.5 88.5 0.859 (0.784–0.901)

Test set

PURS model

RF 85.0 84.3 84.2 62.1 94.0 0.823 (0.708–0.916)

SVM 80.0 67.9 70.2 50.0 91.8 0.757 (0.596–0.870)

LDA 62.5 72.7 71.1 49.4 91.4 0.681 (0.500–0.805)

IURS model

RF 83.3 86.2 84.8 69.2 93.8 0.851 (0.732–0.918)

SVM 72.0 80.1 76.8 53.6 90.1 0.802 (0.698–0.866)

LDA 65.0 78.1 74.5 48.8 87.7 0.709 (0.591–0.818)

P-IURS model

RF 83.7 85.4 85.0 67.4 92.9 0.857 (0.726–0.903)

SVM 72.4 79.8 78.5 54.8 88.9 0.819 (0.700–0.875)

LDA 70.3 80.0 75.8 51.3 89.0 0.765 (0.601–0.859)

Table 2 showed that in the HR+/HER2-subtype, the RF-based PURS, IURS, and the combined P-IURS models achieved better performance with AUCs of 0.823,

0.851, and 0.857, while the LDA-based PURS obtained low predictive ability with AUC of 0.681 in the test set.
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DISCUSSION

Axillary pCR has been identified as amore vital prognostic indicator associatedwith improved overall survival in comparison with breast tumor

pCR.1–3,17 Accurate and non-invasive prediction of nodal pCR can stratify patients from less aggressive axillary procedures.4,5 Previous studies

used clinicopathologic risk factors, traditional medical images, and radiomics features to predict axillary pCR.9–11,18,19 Recently, researchers

began to extract both intratumoral and peritumoral radiomic features from DCE-MRI, or contrast-enhanced spectral mammography to pre-

dict breast pCR.20,21 However, whether peritumoral US radiomics features can be applied to predict axillary response exists doubts. More-

over, whether the rates of axillary pCR depend on different molecular subtypes remains unknown. The present study is the first attempt to

assess the efficacy of various ML classifiers-based PURS and IURS to predict nodal response after NAC. Additionally, we also investigate

the performance of the combined P-IURS models according to molecular subtypes. Our results showed that the RF-based P-IURS of the

HER2+ subtype achieved the highest predictive ability (AUC of 0.952, 95%CI: 0.868, 0.994), while the LDA-based PURS of the HR+/HER2-sub-

type obtained the lowest predictive ability (AUC of 0.681, 95%CI: 0.500, 0.805) in the test set.

With the breakthrough improvement of HER2-targeted drugs such as trastuzumab and pertuzumab, the HER2+ subtype has been re-

garded as a good prognostic factor of NAC.12,13 In contrast, the absence of HER2+ and the presence of HR + are poor predictors for treat-

ment response.9,10 A meta-analysis including 33 studies with 57531 patients from Samiei et al.1 indicated that the HR-/ERBB2+ subtype was

associated with the highest axillary pCR rate (60%), followed by 48% for TN and 18% for HR+/ERBB2-. In agree with previous studies, our re-

sults displayed that axillary pCR occurredmost commonly in the HER2+ subtype and achieved the lowest rate in the HR+/HER2-subtype. The

results may be explained by the homology and the same nature between the axillary metastatic nodes and the primary breast tumor.

Regarding other clinicopathologic factors, Kantor et al.18 reported that younger age, high grade, ductal histology, and the extent of breast

response were significant independent predictors for nodal pCR. Vila et al.2 revealed that high nuclear grade and higher Ki-67 levels were

more likely to achieve nodal pCR. Regrettably, our results indicated that patient’s age, tumor maximum size, family history of BC, symptom,
6 iScience 27, 110716, September 20, 2024



Table 3. Coefficients of selected features in the HR+/HER2-subtype

Features Coef in model

RF-based PURS model

Wavelet-LHH_GLDM_LargeDependenceLowGrayLevelEmphasis �2.181

Wavelet-LHL_GLRLM_ShortRunEntropy �1.467

RF-based IURS model

Wavelet-LHL_GLCM_Imc2 �0.811

Wavelet-LHL_GLRLM_RunLengthNonUniformityNormalized 0.932

Wavelet-HLH_GLSZM_HighGrayLevelZoneEmphasis �2.167

RF-based combined P-IURS model

Wavelet-LHL_GLCM_ClusterEndency �0.418

Wavelet-HLH_GLSZM_HighGrayLevelZoneEmphasis 1.097

Wavelet-LHH_GLDM_LargeDependenceLowGrayLevelEmphasis 0.536

Wavelet-HHL_GLRLM_ShortRunEmphasis �1.170

There were 2, 3, and 4 optimal features selected in RF-based PURS, IURS, and combined P-IURS models in the HR+/HER2-subtype.
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tumor location, clinical T stage, histologic type, tumor grade and Ki-67 levels all had no predictive value for axillary pCR in three molecular

subtypes. The discrepancies may be due to the difference in database and sampling selection, a large series of multicenter external patients

are needed.

Radiomics provides potential biomarkers for the prediction of clinical outcomes through thousands of high-dimensional data extracted

from traditional medical images.11,22 Previous studies have demonstrated that radiomics features could comprehensively reflect tumor
Figure 5. The ROC curves in the HER2+ subtype

The PURS model with RF (A), SVM (B), and LDA (C) classifiers. The AUCs for the three classifiers were 0.873, 0.888, and 0.804 in the training set, and 0.867, 0.816,

and 0.781 in the test set, respectively. The IURSmodel with RF (D), SVM (E), and LDA (F) classifiers. The AUCs for the three classifiers were 0.944, 0.882, and 0.819 in

the training set, and 0.935, 0.883, and 0.824 in the test set, respectively. The combined P-IURSmodel with RF (G), SVM (H), and LDA (I) classifiers. The AUCs for the

three classifiers were 0.954, 0.933, and 0.852 in the training set, and 0.952, 0.906, and 0.857 in the test set, respectively.
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Table 4. The predictive performance ofML classifiers-based PURS, IURS, and the combined P-IURSmodels in the HER2+ subtype in the training and test

sets

Training set SEN (%) SPE (%) ACC (%) PPV (%) NPV (%) AUC (95% CI)

PURS model

RF 77.8 86.5 84.5 65.2 92.8 0.873 (0.819–0.923)

SVM 78.9 86.0 86.7 66.3 93.1 0.888 (0.834–0.936)

LDA 73.3 75.6 74.2 48.8 90.2 0.804 (0.739–0.871)

IURS model

RF 95.0 90.1 92.6 73.3 98.9 0.944 (0.868–0.990)

SVM 83.3 89.1 86.8 68.0 92.4 0.882 (0.826–0.937)

LDA 73.2 80.0 77.1 55.8 90.5 0.819 (0.744–0.873)

P-IURS model

RF 95.5 91.2 93.0 74.8 98.7 0.954 (0.870–0.992)

SVM 90.3 88.5 89.9 74.0 96.4 0.933 (0.857–0.974)

LDA 82.6 84.1 83.7 69.3 90.1 0.852 (0.761–0.880)

Test set

PURS model

RF 86.5 88.9 86.5 70.1 95.5 0.867 (0.772–0.952)

SVM 84.2 81.3 82.1 68.4 94.0 0.816 (0.697–0.933)

LDA 81.6 70.5 79.3 58.7 92.3 0.781(0.644–0.901)

IURS model

RF 87.5 93.1 92.3 70.0 96.7 0.935 (0.843–0.976)

SVM 82.4 90.1 86.8 67.2 93.0 0.883 (0.779–0.944)

LDA 80.0 81.3 80.9 59.7 89.6 0.824 (0.712–0.890)

P-IURS model

RF 88.8 95.0 93.4 73.6 98.5 0.952 (0.868–0.994)

SVM 85.1 91.3 87.5 69.1 93.7 0.906 (0.801–0.957)

LDA 82.3 84.0 83.2 68.5 90.4 0.857 (0.771–0.892)

Table 4 showed that the RF-based PURS, IURS, and the combined P-IURS models in the HER2+ subtype yielded robust efficacy with AUCs of 0.867, 0.935, and

0.952 in the test set.
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heterogeneity, which was related to tumor progression and metastatic behavior.19,22 In the present study, the dominant features selected in

the most robust RF-based P-IURS predictive model in the HER2+ subtype were wavelet-related features. After the wavelet transform, the

texture features including GLDM, GLSZM, and GLRLM are the main features. GLDM is a gray level dependence matrix and has been used

to calculate the complexity of image textures.23 GLSZMandGLRLM reflect the roughness and heterogeneity of texture features by calculating

the size, length, or number of connected gray level zones of the image.22,23 With the alliance of transform, wavelet features can detect more

micro-environmental information about tumors, and provide more valuable predictors for biological behavior.24 Our results showed that

wavelet-related features are substantial signatures associated with axillary pCR after NAC.

The peritumoral region containing lymphatic vessel infiltration,micro-vascular proliferation, or stroma response surrounding the tumor has

served as an additional prognostic factor. Previous studies had reported that the presence of peritumoral edema of BC was associated with

tumor aggressiveness and ALNM.25,26 MacColl et al.27 showed that the residual carcinoma restricted to lymphatic spaces after NAC, which

was called predominantly pure intralymphatic carcinoma, was related to residual positive lymph nodes. Previous studies also indicated that

HR + tumors would benefit less fromNAC due to the intrinsic or resistance to therapy, resulting in disease progression and poor outcomes.28

In the present study, the LDA classifier-based PURS model in the HR+/HER2-subtype yielded the lowest ability for the prediction of axillary

response. The result may be due to the HR + tumor with peritumoral lymphocytic infiltration being apt to no reaction to NAC, causing the

residual nodal metastasis, resulting in axillary non-pCR.27,28

In addition to the predictive performance, Vila et al.2 constructed clinicopathologic nomograms and obtained an AUC of 0.787. Kim

et al.10 reported that models based on breast MRI and US could predict axillary pCR with AUCs from 0.78 to 0.84. Gan et al.19 devel-

oped a clinical-radiomics yielded an AUC of 0.878 for the prediction of axillary response in the test set. The present study applied RF,

SVM, and LDA classifiers to construct PURS, IURS, and the combined P-IURS models in different molecular subtypes. RF is a regression

tree technique that can use bootstrap aggregation and randomization of predictors to achieve a high accuracy.29 SVM is a generalized
8 iScience 27, 110716, September 20, 2024



Table 5. Coefficients of selected features in the HER2+ subtype

Features Coef in model

RF-based PURS model

Wavelet-LHL_GLSZM_SmallAreaEmphasis 0.914

Original_GLSZM_LowGrayLevelZoneEmphasis �1.579

Wavelet-LHL_GLCM_MCC 0.708

Wavelet-HHL_GLDM_SmallDependenceEmphasis �3.309

Wavelet-HHL_GLSZM_GrayLevelNonUniformityNormalized 2.130

RF-based IURS model

Original_Firstorder_Skewness �1.267

Original_GLRLM_LowGrayLevelRunEmphasis 0.776

Wavelet-LHL_Firstorder_Median �1.084

Wavelet-LHH_GLDM_DependenceNonUniformityNormalized 1.685

Wavelet-LHH_GLDM_LargeDependenceLowGrayLevelEmphasis �0.420

Wavelet-LHH_GLRLM_RunLengthNonUniformityNormalized 3.560

Wavelet-HLH_GLSZM_HighGrayLevelZoneEmphasis 4.980

Wavelet-HHL_GLRLM_ShortRunEmphasis �2.368

Wavelet-LLL_GLRLM_LowGrayLevelRunEmphasis �0.596

RF-based combined P-IURS model

Original_GLRLM_LowGrayLevelRunEmphasis �0.928

Wavelet-LHL_GLCM_Imc2 �0.184

Wavelet-LHL_GLCM_ClusterTendency �2.785

Wavelet-HHL_GLDM_SmallDependenceEmphasis 5.120

Wavelet-LHH_GLDM_LargeDependenceLowGrayLevelEmphasis �1.530

Wavelet-LHH_GLRLM_RunLengthNonUniformityNormalized �0.780

Wavelet-HLH_GLSZM_HighGrayLevelZoneEmphasis 2.479

Wavelet-HHL_GLRLM_ShortRunEmphasis �1.391

Wavelet-LHL_GLRLM_RunEntropy 1.720

Wavelet-HHL_GLSZM_GrayLevelNonUniformityNormalized 3.852

There were 5, 9, and 10 optimal features selected in RF-based PURS, IURS, and combined P-IURS models in the HER2+ subtype.
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linear classifier that can better solve small sample problems than other ML algorithms.30 LDA is a classical ML method, which aims to find

a linear data transformation increasing class discrimination in an optimal discriminant subspace.31 Previous studies had reported that

different classifiers had different predictive performances.16,32 Beig et al.33 reported that the SVM classifier with intranodular lung CT

radiomic features achieved an AUC of 0.75 in the test set, and the combining radiomics of intranodular with perinodular regions

improved the AUC to 0.80 to distinguish adenocarcinomas from granulomas. Braman et al.20 indicated that a combined intratumoral

and peritumoral DCE-MRI radiomic feature set using a diagonal linear discriminant analysis (DLDA) yielded a maximum AUC of 0.74

to predict breast pCR after NAC. Our study revealed that RF classifier-based IURS in the HER2+ subtype achieved an AUC of 0.935

(95%CI: 0.843, 0.976), and the combined P-IURS improved the AUC to 0.952 (95%CI: 0.868, 0.994) (p < 0.05) in the test set. The results

showed that the combination of peritumoral and intratumoral US radiomics could improve the performance for predicting axillary pCR

after NAC, which was consistent with previous studies.20,33 Furthermore, our results also showed that the RF classifier obtained more

robust predictive efficacy as compared with the SVM and LDA classifiers. Nevertheless, the LDA classifier was less efficient than RF

and SVM, with the lowest ability (AUC of 0.681, 95%CI: 0.500, 0.805) in PURS of the HR+/HER2-subtype to predict axillary response after

NAC. The inconsistencies may be due to the inclusion criteria or the different images such as US, MRI, or CT settings, further studies with

larger data and multimodal images are required in the future.

This study contributes to the field of US-based radiomics analysis in the following ways:

First, with the increasing considerations about peritumoral regions, it is the first attempt to predict axillary response using peritumoral and

intratumoral US radiomics signatures in patients with BC with node-positive. Second, compared with prior radiomics studies, most of which

are limited to a single statistical method for analysis.34,35 The present study applied various ML classifiers to construct different predictive

models which may provide more robust results. Moreover, as compared with MRI or other images, the US is a more convenient diagnostic

tool in breast examination, thus making the US-based radiomics analysis more wider application in clinical practice. Finally, we additionally
iScience 27, 110716, September 20, 2024 9



Figure 6. ROC curves in the TNBC subtype

The PURS model with RF (A), SVM (B), and LDA (C) classifiers. The AUCs for the three classifiers were 0.886, 0.928, and 0.876 in the training set, and 0.815, 0.917,

and 0.773 in the test set, respectively. The IURSmodel with RF (D), SVM (E), and LDA (F) classifiers. The AUCs for the three classifiers were 0.875, 0.903, and 0.825 in

the training set, and 0.789, 0.866, and 0.750 in the test set, respectively. The combined P-IURSmodel with RF (G), SVM (H), and LDA (I) classifiers. The AUCs for the

three classifiers were 0.873, 0.923, and 0.886 in the training set, and 0.918, 0.934, and 0.849 in the test set, respectively.
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assessed the predictive value of axillary pCR after NACaccording to differentmolecular subtypes, whichmay assist in the selection of a clinical

therapeutic regime.

In conclusion, ML-based PURS, IURS, and the combined P-IURS models in different molecular subtypes can assist in the estimation of

axillary response after NAC. The RF classifier-based combined P-IURS in the HER2+ subtype achieved a favorable predictive accuracy and

may be a promising clinical approach to help the selection of appropriate axillary surgical interventions in patients with BC with node-

positive.
Limitations of the study

There are several limitations in our study: First, it was a retrospective study, and data were collected in a single institution, which may result in

biased selection and a lack of external validation. Second, to better analyze the correlation between tumor PURS and IURS features and axil-

lary pCR, we excluded patients with bilateral, multifocal tumors, nonmass-like tumors, and tumors with no clear peritumoral region on US

images, which may also cause selected bias. Third, the present study did not include genomics data. Although genomics identification

had been considered a promising predictive tool, they were not routinely performed in clinical practice. Further studies will be expected

to address this issue in the future.
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Table 6. Predictive performance of ML classifiers-based PURS, IURS, and the combined P-IURS models in the TN subtype in the training and test sets

Training set SEN (%) SPE (%) ACC (%) PPV (%) NPV (%) AUC (95% CI)

PURS model

RF 80.0 83.2 85.7 66.0 93.0 0.886 (0.831–0.939)

SVM 93.5 81.2 85.3 70.8 96.1 0.928 (0.880–0.964)

LDA 78.8 82.1 81.9 63.0 91.5 0.876 (0.828–0.926)

IURS model

RF 79.1 81.8 81.4 62.1 90.9 0.875 (0.820–0.923)

SVM 85.7 89.7 88.8 85.7 90.1 0.903 (0.855–0.962)

LDA 74.0 82.1 80.5 60.3 89.9 0.825 (0.760–0.891)

P-IURS model

RF 80.0 80.7 81.6 63.0 90.4 0.873 (0.818–0.925)

SVM 88.9 91.2 90.4 79.5 93.1 0.923 (0.866–0.971)

LDA 84.6 85.5 87.6 70.2 92.0 0.886 (0.803–0.939)

Test set

PURS model

RF 84.0 80.6 82.3 66.1 92.7 0.815 (0.694–0.920)

SVM 90.5 85.5 88.2 73.1 95.9 0.917 (0.859–0.960)

LDA 80.4 69.2 77.4 58.7 89.8 0.773 (0.664–0.901)

IURS model

RF 70.6 81.4 75.5 52.0 89.0 0.789 (0.701–0.887)

SVM 81.6 84.3 82.2 68.6 92.3 0.866 (0.739–0.943)

LDA 68.8 77.6 74.9 50.8 88.5 0.750 (0.637–0.842)

P-IURS model

RF 90.2 84.9 89.5 74.0 95.6 0.918 (0.862–0.970)

SVM 91.4 85.7 90.2 75.6 95.9 0.934 (0.877–0.983)

LDA 81.2 84.4 82.0 61.5 90.1 0.849 (0.745–0.900)

Table 6 showed that SVM-based PURS, IURS, and the combined P-IURS models in the TN subtype yielded better performance, with AUCs of 0.917, 0.866, and

0.934 in the test set.
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Table 7. Coefficients of selected features in the TN subtype

Features Coef in model

SVM-based PURS model

Original_GLRLM_LowGrayLevelRunEmphasis �0.925

Wavelet-LHL_Firstorder_Median 1.655

Wavelet-HHL_GLDM_SmallDependenceEmphasis �1.913

Wavelet-HHL_GLRLM_ShortRunEmphasis 0.861

Wavelet-HHL_GLSZM_GrayLevelNonUniformityNormalized �1.853

Wavelet-HHH_GLDM_LargeDependenceLowGrayLevelEmphasis 1.084

SVM-based IURS model

Wavelet-LHL_GLCM_Imc2 �2.479

Wavelet-LHH_GLDM_LargeDependenceLowGrayLevelEmphasis �1.913

Wavelet-LHH_GLRLM_RunLengthNonUniformityNormalized 0.861

Wavelet-HHL_GLRLM_ShortRunEmphasis 1.921

SVM-based combined P-IURS model

Wavelet-HHL_GLSZM_GrayLevelNonUniformityNormalized �0.962

Wavelet-LHH_GLDM_LargeDependenceLowGrayLevelEmphasis 2.031

Wavelet-LHH_GLRLM_RunLengthNonUniformityNormalized �0.592

Wavelet-HHL_GLRLM_ShortRunEmphasis 1.921

Wavelet-LHL_GLCM_Imc2 �1.280

Wavelet-HHL_GLDM_SmallDependenceEmphasis �0.053

There were 6, 4, and 6 optimal selected features in SVM-based PURS, IURS, and combined P-IURS models in the TN subtype.
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Supplementary data This paper Tables S1, S2, and Data S1–S9

Analyzed data This paper Tables 1, 2, 3, 4, 5, 6, and 7

Software and algorithms

3D slicer software Fedorov et al.39 https://www.slicer.org

Pyradiomics software This paper https://pyradiomics.readthedocs.io/en/latest/

Python software This paper https://www.python.org

FeAture Explorer Pro (FAEPro, V0.5.3) Song et al.42 https://github.com/salan668/FAE

Random forest (RF) algorithm This paper https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.

RandomForestClassifier.html#

Support vector machine (SVM) algorithm This paper https://scikit-learn.org/stable/modules/svm.html#svm

Linear discriminant analysis (LDA) algorithm This paper https://scikit-learn.org/stable/modules/generated/sklearn.discriminant_

analysis.LinearDiscriminantAnalysis.html#

SPSS software (version 23.0) This paper https://www.ibm.com/products/spss-statistics

MedCalc software (version 22.013) This paper http://www.medcalc.com.cn
RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and data should be directed to and will be fulfilled by the lead contact, Jian-qiao Zhou

(e-mail:zhousu30@126.com).

Materials availability

This study did not generate new unique reagents.

Data and code availability

� All data supporting the findings of this study can be downloaded. The DOI is listed in the key resources table.
� All original code can be seen in the official website, DOIs are listed in the key resources table.
� Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Study design and patients

This study was a retrospective analysis, and was conducted in accordance with the Declaration of Helsinki, approved by the Ethics Committee

of our institution (approval number 2023221). Informed consent was waived due to its retrospective nature. Datasets were obtained from the

Shanghai Jiaotong University Breast Cancer Database (SJTU-BCDB). From January 2017 to August 2023, we firstly collected 628 BC patients

with node-positive acceptedNAC and post NAC surgery at our institution. The included criteria were as follows: (i) patients were confirmed to

be primary BCwith node-positive, andwithout distantmetastasis; (ii) patients underwent a full course ofNAC; (iii) patients acceptedpost NAC

breast and axillary surgery, and the axillary nodal pCR was proved by surgical specimen histopathological examination; (iv) patients with high

quality pre-NAC baseline breast tumor US images. In the present study, node-positive was defined as axillary lymph nodemetastasis (ALNM)

confirmed by either fine needle aspiration (FNA) or core needle biopsy (CNB) before the initiation of NAC. Axillary pCR was defined as the

complete absence of micro- and macro-metastases in ALNs. The exclusion criteria were as follows: (i) patients who did not complete NAC

regimen; (ii) patients with no baseline breast tumor US images and insufficient clinicopathologic data; (iii) patients with bilateral or multiple

tumors; (iv) patients with nonmass-like lesions or no sufficient peritumoral tissue identified on US images. Finally, a total of 435 patients were

included in the study population. All patients were individuals of East Asian descent, Chinese women, and Han nationality, with mean age

46.3 G 11.1 years, median age 47.9 years, and age range from 36 to 78 years.
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Clinical and pathological data

The clinical data including patients’ age, clinical T stage, and NAC regimens were also retrieved from the Database (SJTU-BCDB). The path-

ological data such as tumor histological type, estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor 2

(HER2) status, and tumor proliferation rate (Ki-67 levels) were determined from the results of CNBs performed before NAC. HER2 status was

confirmed with fluorescence in situ hybridization. A cut-off value for Ki67 positive was established at 20%.36 Tumors were classified into three

molecular subtypes based on the expression of ER, PR, and HER2 status: HR+/HER2- (HR+, HER2-); HER2+ (HER2+, ER + or ER-, PR + or PR-);

and TN (ER-, PR-, HER2-). HR+ was defined as ER+ and/or PR+. The NAC regimens such as adriamycin with cyclophosphamide (AC), adria-

mycin with docetaxel (AT), adriamycin with cyclophosphamide plus docetaxel (AC-T) were treated for non-HER2+ patients. HER2+ patients

also received trastuzumab, or trastuzumab with pertuzumab. All patients accepted six or eight cycles of NAC before surgery according to the

National Comprehensive Cancer Network (NCCN) guideline.37 Among the 435 BC patients, 174 were HR+/HER2-subtype, 165 were HER2+

subtype, and 96 were TN subtype patients. Patients was randomly (7:3) divided into a training set including 121 of HR+/HER2-, 115 of HER2+,

and 67 of TN subtype. An independent test set included 53 patients of HR+/HER2-, 50 of HER2+, and 29 of TN subtype. Figure 1 shows the

patient recruitment and study design.
METHOD DETAILS

US image acquisition and regions of interest (ROIs) segmentation

Breast US examinations were performed 1 week before biopsy by Resona 7 and Resona 8 (Mindray Medical International, Shenzhen, China)

with a linear probe at 3–11MHz, and EsaoteMyLab 60 (Esaote, Genoa, Italy) with a linear probe at 4–13MHz. Tumors were assessed according

to the Breast Imaging Reporting and Data System (BI-RADS).38 The maximum size of the breast tumors measured by US were also recorded.

The tumor regions of interest (ROIs) segmentation and extraction were performed by using 3D-slicer (3D Slicer version 5.0.3) and PyRa-

diomics software.39 The intratumoral region was segmented by dilating the delineated tumor contour manually in the largest cross-sectional

area. The peritumoral ROI was obtainedwith a 3mm-thick surrounding zone outside the intratumoral region automatically using ‘‘Hollow’’ and

‘‘Margin’’ segment editors. The ROIs of peritumoral and intratumoral area were extracted separately according to molecular subtype.

Figures 2A–2L shows the examples of the tumor US images and its corresponding ROIs. The P-IURS was calculated by combining peritumoral

and intratumoral radiomics signatures in each subtype.

For the reproducibility of feature extraction, two experienced radiologists (author 1 and author 2, with over ten years of experience in

breast US, and three years of experience in the software) initially segmented the peritumoral and intratumoral regions of 60 randomly selected

breast tumors, and extracted the radiomics signatures separately. Both radiologists were blinded to the treatment outcomes. One weeks

later, author 1 repeated the same procedure and analyzed the remaining images. An intra- and interclass correlation coefficient (ICC) equal

to or higher than 0.75 was regarded as good intra- and interobserver agreement, and was included in the further feature selection process.
Feature extraction, selection and classifiers implementation

The extracted radiomics features included 14 shape features, 18 first-order features, 38 s-order texture features [24 Gy level co-occurrence

matrix (GLCM) and 14 Gy level dependence matrix (GLDM)], 37 higher-order texture features [16 Gy level run length matrix (GLRLM),

16 Gy level size zone matrix (GLSZM) and 5 neighboring gray tone difference matrix (NGTDM)], and 744 wavelet-related features (details

are shown in Tables S1 and S2). The final dataset comprised each of 148,074 PURS, IURS and the combined P-IURS in HR+/HER-subtype

(Data S1–S3), 140,415 in HER2+ subtype (Data S4–S6), and 81,696 in TN subtype (Data S7–S9).

In the features processing and selection procedure, synthetic minority oversampling technique (SMOTE) was firstly used to remove the

unbalance samples in each of dataset.40 Z score andMean normalization were applied to standardize the corresponding features. Then, prin-

cipal component analysis (PCA) and pearson correlation coefficient (PCC) were employed to reduce the features dimension and meanwhile

prevent over-fitting. After that, recursive features elimination (RFE) was utilized to detect the most relevant predictive features.41 Finally, the

most robust radiomics signatures selected by the above procedures were input to RF, SVM, and LDA classifiers with a 5-fold cross validation to

construct and validate PURS, IURS and the combinedP-IURSmodels for the prediction of axillary pCR in differentmolecular subtypes. Figure 3

shows the overview of the workflow.
QUANTIFICATION AND STATISTICAL ANALYSIS

All numerical data were presented as meanG standard deviation. Continuous and categorical variables were compared using the two-sided

independent t test, and the Chi-square test or Fisher’s exact test, respectively. The training dataset was used to construct various ML classi-

fiers-based PURS, IURS and the combined P-IURSmodels for predicting axillary pCR in three subtypes, the independent test dataset was used

to validate the models. The predictive efficacy were assessed with respect to sensitivity (SEN), specificity (SPE), accuracy (ACC), positive pre-

dictive value (PPV), negative predictive value (NPV), and the area under the receiver operating characteristic (ROC) curve (AUC). Comparisons

of AUCs between ML classifiers-based predictive models were made by using the DeLong test. All of the processes were implemented with

FeAture Explorer Pro (FAEPro, V0.5.3) in Python (3.7.6) (https://github.com/salan668/FAE),42 SPSS software (version 23.0), and MedCalc soft-

ware (version 22.013). A p value less than 0.05 was regarded as significant difference.
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