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Abstract
Acute (e.g., traumatic brain injury or stroke) and chronic (e.g., dementia or Parkinson’s disease dementia) neurological dis-
orders that involve cognitive impairment and dysfunctional neural circuits always lead to a dreadful and costly experience for
patients and their families. The application of deep brain stimulation for the treatment of neuropsychiatric disorders has
shown great potential to modulate pathological neural circuits and trigger endogenous neurogenesis. We summarize several
important clinical and translational studies that utilize deep brain stimulation to improve cognition based on the potentiation of
neural plasticity and neurogenesis. In addition, we discuss the neuroanatomy and cerebral circuits implicated in such studies as
well as the potential mechanisms underlying therapeutic benefits.
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Introduction

Deep brain stimulation (DBS) is a promising treatment for

movement disorders and some neuropsychiatric disorders.

Proposed mechanisms underlying clinical improvement are

based on neuromodulation of pathological signal processing

in the brain. Although the specific mechanisms by which DBS

exerts benefit are still relatively unknown, increasing evi-

dence has shown it might involve multiple physiological

mechanisms1,2. Importantly, the modulation of specific neural

circuits via DBS also results in increased neurogenesis, synap-

tic plasticity, and cell survival by upregulating specific

genes3–5. Over the last decade, several studies have advanced

the application of DBS and have shown the ability to improve

learning and memory by targeting particular brain structures

at specific time points6. In this review, we highlight several

pivotal brain regions and their connecting circuitry to provide

insights into the underpinnings of how DBS may augment

cognition to overcome pathology-induced deficits.

DBS in Neurological Disorders

Medial Temporal Structure

Early case studies that focused on the removal of hippocam-

pal structures to treat epilepsy were the first to reveal the

importance of medial temporal lobe function to memory7–9.

In line with these studies, experiential memory phenomena

(déjà vu) were associated with medial temporal lobe sei-

zures. Following previous reports about temporal lobe sti-

mulation inducing feelings of familiarity, Bartolomei was

the first to show that specific entorhinal cortex stimulation

could cause more déjà vu or context-specific memories10.
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The concept was further exemplified by another study utiliz-

ing stimulation of the medial temporal lobe in epileptic

patients, which evoked autobiographical memories11. These

studies suggest that the medial temporal lobe plays a vital

role in declarative memory function. Functional imaging

studies show activation of the medial temporal lobe (including

the entorhinal cortex) exclusively happened during memory

encoding. Furthermore, neuronal recordings of the medial tem-

poral lobe have revealed the correlation between memory

strength and neuronal activity and spike timings and local field

potential during engagement of a learning task12. Capturing

activation patterns in the medial temporal lobe have further

advanced our understanding of how the structures function

during mnemonic processes13. Based on these results, the acti-

vation of large neural networks within the medial temporal lobe

seems to be strongly correlated with encoding or retrieving

memory and neuromodulation of these areas may facilitate

cognitive processes to improve these functions.

Given the prerequisite role of medial temporal structures

in memory encoding, these areas have been under vigorous

investigation to explore whether the influence of neural

activity could lead to better cognition14. Suthana et al.

demonstrated spatial navigation enhancement in epileptic

patients when stimulation was applied to the entorhinal cor-

tex while patients learn the location of spatial land-

marks15,16. In addition, the power of the theta rhythm

increased after electrical stimulation in all four patients’

entorhinal cortex; theta rhythm is considered to be the elec-

trophysiological hallmark for improvement of spatial learn-

ing17. In contrast, direct stimulation of the hippocampus, a

key structure in the spatial memory circuit, did not reveal

similar improvements in spatial learning, indicating that sti-

mulation of the cortical afferent input into the hippocampus

might be more effective as a target for DBS to improve

cognition. This phenomenon not only suggests memory is

supported by the hippocampus but also indicates that disrup-

tion of local neuronal circuits within the hippocampus could

result from stimulation of hippocampal neurons above the

threshold18. Recent rodent studies have shown that encoding

and mnemonic processes of memory could be manipulated

or enhanced when hippocampal electrical stimulation

matched hippocampal activity19,20. With optogenetic manip-

ulation, reactivating or deactivating hippocampal neurons

that are activated during learning results in specific memory

recall or erasure20. These studies demonstrate the impor-

tance of temporal and physiological properties of electrical

stimulation, having the ability to disrupt or enhance cogni-

tive function18.

Fornix and Hypothalamus

A critical aspect of how DBS affects the brain depends on

its location within the pathological neuronal circuitry. In

the case of Parkinson’s disease, electrodes are implanted in

the subthalamic nucleus (STN) or globus pallidus (GP),

which are implicated in neural circuits involving motor

control, to ensure maximal clinical benefits on patients’

motor symptoms. When DBS is used to treat psychiatric

disorders (e.g., obsessive-compulsive disorder) the target

brain regions include the ventral capsule/ventral striatum

or limbic portion of the STN21,22. These areas further high-

light that DBS not only influences the regional deep nuclei

but also could be viewed as circuit modulators of afferent to

efferent target neurons1. Studies done in humans to eluci-

date the mechanisms of learning and memory rely on epi-

leptic patients with implanted recording and stimulation

electrodes in the brain to identify epileptic foci23. This

situation also provides an opportunity to explore whether

electrical stimulation enhances spatial memory in epileptic

patients. A serendipitous finding showed that a morbidly

obese patient implanted with fornix/hypothalamus DBS

electrodes had stimulation-responsive autobiographical

memory recall24. Following this unexpected evoked mem-

ory, fornix DBS was tested in a double-blinded study to see

if it would increase memory recollection. In addition, for-

nix DBS also increased activity in the ipsilateral mesial

temporal lobe as shown on standard low-resolution electro-

magnetic tomography (sLORETA), demonstrating that

DBS in the fornix could drive activity in the medial tem-

poral lobe throughout the limbic circuit.

To explore the evidence of fornix DBS for treating

patients with Alzheimer’s disease (AD), Laxton et al. fol-

lowed six patients with mild AD implanted with DBS sys-

tems targeting the fornix and hypothalamus. After 1 year of

DBS treatment, the severity of AD, as assessed by the Alz-

heimer’s Disease Assessment Scale-Cognitive (ADAS-

Cog) subscale, improved or ceased to progress with DBS25.

sLORETA revealed specific activation of the mesial tem-

poral lobe structures of patients immediately after DBS. At

longer latencies, activation patterns shifted to the posterior

cingulate and medial parietal lobe. In line with this, a posi-

tron emission tomography study in the same report also

demonstrated metabolic reversal of reduced cortical glu-

cose utilization in the temporal and parietal lobes of

patients with AD, providing more evidence on how DBS

facilitates activation of remote limbic areas and potentiates

memory improvement. These results suggest that DBS can

improve memory through modulation of neural activity

within memory circuits involving the fornix and hypotha-

lamus. Working within this framework, forniceal DBS was

explored to treat Rett syndrome, a childhood intellectual

disorder. In a rodent model of Rett syndrome, 2 weeks of

DBS treatment ameliorated the deficit of contextual fear

memory and spatial learning in a Morris water maze26. In

addition to behavioral improvement, the study further

demonstrated that DBS enhanced hippocampal neurogen-

esis and improved long-term potentiation, potentially

revealing a new underpinning of cognitive enhancement

from DBS.

Continuous or open-loop electrical stimulation is the

dominant form of clinically applied DBS. However, conver-

ging evidence suggests that patterned stimulation can
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increase the efficiency of DBS to augment signal processing

in the brain. The utilization of theta burst stimulation in the

fornix showed improved spatial memory benefit over con-

ventional continuous DBS27. This dynamic stimulation also

quickly normalizes decreased theta-gamma comodulation in

amnesic animals. Another report using traumatic brain injury

in a rodent model confirmed that patterned stimulation of the

fornix using intermittent bursts in the theta range could also

rescue cognitive impairment28. Results of this nature may

arise due to the inherent theta frequencies of the hippocam-

pus, whereby theta-frequency phase locking of single neu-

rons in the hippocampus has been linked to memory retrieval

capability12. Given the immediate reversal of the electrophy-

siological abnormality, burst pattern stimulation (200 Hz in

100-ms trains, 5 trains/sec, 100 ms, 7 mA) of the fornix was

able to show faster improvement of spatial memory29, fur-

ther highlighting the importance of stimulation parameters

settings with DBS.

Basal Ganglia

The basal ganglia are associated with motor control and

execution and have been primarily targeted in movement

disorders. DBS, therefore, emerges as a promising treatment,

and GP DBS could suppress abnormal overactivity in the

motor cortex and associated motor circuits30. In addition,

the basal ganglia are also composed of multiple parallel

loops tied to associative and limbic circuits, which all point

to a prerequisite role for the basal ganglia in learning and

memory. Neuronal firing within the dorsal and ventral stria-

tum has been shown to encode animal and human behavior

during tasks involving the evaluation of expectations (e.g.,

reward responses)31–33. For example, neural activity in the

caudate nucleus is positively correlated with the rate of

learning during an associative learning task34. Even delivery

of microstimulation to the caudate nucleus (dorsal striatum)

during the reinforcement period increased the learning rate.

In contrast, neurophysiological evidence showed that

neuronal activity of the nucleus accumbens (NAc) in non-

human primates increased during the go-cue (initial) stage of

a visual-motor associative learning task, indicating these

neurons are associated with exploitation in reward-based

reinforcement learning35. This evidence suggests that the

ventral striatum is associated with the central representation

of reward and therefore plays essential roles in controlling

motivation for goal-directed behavior. Taking advantage of

spatially and temporally precise functions of the dorsal and

ventral striatum in associative learning, Katnani et al. first

adopted temporally coordinated DBS in the NAc and cau-

date nucleus for non-human primates36. The results showed

that both temporally specific DBS in the NAc and caudate

nucleus could reach significantly better learning perfor-

mance, compared with stimulation to each target alone. This

finding not only highlights the close coordination between

ventral and dorsal striatum in associative learning but also

highlights different roles involved in behavioral initiation

(motivational relevance) to encoding rewarding outcome

probability.

Mechanisms of DBS for Cognition
Improvement in Neurological Injuries

Stimulation and Activation of Cognitive Circuits

Although the precise mechanism of fornix and hypothalamus

stimulation is as yet unknown, axonal activation within the

fornix provokes widespread downstream connected neural

structures, including the impaired default mode network in

AD37. Several animal studies have also shown that electrical

stimulation within the limbic circuit may influence cognitive

function and induce memory recall38,39. Stimulation was

even proposed to activate the Papez circuit; whether DBS

of the fornix, hypothalamus, or mamillary-thalamic tract, or

all are responsible for memory enhancement remains to be

elucidated. Furthermore, the effectiveness of using DBS to

enhance cognition could depend on which nuclei are tar-

geted, and therefore, different electrical parameters are used.

Through exploration of animals with dementia, we might

provide the optimal stimulating parameters and target selec-

tion for humans with neurodegeneration and memory

impairment39.

DBS has been proven to enhance spatial learning memory

in both rodents and humans, and the effect is event related.

An essential aspect of both studies with entorhinal stimula-

tions to enhance spatial memory all indicate the importance

of stimulation during the learning phase when recruitment of

cognitive circuit and plasticity formation are demanded

most34,40. Future studies are necessary to compare the effec-

tiveness of applying stimulation at different stages of the

memory process, from learning, encoding, and storing to

retrieval.

Incorporation of Neurogenesis Into Memory Circuits

Impairment of neurogenesis is associated with the severity of

cognitive impairment in AD4. Although stem cell-based

approaches might be a potential treatment, significant obsta-

cles for cell transplantation remain as we strive to understand

controlling stem cells. Nonetheless, stimulation of the

entorhinal cortex induced neurogenesis of the dentate gyrus

and subsequent recruitment of these ‘new neurons’ within

hippocampal circuits, which showed promise for cognitive

augmentation15. Formation of specific spatial navigation

was only improved at 6 weeks rather than at 1 week after

stimulation in this study, and this delay-dependence explains

why adult-generated dentate granule cells are necessary to

mature and integrate into the cognitive circuit supporting

water maze memory. Few studies using direct electrical sti-

mulation of the hippocampus in rodents and humans have

shown negative results for subsequent memory acquisi-

tion18,41. These findings imply that manipulation or modula-

tion of neural activities within cognitive circuits may be
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more effective than direct stimulation of memory storage

sites, such as the hippocampus, to improve memory.

Anterior thalamus (AT) DBS has been shown to activate

the cerebral cortex in epileptic patients42,43. Given that the

AT directly connects with the hippocampus, AT DBS in

rodents also revealed increased hippocampal neurogenesis

and resulted in better cognitive performance44,45. Recruit-

ment of newly formed neurons implicated in the cognitive

process indicates the importance of stimulation duration, and

it may take time to ensure long-term plasticity and identify

the significant difference in humans46. Based on the causal

relationship between improvement of learning and memory

and expedited neurogenesis in the hippocampus after DBS,

some studies have tried implantation of stem cells or neuro-

trophic factor to reach similar enhancement of cognition5.

Future Applications

Given the dynamic nature of the mnemonic learning process,

from information encoding to memory retrieval, how we

harness DBS and cell repair in a versatile fashion is a pre-

requisite to achieving enhancement of cortical plasticity and

leading to improvement of implicated cognitive circuitry47.

Traditionally, targeted neural excitation or inhibition via

electrical current, mostly from DBS or cortical stimulation

devices, rely on continuous stimulation, and it is hard to

modulate these settings according to simultaneous neural

activity detection48,49. Technological advances in neural

interfaces are providing more ‘dynamic’ devices, which

combine precise spatial and temporal resolution of neural

signals and high fidelity and longevity of stimulation char-

acterisics50. For example, cortical reorganization within the

motor cortex resulting from recorded action potentials in one

location to deliver electrical stimuli to distant sites has been

proven through autonomously artificial connection cortical

implant40. This approach could ensure the causal relation-

ship between dynamic cognitive demand and stimulation to

boost cognitive demand function.

Conclusions

The heterogeneity of neurological diseases with cognitive

impairment indicates that their origins may lie in the dys-

function of multiple brain regions. The development of

novel treatments to improve cognition is anticipated upon

the identification of neural substrates within the cognitive

circuit. Neuromodulation and the ensuing neurogenesis have

emerged as a potential treatment of specific contexts of

memory function. Our understanding of how neuromodula-

tion works could help decipher the memory process and

ameliorate dysfunctional neural circuits for patients’

impaired cognition.
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