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Abstract. [Purpose] This study aimed to elucidate the effects of upper extremity loading on pelvic movements
during wheeled upright walker use. [Participants and Methods] Thirteen healthy male adults participated in this
intervention study. Participants walked under five conditions with targeted loads on their upper extremities of 0%,
10%, 20%, 30%, and 40% of their body weights using a wheeled upright walker with armrests. Measured items in-
cluded gait velocity and stride length; the angle of the maximum trunk anterior tilt; the range of motion of the trunk
and pelvis in the movements of obliquity, tilt, and rotation; and the amplitude of the center of mass in the vertical
and lateral directions captured and calculated using a three-dimensional motion analysis system. [Results] Increas-
ing the load on the upper extremities did not shorten the stride or restrict pelvic movement during gait using upright
walker use. The range of pelvic rotation with walker use increased versus that of the standard gait. [Conclusion] The
pelvis showed quantitative movements during gait using the wheeled upright walker with armrests. These results
could be helpful in the development of robotic assistive devices.
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INTRODUCTION

Improvement of gait ability is the most critical issue in clinical rehabilitation. Recently, gait retraining using a treadmill
or assistive robots has increasingly been used with patients who have central nervous system or neuromuscular diseases' ).
These commercialized devices are recognized to be efficient rehabilitative tools to help patients maintain proper posture
and decrease body weight load during repeated gait exercise® *). However, these devices are too large for many patients in
rehabilitation clinics to manage. We therefore instead propose the use of a walker-type assistive robot for these patients to
use in their daily lives.

Walkers, which are easy for patients to handle, are common assistive devices found in hospitals and other healthcare
facilities. Individuals who have weakened lower extremities can use a walker to help them walk safely and stably.

Few researchers have attempted to assess gait functionality while using a walker, from the perspective of biomechan-
ics® 7). Fast et al.®) evaluated the pattern and magnitude of forces transmitted through the frames of walkers during ambula-
tion. Viegas et al.”) proposed a measurement system to characterize an individual’s gait when using a walker assistive device
by using load cells to measure the force applied on the legs of the walker. These studies primarily investigated the force on a
pick-up walker and did not explore the kinematics of pelvic movement.
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Although the use of gait rehabilitation robots initially focused on controlling leg movement, recent studies of such devices
have considered the importance of pelvic motion in normal locomotion* 1% ). Mun et al.'? evaluated lower-limb dynamics,
including descriptive gait parameters, by restricting pelvic lateral displacement and rotation, and they found that pelvic
restriction considerably altered normal gait dynamics. As Saunders et al.!® pointed out, the pelvis plays a critical role in
normal gait, by efficiently controlling the center of mass movement. It is therefore essential to consider pelvic motion when
developing rehabilitative gait devices. However, no previous studies have investigated how the pelvis moves when a person
walks using a wheeled upright walker with armrests.

The use of a wheeled upright walker with armrests could limit the movement of the trunk due to the arms being fixed.
However, we hypothesized that pelvic movement could occur to some extent. If our hypothesis were proper, it would be
meaningful to assist the pelvis during gait exercises using a robotic, wheeled upright walker.

This study aimed to elucidate the effects of a load on the upper extremities on the movement of the pelvis while using a
wheeled upright walker. We sought to understand the implications for gait assistive control, which adapts the movement of
the pelvis during gait when using a wheeled upright walker.

PARTICIPANTS AND METHODS

The participants were 13 healthy young men (mean age: 22.1 + 1.0 years, mean weight: 69.7 + 9.2 kg, mean height: 174.4
+4.9 cm) who lived in the Kansai area in Japan. Exclusion criteria were neurologic or orthopedic problems that could disturb
walking. We obtained written informed consent from each of the participants before enrolling them in the study. This study
was reviewed and approved by the Aino University Ethics Committee (Aino2019-03, Osaka, Japan).

Using a wheeled upright walker with an armrest, participants walked on the walkway three times at their preferred speed.
We remodeled the commercially available wheeled upright walker (Paramount Bed, KA-391, Tokyo, Japan) to embed the
four load sensors between the armrest and the frame, set in the walker’s right front, left front, right rear, and left rear. We
had made the measurement system so that the participants could see their load on the armrest on the real-time graphical
display in front of them while walking. The armrest was set at the same height as a participant’s elbow joint to contact the
armrest widely in the upright standing position. We dictated that they walk with five targeted load conditions of their upper
extremities, 0%, 10%, 20%, 30%, and 40% of their body weight (BW). We also explained that the participants should imitate
the person with weak stability of the lower extremities to increase the load on the upper extremities without changing the
position of their forearms. In the 0% BW condition, they were instructed to push the walker forward not to lean on it. The
target value, rUB [%], is defined according to the upper limb load (ULL) ratio to BW, as follows:

rUB=ULL /BW x 100

There were 29 markers attached to each participant (MAC3D system, Motion Analysis Corporation, Rohnert Park, CA,
USA). The markers were placed at the top, front, and rear of the head, both sides of the shoulders, elbows, wrists, right
scapula, both sides of the anterior superior iliac spine, the center of the posterior superior iliac spine, both sides of thighs, the
lower legs, lateral and medial knees and ankles, and heels and toes. We calculated the angles between each body segment, the
gait velocity, stride, and the center of mass (COM), using Cortex-64 software (Motion Analysis Corporation).

We recorded data once the participants had declared that they were familiar with the sensation of their target load by
engaging in some pre-trials. The walkway in the experimental room was approximately 4 meters long. There were eight
far-infrared cameras, which were used by the three-dimensional motion capture system to capture the markers on the partici-
pants. Participants were instructed to walk on the first one of three force plates (BP400600-2000, AMTI, Watertown, MA,
USA) with their right foot and not place the walker wheels on the force plate.

For data analysis, we selected the gait cycle from the first initial contact of the right foot on the first force plate to the
second initial contact of the right foot. Items measured were the maximum vertical ground reaction force per body weight
(GRF/BW); gait velocity and stride length; the angle of the maximum trunk anterior tilt; the range of motion of the trunk
and pelvis in the movement of obliquity, tilt, and rotation; and the amplitude of the center of mass (COM) in the vertical and
lateral directions. We defined the angle of the maximum trunk anterior tilt as the angle formed by trunk segment calculated
by the three-dimensional motion analysis system and the absolute horizontal axis of the room calculated before the measure-
ment. We use the word obliquity to refer to the movement in the frontal plane, tilt as the movement in the sagittal plane, and
rotation as the movement in the horizontal plane (Fig. 1). Representative values were calculated using the average from three
trials in each condition.

We performed a one-way analysis of variance for each measurement item, followed by post hoc multiple comparisons
using SPSS v. 20.0 (IBM, Chicago, IL, USA); values of p<0.05 were considered to be significant.

RESULTS

Significant differences were observed among all conditions (p<0.01) in the angle of the maximum trunk anterior tilt
increasing with rUB. The mean value was 6.7 = 7.1° with 0%, 13.6 = 5.8° with 10%, 21.7 + 4.9° with 20%, 26.1 £ 5.8° with

J. Phys. Ther. Sci. Vol. 34, No. 4, 2022 270



30%, and 28.9 + 5.7° with 40% rUB (Table 1A).

With 40% rUB (0.68 + 0.11 m/s) and 30% rUB (0.71 + 0.11 m/s), the velocity was significantly lower (p=0.025 and 0.014,
respectively) than that with 0% (0.74 £ 0.09 m/s) (Table 1B). The stride was significantly larger (p=0.037) with 30% rUB
(1.11 £ 0.09 m) than that seen with 0% (1.06 £ 0.06 m) (Table 1C).

With 0% rUB (5.4 + 1.6°), the range of motion of the trunk tilt was significantly larger than that with 10% (4.1 + 0.9°),
30% (4.0 £ 1.1°), and 40% (3.9 £ 1.0°) (p=0.036, 0.014, and 0.023, respectively). Approximately 4° of trunk tilt motion was
observed with 10%, 20%, 30%, and 40% rUB.

Regarding the range of motion of the trunk obliquity, the mean value with 10% rUB (3.5 &+ 0.9°) was significantly larger
than that with 30 (2.9 + 0.7°) and 40% rUB (2.9 + 0.5°) (p=0.004 and 0.047, respectively). Furthermore, the mean value with
20% rUB (3.3 + 0.8°) was significantly greater than that with 30% (p=0.033).

With 10% rUB (3.8 + 1.1°), the range of motion of the trunk rotation was significantly lower than that with 0% (4.9 + 1.5°)
and 40% rUB (4.6 = 1.3°) (p=0.023 and 0.049, respectively) (Table 2).
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Fig. 1. Definitions of directions.

Table 1. (A) The angle of the maximum trunk anterior tilt, (B) velocity, and (C) stride

rUB 0% a 10% b 20% ¢ 30%d 40% e Post hoc

(A) (degrees)  6.7+7.1 13.6+5.8 21.7+49  261+58 289+57 a>b, ¢, d, e**
b>c, d, e**
c>d, e**
d>e**

(B) (m/s) 0.74+£0.09 0.72+0.08 0.71+0.08 0.71+0.11 0.68+0.11 a<e*; d<e*

(C) (m) 1.06£0.06 1.07+0.09 1.09+0.08 1.11£0.09 1.12+0.11 a<d*

*#p<0.05, **p<0.01.

Table 2. Range of motion of trunk movement

UB
Movement d
0% a 10% b 20% ¢ 30%d 40% e Post hoc
Tilt (degrees) 54+1.6 41+£09 44+1.0 4.0+ 1.1 39+1.0 a>b, d, e*
Obliquity (degrees) 32+0.6 35+0.9 33+0.8 29+0.7 29+0.5 b>d, e**
c>d*
Rotation (degrees) 49+1.5 38=+1.1 40+1.3 43+ 1.8 46+1.3 a>b*
b<e*

%p<0.05, **p<0.01.
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No significant differences were observed among rUB with any directions of the range of motion in the pelvic movement.
The mean degrees of motion in the pelvic tilt, obliquity, and rotation were 3.9°, 6.8°, and 14.2°, respectively (Table 3).

With 0% rUB (17.4 + 3.4 mm), the vertical amplitude of COM was significantly greater than that with any other condition
(p<0.01). The value with 10% rUB (13.5 £ 2.6 mm) was also significantly higher than that with 20% (12.1 £ 2.2 mm), 30%
(11.7 £ 2.9 mm), and 40% rUB (10.4 & 3.2 mm) (p<0.05).

For the lateral amplitude of COM, 0% rUB (52.4 £+ 18.1 mm) showed a significantly greater value than that with any other
condition, and 10% rUB (41.8 £ 13.2 mm) showed a significantly greater value than that with 30% (33.1 = 11.3 mm) and
40% rUB (29.8 + 13.7 mm) (Table 4).

DISCUSSION

This study examined changes in the gait of healthy young people assisted by a wheeled upright walker, elicited by different
loads on the upper extremities. This information will be helpful in identifying which elements of movement during a walker’s
gait are restricted or augmented by the load on the upper extremities when developing a robotic gait assistive device.

This study showed that gait with a wheeled upright walker restricted most aspects of an individual’s movement except
for pelvic movement and stride. Some studies previously reported that the trunk tilt range of motion varied from 2.0° to
12.6° during normal gait with no limitation of the arm swing!?. In our results, compared with 0% rUB, the range of motion
of the trunk tilt decreased with 10%, 30%, and 40% rUB. However, approximately 4° of movement was observed in every
condition despite the increased maximum anterior tilt of the trunk anterior. These observations indicate that the trunk moves
back and forth in the walker to some degree during the gait cycle. With 10% rUB, the trunk tilt and rotation range decreased,
but obliquity increased. Participants could have retained some lateral trunk movement when the load on the upper extremities
was slight, such as with 10% rUB. As the rUB increased and the lateral trunk movement was restricted, rotation of the trunk
might be needed as an alternative. Krebs et al.'¥) reported that during an average level gait the mean range of trunk obliquity
was 5.4° and rotation was 9.0°. However, the values we obtained were lower than these results. Notably, trunk rotation
showed a V-shaped curve. Participants should make their trunk rigid to transfer the load to the upper extremities; however, as
rUB increases, participants might also need to rotate their pelvis and trunk further to maintain their stride. Though our results
showed statistical significance in the range of the trunk movement in conditions, the difference was slight. We emphasize that
immobilization of the upper extremities during wheeled upright walker-assisted gait restricts trunk movement, especially in
obliquity and rotation.

During standard, level gait, the vertical displacement of COM is approximately 45 mm'>. Our results showed that the
vertical amplitude of COM was less than this, at 17.4 mm, even with 0% rUB. With rUB of 20% or over, a significant
decrease in the vertical amplitude of COM occurred. We suspect that the restricted range of motion in trunk obliquity and
rotation was a factor that constrained the vertical amplitude of COM. The mean value of the lateral amplitude of COM with
0% rUB in this study was 52.4 mm, which is similar to the reported value for normal gait. However, the lateral amplitude
of COM seemed to be limited with 20% or over rUB. As the load on the lower extremities decreases, the vertical and lateral
amplitudes of the COM might have resulted in being lower.

The wheeled upright walker’s gait restricted the vertical and lateral amplitudes of COM with 20% or over rUB.

The angle of the maximum trunk anterior tilt significantly increased with increasing rUB. When using the upright walker,
the load on an individual’s lower extremities can be relieved by placing their forearms on the armrest of the walker. Okada

Table 3. Range of motion of pelvic movement

rUB
0% 10% 20% 30% 40% Mean
Tilt (degrees) 42+2.6 41+13 39+£1.0 35+£09 39+19 39403
Obliquity (degrees) 69+2.0 6.4+3.1 6.6+2.0 6.6 2.1 74+1.8 6.8+0.4
Rotation (degrees) 14.8 £4.5 13.6+3.3 140+2.3 143 £3.5 142+3.6 142+04

Movement

Table 4. The amplitude of center of mass (COM)

Direction rUB
0% a 10% b 20% ¢ 30%d 40% e Post hoc
Vertical (mm) 17.4+3.4 13.5+2.6 12.1+£2.2 11.7+£2.9 104+3.2 a>b, ¢, d, e**
b>c, d, e**
Lateral (mm) 524 +18.1 41.8+13.2 353+124 331+11.3 29.8+137 a>b, ¢, d, e**
b>d, e**

*p<0.05, **p<0.01.
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et al.!® reported that the degree of the anterior trunk tilt and the armrest load were almost directly proportional when using
a wheeled upright walker with armrests. In our study, the trunk was tilted anteriorly at 13.6° with 10% rUB and 28.9° with
40% rUB, which could be challenging to describe as a proportional relationship. Our results seemed to differ from those of
Okada and colleagues because they measured the trunk tilt angle without provisions of the arm position. In contrast, in our
experiment the participants were forced to bear the load on their forearms in the same place during gait, thus keeping the load
fixed. However, we should carefully consider that the anterior trunk tilt could suggest the quantity of the load on the armrest
during gait while using a wheeled upright walker.

With 30% rUB, the gait velocity was significantly lower compared with 0% rUB, while the stride was significantly
increased. During gait using a wheeled upright walker, the force from the load on the upper extremities can be divided into
two vectors: anterior elements that assist the tires of the walker to move forward and downward factors that increase the
friction between the tires and floor. The increased trunk anterior tilt is thought to have enhanced the downward force. The
stride must in turn be longer to maintain the same velocity.

The rotation of the pelvis plays an important role in lengthening the stride. A previous study on human walking stated that
the total range of motion of the pelvic tilt in the sagittal plane is usually reported to be 4°, obliquity in the frontal plane to
be 4°, and rotation in the transverse plane to be 10°!%). In our study, the mean range of motion of the pelvis under all condi-
tions was approximately 3.9° and 6.8° in the sagittal and frontal planes, respectively, which is similar to normal walking.
Meanwhile, the mean value for pelvic rotation was 14.2°, which was far higher than the reported normal range of 8°.

Several authors have emphasized the importance of pelvic movements in human gait* 1219, One of the essential functions
of the pelvis is to produce a forward rotation on the swinging leg and an opposite rotation in the terminal stance phase. The
increase of the pelvic rotation seen in this study might be an alternative strategy to maintain forward propulsion. Our results
revealed that pelvic movement was not reduced even when using the walker; on the contrary, the range of pelvis rotational
motion was surprisingly higher than that seen during the standard gait. These results can be used as indicators for the develop-
ment of a robotic-assistive device system, which controls pelvic motion during walking while using a wheeled walker.

To inspect the movement of the pelvis during gait while using a wheeled upright walker, we asked our healthy participants
to imitate patients who need an assistive device while walking. One of the limitations of this study was that the simulated gait
did not represent exactly the gait of actual patients. However, we could reveal that our hypothesis was correct, i.e., that pelvic
movement would occur to some extent even when using a wheeled upright walker. In future studies, we should examine the
human force and torque used to control the pelvis during gait with a wheeled upright walker, because the pelvis was clearly
able to move in the walker. The recruitment of more participants, including elderly persons, would be helpful to clarify the
characteristics of gait while using a wheeled walker. This study represents a first step in developing a robotic-assistive walker
in the future.
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