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The union of the Kuramoto–Sakaguchi model and the Hebb dynamics reproduces the

Lisman switch through a bistability in synchronized states. Here, we show that, within

certain ranges of the frustration parameter, the chimera pattern can emerge, causing

a different, time-evolving, distribution in the Hebbian synaptic strengths. We study the

stability range of the chimera as a function of the frustration (phase-lag) parameter.

Depending on the range of the frustration, two different types of chimeras can appear

spontaneously, i.e., from randomized initial conditions. In the first type, the oscillators

in the coherent region rotate, on average, slower than those in the incoherent region;

while in the second type, the average rotational frequencies of the two regions are

reversed, i.e., the coherent region runs, on average, faster than the incoherent region.

We also show that non-stationary behavior at finite N can be controlled by adjusting the

natural frequency of a single pacemaker oscillator. By slowly cycling the frequency of the

pacemaker, we observe hysteresis in the system. Finally, we discuss how we can have

a model for learning and memory.

Keywords: chimera states, Hebb rule, synchronization, spike timing-dependent plasticity, Kuramoto-Sakaguchi

model, frustrated coupling

1. INTRODUCTION

Brain transplantation of cell-derived cortical pyramidal neurons into the mouse cortex makes for
a mouse/human chimera model that helps in the study of human brain development (Linaro
et al., 2019; Le Bras, 2020). The chimera model takes its name in a similar manner from Greek
mythology (Kuramoto and Battogtokh, 2002; Abrams and Strogatz, 2004).

Even from the mythological standpoint, it is inspiring to think about how this monster can
come about. This monster takes its character from collecting facets that come together only in
exceptional circumstances.

In physics, when we talk about emergent properties, we know that exceptional circumstances
should come together to give birth to such novel traits of beauty. But, beauty or beast, the idea is of
the same basic nature (Ikegami et al., 2017). The collective nature of such particular phenomena
serves some function and, as the following example indicates, the reductionist approach is
insufficient to elucidate its formation.

There is a form of fear, named sensitization, that is learned. The learning mechanism leading to
it was studied in Aplysia, a sea snail, and compared to that of a vertebrate. It was discovered that
for the case of learning in snail as well as the complex learning in mammals, the same biochemical
mechanism holds—for both, the long–term memory differs from the short–term memory in that,
the long–term memory requires the synthesis of new protein (Kandel, 2001).
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Chimeras, as a particular coexistence of synchronized and
desynchronized states, can help in modeling phenomena ranging
from epilepsy (Wang and Liu, 2020; Frolov andHramov, 2021) to
power grid outages (Haugland, 2021; Parastesh et al., 2021). The
collective behavior in a multilayer network of coupled neurons is
compared to mechanisms in the brain (Majhi et al., 2017). From
a neurophysiological standpoint, the chimera state can model
the unihemispheric sleep in dolphins, and some other marine
mammals (Mukhametov et al., 1977; Rattenborg et al., 2000;
Wang and Liu, 2020).

The network we consider in our model, benefits from a
physiological status, in that the coupling within the model
incorporates synaptic plasticity by using Hebbian dynamics. The
network of neurons, employs the Kuramoto-Sakaguchi model,
and adds to it a set of Hebbian synapses. This model, studied
here for the first time, reveals emergent chimera states. We study
certain characteristics of such chimera states, and also show how
the model brings about the possibility of learning and memory.

The non-local coupling used in our model has also
been extended to global coupling, or other networks with
more complex topology, such as scale free, showing chimera
states (Chandrasekar et al., 2014; Zhu et al., 2014). The emergence
of chimera states out of arbitrary initial conditions, as we observe
in our present model, has similarly been observed in Zhu et al.
(2014) in the context of a different model. The network structure
can also be such that a pair of coupled populations with time
varying interactions is present, and the chimera emerges when
the interpopulation links depend on time (Buscarino et al.,
2015). In another study, a multilayered network is present, where
each layer has an ensemble of non-locally coupled Kuramoto-
Sakaguchi identical phase oscillators, and parameter mismatches
exist between the layers (Maksimenko et al., 2016).

The question of full synchronization, and how it can
be disrupted while keeping the stability of the dynamics is
important. Zanette (2005) introduced a frustration function that
gives a measure of the competing effects of the attractive and
repulsive interactions in a system of oscillators. Even in presence
of frustration, where a fraction of couplings are repulsive,
full synchronization, keeping all oscillators in phase and pace,
can be stable. As the repulsive interaction grows stronger,
the synchronized cluster breaks down. Similarly, Rakshit et al.
(2019) derived the necessary conditions for the transition from
a chimera to coherence by means of a coherent stability
function approach.

Frustration can also be introduced through the interactions
having a phase frustration. A system of Kuramoto oscillators
naturally accommodates a phase frustration, becoming the
Kuramoto–Sakaguchi model. It is known that such interactions
too, could prevent full synchronization (Kuramoto, 1975;
Acebrón et al., 2005). Such Kuramoto oscillators when placed on
a complex network, show complicated remote synchronization
properties based on the symmetry of the network (Nicosia et al.,
2013). Although remote synchronization is preferred based on
symmetry of the underlying network, there are other studies that
bring the distance function directly into the interaction, and find
various possible types of synchronization in presence of mobility

of the nodes and frustration of the network (Chowdhury et al.,
2019, 2020b). It is possible to tune the synchronization to a single
state, for a distribution of natural frequencies, and a distribution
of frustration parameters, i.e., phase lags (Kundu et al., 2018).

The relationship between frustration, and topology for the
complex network, can determine the final dynamical state,
when repulsive or repressive interactions are present, and the
frustration function helps in this regard (Levnajic, 2011). Here,
the final frustrated state shows multistability. If emphasis is
put on the network having a bipartite nature, the presence of
repulsive links results in an antiphase synchronization as the final
dynamical state (Chowdhury et al., 2020a).

In a similar study to ours, i.e., of non-locally coupled neural
oscillators (Sakaguchi, 2006), using a different type of synapse, it
was found that the synchronized motion could become unstable,
leading to non-uniform states. At a more fundamental level, the
chimera state has also been related to the synchronized state of
the Kuramoto model via a pitchfork bifurcation (Kotwal et al.,
2017). A recent study has also concentrated on the interplay of
the neuronal dynamics and chimera (Majhi et al., 2019).

To associate learning and memory, we need to first recall
that a change in the behavior that comes from experience is the
result of learning and memory. The retrieval process completes
this association (Thompson, 1986). There are neural mechanisms
for learning, and in fact they are proposed as mechanisms of
memory too (Eccles, 1964; Woody, 1982). In more advanced
theory, there are memory traces in the brain that are required for
some forms of learning (Thompson, 2005; Shutoh et al., 2006).
This means that a neuronal circuit is involved in the recollection
of a particular memory (Mayford et al., 2012). It is then possible
to affect learning by changing the strength of the associated
memory trace (Li et al., 2020). In our study, it is the notion of
frustration that is important for memory, as we discuss in the
next section. We eventually associate a local minimum and the
neurons involved in it, to the formation of such a trace or circuit.
The chimera state comes into play as it relates to the biological
state of the array of neurons.

In sum, the present study uses Hebb’s synapse to facilitate
time dependent neuron coupling in the Kuramoto-Sakaguchi
model. We thereby demonstrate the emergence of a chimera
state in a biologically meaningful setting. We also show how the
incorporation of synaptic plasticity brings about the possibility of
learning and memory; the latter, being associated with particular
configurations of the time evolving neuron coupling coefficients.

The paper is arranged as follows. Section 2, presents the
synaptic model, along with its dynamics, and compares it with
some other models. Section 3 is devoted to our results, and how
they come about from the unique properties of our model. The
main result is the emergence of the chimera state. In Section
3, we discuss the stability of chimera state as a function of
frustration, and how the initial conditions become immaterial
in the emergence of the chimera state. It is also shown how the
presence of a pacemaker brings hysteresis in the dynamics. In
Section 4, we conclude by returning to the biological viewpoints
based on learning and memory. Intricacies of the computational
methods can be found in the Appendix.
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2. THE MODEL

The model we use is based on Hebb’s theory of synaptic plasticity,
which can explain learning and memory as being essentially
the same thing (Hebb, 1949). According to this view, it is
the strength of the synapse connecting two neurons that can
represent memory. A fixed graph is a fixed set of neurons and
synapses, nodes and links, yet it is the plasticity of this fixed set of
synapses that contains the learned message. For a recent review
and critique of this viewpoint (see Langille and Brown, 2018).

The synapse has also been identified as the “functional unit
of the brain” (Mayford et al., 2012). Synaptic modification forms
the basis of memory storage. According to Hebb, the synapse is
strengthened if the activity of the presynaptic neuron excites the
postsynaptic neuron. This type of synaptic modification occurs
in the CA1 region of the hippocampus (Lisman and McIntyre,
2001).

The Hebb rule for the plasticity cij of the ij synapse is given by

ċij =











ǫ(α − cij)e
−

1ϕij
τp for 1ϕij ∈ [0,π], (1)

−ǫcije
1ϕij
τd for 1ϕij ∈ (−π , 0). (2)

The synapse is modified positively; i.e., strengthened, and can
reach the maximum α, as Equation (1) indicates. It also shows
that the strength of a synapse, cij is activity dependent, and
already contains traces of memory. The synapse is weakened;
i.e., modified negatively, as Equation (2) shows, and can reach
a minimum fixed point of zero.

In the planar rotator model, a rotating unit arrow’s location
on the plane is determined by its polar coordinate, or phase
ϕ. The model, also known as the XY model, has helped in
that the relative phase can determine the relative timing of the
presynaptic and postsynaptic spikes, so when a neuron is ahead in
spiking, its phase leads. If the postsynaptic spike comes after the
presynaptic spike, the synapse is strengthened: 1ϕij = ϕj − ϕi.
Here, j denotes the presynapse, and i the postsynapse, so that
when1ϕij > 0, the synapse is strengthened.We have to note that
we need activities in both the presynapse, and the postsynapse, if
we are to talk about synaptic modification.

The parameters τ refer to the learning time, and the larger they
are the faster is the learning. We can see this by first noting that
the exponent in Equations (1) and (2) is negative. So the larger
τ is, the larger is ċij, in magnitude, and accordingly, the synaptic
modification is larger; hence, faster learning. The two times, τp
and τd, need not be the same, as will be discussed later.

The coupling constant is incorporated within the Kuramoto-
Sakaguchi model (Acebrón et al., 2005),

ϕ̇i = ωi −
1

2n

N
∑

j=1

cij sin
(

ϕi − ϕj + σ
)

, (3)

where the phases, ϕi (i = 1, . . . ,N) are for a circular chain
of phase oscillators, each having a natural frequency ωi, and
initially identically coupled through the symmetric matrix cij,
with elements either equal to α or zero. As the phases evolve,

the coupling matrix elements are developed by the Hebb
dynamics. This interactive coupling dynamics is different from
that used in traditional chimeras for which the coupling is
defined via a distance function (Abrams and Strogatz, 2004, 2006;
Omel’chenko, 2018; Wang et al., 2019). There is a Kuramoto
synchronization study with no relation to chimera that tries to
employ a kind of Hebbian coupling, but with no time ordering
effect, only giving value to close pre-and-post spikes (Timms and
English, 2014).

The time dependent coupling, because of the Hebbian rule,
tends to inhibit clustering in the sense of the distance dependence
once a complex network is the framework of the Kuramotomodel
(Nicosia et al., 2013). The coupling, although can be positive and
negative, as the Hebbian rule shows, is only effectively so, and
again is different from the attractive-repulsive type considered
in some other models (Zanette, 2005; Chowdhury et al., 2020b).
The reason is that a faster neuron can at times be a presynapse,
and at other times act as a postsynapse. This is a complexity
that gives the model the potential to accommodate the
chimera state.

The Sakaguchi parameter σ , also known as the phase-
lag (Panaggio and Abrams, 2015) or frustration (Botha and
Kolahchi, 2018) parameter, has a significant effect on the
dynamics. This is what we touched upon in the Introduction.
In presence of σ , a Lyapunov function for the Kuramoto
Hamiltonian, is no longer available, and in the studies of stability,
other tools have been developed (Watanabe and Strogatz, 1994;
Zanette, 2005; Rakshit et al., 2019). As we have mentioned,
Zanette (2005) defines a frustration function, while Rakshit et al.
(2019) makes use of a coherent stability function. Unfortunately,
neither of these approaches can facilitate an analytic treatment
of the present system of Equations (1)–(3), which model a
non-locally coupled ensemble of neural oscillators, with each
oscillator being time-dependently coupled to its n nearest
neighbors, i.e., to n neurons on either side of it, with n > 1 and
2n+ 1 ≤ N.

In a dynamic response, we could seek a synchronized
spectrum. It is known that Hebbian dynamics and synchronous
response go together to the benefit of the biological
system (Cassenaer and Laurent, 2007). Of course, synchronous
firing of neurons could also be harmful, as in epileptic seizures.
A model with synchronization responses that do not live long
could reproduce such seizures (Frolov and Hramov, 2021).
Non-locally coupled FitzHugh-Nagumo (FHN) oscillators have
applications in neuroscience, and depending on the parameters
can give rise to chimera states (Omelchenko et al., 2013). The
FHN oscillators can demonstrate chimera state even if the
elements are in the excitable mode (Isele et al., 2016). The
excitable elements are able to localize the chimera, an aspect
which is present in our model too, and which we discuss in the
next section. The FHN oscillators on complex networks can
model epileptic seizures (Gerster et al., 2020). The chimera states
also exist in ensembles of bursting Hindmarsh-Rose neurons,
even if the coupling is local (Bera et al., 2016), and in a discrete
neuronal model that was recently developed by Khaleghi et al.
(2019) to facilitate an analytic treatment without loss of the
essential behavior.
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We are interested in the dynamics we introduce, as it can
model certain aspects of the memory. For this, we need to
emphasize that the ground state spectrum of the XY model, in
presence of the frustration, σ , develops a complicated texture—
the energy landscape acquires a huge near degenerate set (Teitel
and Jayaprakash, 1983; Watanabe and Strogatz, 1993). We can
imagine an egg crate potential landscape with a fine structure
formation, in many scales, on its maxima andminima. The rough
terrain in the energy landscape, due to frustration, is what we take
advantage of in synaptic modification, to create a vast memory
storage. We will show that depending on frustration σ , the steady
state pattern of synchrony can shift from a fully synchronized
set of neurons, to a chimera pattern. In a chimera pattern, the
collection of neurons (oscillators) breaks up into a symmetric set
thatmoves in synchrony, and a set that keeps its asymmetric state.
Both sets are simultaneously stable (Abrams and Strogatz, 2004).

3. RESULTS AND DISCUSSION

The asymmetric pattern that makes a chimera is known
to be a stable bifurcation from the symmetric synchronized
pattern (Kotwal et al., 2017). We can heuristically think of σ =

π/2 as the extreme frustration, and expect the instability to occur
close to it.

The Hebb dynamics allows the phases to scatter, as opposed
to cluster, meaning that a phase that leads another phase, could
lag it as time evolves. This is known to make synchronization
likely (Acebrón et al., 2005). The non-local interaction among
the phases simply means that we also have interaction between
phases that are not nearest neighbors. The learning time now
plays a role, and slow learning allows a quasi–adiabatic evolution.

By evolving the system Equations (1-3), as described in the
Appendix, we can visualize the time evolution of the chimera,
as is shown, for example, in Figure 1. In this instance, n = 20,
and the black bands seen in Figures 1B,D,F correspond to non-
interacting i and j, i.e., neurons which aremore than 20 neighbors
apart. The colored bands show the interacting neurons, with the
strength of the interaction given according to the color scale. It
is interesting how the coherent section creeps in as time evolves,
and how it is stabilized next to the incoherent sector. We see a
more or less symmetric coupling matrix, with the coherent sector
having a slightly less coupling compared to the incoherent sector.
In Figure 1H, we can also see non-stationary behavior of the
chimera, which is well-known for finite-N chimeras, due to their
stability properties (Xie et al., 2014; Bera et al., 2017).

Figure 1F also shows that, over long times, the coupling
matrix approaches near uniformity and, along with it the
wandering motion of the chimera, becomes much smaller. Yet,
the character of the chimera is preserved; namely, there is a near
synchronized sector, and another moving faster relative to it, not
synchronized at all. Hence, at long times we deal with a near
traditional chimera where all oscillators are identical, in coupling
and otherwise.

In the usual Hebb dynamics, without a chimera state, a
uniformly synchronized state is achieved in which the coupling
coefficients cij are either equal to α or zero, depending on

whether the presynapse leads or lags, respectively (Ansariara
et al., 2020). In the present system, when the chimera is present,
a steady state with small fluctuations in the coupling coefficients
is reached. However, for this steady state the average quantity,
(6i,jcij)/(2nN), is constant, as we will see, shortly. In fact, these
steady state fluctuations in the cij may play a role that is analogous
to thermal fluctuations on molecular dynamics (Rapaport, 2004)
or, more generally, any type of noise, as we will discuss at the end
of Section 3.

In our earlier study (Ansariara et al., 2020), which did not
involve chimera states, we showed that for a symmetric synapse
where, τp = τd, the time averaged coupling is α/2. This
came about as we investigated a bistability, which was essential
for the Lisman switch, and remained time–symmetric for the
time–symmetric synapse.

In the presence of a chimera state, the average coupling matrix
element decays exponentially in time, according to the equation

1

2αnN

∑

i.j

cij(t) = 1− β + β exp(−γ t), (4)

where β = τd/(τp + τd). The coupling matrix elements thus all
tend toward the average 1 − β . This is an empirical finding as
shown in Figure 2. Here, the average coupling matrix element
has been normalized to α. This result matches our earlier result
of α/2 when the two learning times are equal.

As we have seen in Figure 1, with a slow learning time, a long
time is required to reach the steady state. We emphasize here
that, in our dynamics, even after reaching the steady state, the
elements of the coupling matrix are not all constant and equal,
as would be the case for a traditional chimera. Nevertheless,
as Figure 1H shows, the chimera is non-stationary, meaning its
position fluctuates with time. Such non-stationary behavior is
well-known from finite N studies of traditional chimeras, and it
can be described well by Brownian motion (Wolfrum et al., 2011;
Omel’chenko, 2018).

The spatiotemporal configuration of the chimera changes, as
Figure 1 indicates. This means that oscillators that run faster
on average pass each other, and take each other’s place. If such
an overall motion of the chimera is to be localized, we need a
situation that does not allow this kind of overtaking. According
to the Hebb rule, Equations (1)–(2), if an oscillator’s motion;
i.e., a neuron’s firing rate, is fast enough relative to the neurons
it is directly in contact with, the other neurons must follow it,
and hence its coupling will not be affected. This makes a barrier
in that the neighboring oscillator cannot overtake the leading
neuron, as if a “fixed boundary condition” were imposed at the
site of the leading oscillator. This particular neuron is then called
a pacemaker (Ansariara et al., 2020).

In Figure 3 there is a pacemaker added via i = 31, shown by
the cross in Figures 3B,D. The natural frequency of this neuron,
ω31, is slowly increased over time. In the time evolution, there
is still a chance for other neurons non-locally coupled to it, to
get ahead, affecting it by changing its coupling. But overall, and
over long times, the chimera can be controlled by neuron 31,
as Figures 3E,F indicate. We note that, in the past, a variety
of different control mechanisms have been used on chimera
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FIGURE 1 | Time evolution of the chimera. (A,C,E) Distributions of the running time-averaged firing frequencies of the neurons. (B,D,F) Instantaneous coupling

strengths at the end of the averaging times indicated in the corresponding figures on the left. (G) Time evolution of the order parameter r(t) = |
∑

je
iϕj (t)|/N and (H)

distribution of running time-averaged neuronal firing frequencies. Simulation parameters: N = 60, n = 20, α = 1, τp = τd = 0.001π , σ = 1.478, ǫ = 0.01, and ωi = 1

for i = 1, . . . ,N.
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FIGURE 2 | The best fit (R2 = 0.998) provided by Equation (4) (solid black

line), to the numerical data (red diamond-shaped markers), for the average of

the coupling matrix elements as a function of time. See the main text

surrounding Equation (4) for details. Here, the parameters are: N = 40, n = 14,

α = 1, σ = 1.478, ǫ = 0.01, and ωi = 1 for i = 1, . . . ,N.

states (Sieber et al., 2014; Gambuzza and Frasca, 2016). There
is a similar influence to our pacemaker, coming from excitable
FHN elements, and resulting in effective barriers in controlling
the position of a chimera state (Isele et al., 2016).

Returning to the character of frustration σ in the rough
texture of the ground state space, in Figure 4, we investigate the
stability of the chimera pattern of synchrony, as a function of
the frustration. Here, we start from a chimera at σ = 1.478 and
slowly increase (decrease) the value of sigma, as indicated by the
arrows. The chimera is stable in a narrow vicinity to the left of the
dashed vertical line shown at σ = π/2, and toward the right of
the dashed vertical line at 3π/2. This result is in agreement with
the analytical study on the subject (Kotwal et al., 2017).

Comparison of Figures 4B,E shows that, for chimeras just
below σ = π/2, the coherent region runs slower than the
incoherent region, while for the chimeras just above 3π/2 it is
the opposite, i.e., we have an “upside down” chimera, as this
comparison clearly shows. We also note that as σ increases
through the large phase synchronous region surrounding σ = π ,
the upside down chimeras form spontaneously from the random
configuration of phases, once σ reaches the range of stability.
Similarly, we have found that spontaneous formation of the
chimera in the left hand range of stability also occurs if σ is
slowly decreased, starting from a completely incoherent phase
synchronous state at, say, σ = π . Thus the chimeras discussed
in our present work do not require any special initial conditions
(cf. Section 3 of Abrams and Strogatz, 2006).

In Figure 5, we have an example of a chimera, produced
from a random set of phases, which means, a random set of
synaptic strengths. As time evolves, following the dynamics we
have introduced, a chimera pattern of synchrony sets in, defining
a particular memory.

The idea of the pacemaker naturally leads to another question:
if the chimera is led by a pacemaker over the energy terrain,

will its motion become history dependent? Figure 6 shows that
the result of such an experiment is in the affirmative. Initially,
in Figure 6A, all the natural frequencies are set to ωi = 1. At
t = 128000, after the system has reached its steady state, the
pacemaker neuron, i = 20, is turned on by slowly increasing
its natural frequency above ω = 1 (as described in the last
paragraph of Section 3). The difference, 1ω = ω20− 1, is plotted
along the x-axis. On the y-axis, we plot the difference between
the running average 〈ϕ̇20〉t for the pacemaker, and the average
frequency, averaged over the rest of the ensemble (excluding the
pacemaker). The complete cycle then consists of (i) increasing
1ω from zero to 1 (red curve), (ii) decreasing 1ω from 1 to -1
(blue curve), and (iii) increasing 1ω back up to 0 (green curve).
In so doing the hysteresis loop is formed.

The hysteresis appearing in our system is likely due to
bistability or multistability in the dynamics, similar to that
reported in Belykh et al. (2016) for a system of Kuromoto
oscillators with inertia. However, to investigate the details of
this dynamics in our system is not a simple matter. Due to the
presence of the frustration parameter in our system, the hysteresis
can obviously not be understood in the usual way, i.e., in terms of
a potential energy barrier that traps the system as the stimulus is
changed. Thus, to provide a rigorous mathematical classification
of the underlying bifucations one would have to follow an
alternative, albeit mean field approach. Recently, for example,
Dixit et al. (2021) has developed such a mean field approach
that facilitates the use of sophisticated numerical continuation
software (XPPAUT), to obtain the full bifurcation structure. A
similar analysis of the present system could be a fruitful topic for
future research. The hysteresis we observemay also be related to a
recently reported phenomenon called self-adaptation of chimera
states (Yao et al., 2019), and this possible connection could also
be explored in the subsequent work. At this juncture, we simply
present the numerical evidence that the pacemaker in effect is
reshaping the energy terrain, and guiding the array of neurons
in some way.

Discussion of memory and learning is naturally linked with
the complex set of potential barriers. The cognitive state may be
characterized as being collectively purposefully non-stationary.
This may seem as a trivial characterization, in light of all the
molecular changes underlying long-term synaptic plasticity, and
its role in memory storage. It was discovered that the many forms
of synaptic plasticity are in fact required in the persistence of
memory (Mayford et al., 2012). So we think of a time dependent
collective state, with a time dependence that is guided in a
complex manner, defining procedural and declarative learning,
as a result of changes in synaptic strengths. There are specific
Hebbian learning rules that establish synaptic sequences needed
for storage and retrieval, similar to the dynamics observed in
hippocampus and parietal cortex (Gillett et al., 2020).

In our model of arrays of neurons connected with Hebb
synapses, the XY model helps in this dynamics, moving the state
in the vast space of local minima, thanks to frustration. We can
associate a fully synchronized state to a particular memory, yet
this does not play well with the neurophysiological mechanisms.
A chimera state in our set of neurons can simulate a memory
trace. In other words, we associate the chimera state of neurons
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FIGURE 3 | Time evolution of the chimera with a pacemaker at position i = 31. (A,C) Distributions of the running time-averaged firing frequencies. (B,D)

Instantaneous coupling strengths at the end of the averaging times indicated in the corresponding figures on the left. (E) Time evolution of the order parameter r(t) and

(F) distribution of running time-averaged neuronal firing frequencies. As can be seen in (F), the pacemaker diminishes the wandering of the chimera over time,

eventually maintaining the position of the incoherent part of the chimera near i = 31. Simulation parameters: N = 60, n = 20, α = 1, ωi = 0 (except i = 31),

σ = 1.478, τp = τd = 0.003 and ǫ = 0.01.
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FIGURE 4 | (A) Intervals of frustration (σ ) leading to stable chimeras, as indicated by the pink shading: σ ∈ (1.43, 1.55) for left interval and σ ∈ (4.75, 4.86) for the

right. r(t) is the order parameter (blue line). Also plotted on the y-axis (labels omitted) are the maximal and minimal average frequencies, as indicated by the legend.

Note that, when r(t) = 1, we have full synchronization, while max
{

〈ϕ̇i〉t
}

= min
{

〈ϕ̇i〉t
}

indicates phase synchronization. Other parameters are: N = 40, n = 14, α = 1,

ǫ = 0.01, τp = 0.003, τd = 0.004, and ωi = 1 for i = 1, . . . ,N. In (B,E), the two different chimera patterns discussed in the main text are shown at representative

values of σ . In (C,D), we see examples of the partially synchronized states that separate the two chimera intervals from the large phase synchronous interval, for

which all the oscillators rotate at the same frequency, while maintaining a fixed phase difference relative to one another.
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FIGURE 5 | The development of the chimera pattern from the arbitrary (random) initial configuration of phases shown in (A). The figures to the left of the panel

(A,C,E,G) show the instantaneous phases at times t = 0, 128, 256, and 25,600, respectively. On the right hand side (in B,D,F,H) are shown the frequencies. In the

case of (B) we plot the initial instantaneous frequency, while in (D,F,H) we plot the running average frequencies, computed as described in the last paragraph of the

Appendix. The parameters are: N = 40, n = 14, α = 1, ωi = 0, σ = 1.478, τp = τd = 0.003, and ǫ = 0.01.
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FIGURE 6 | (A) The pacemaker leading the chimera around a hysteresis loop (see main text for details). The inset shows a close-up view of the hysteresis loop.

(B) Before the pacemaker is turned on, the chimera moves about randomly throughout the oscillators. After the pacemaker is turned on at t = 128, 000, the position

of the chimera becomes correlated with that of the pacemaker. (C) The configuration of the chimera near the end of the cycle, shown in (A). The pacemaker and the

coherent part of the chimera are moving in synchrony.
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that have come about by the appropriate collectively modified
synapses, to a memory circuit. This state is not stationary in time,
just as a cognitive state is not. The fully synchronized state is a
dislocated cognitive state, as in a seizure. Hence, the collective
simultaneity of the coherence and incoherence as present in a
chimera, keeps the cognitive state in order, as the basis of various
types of memory and learning.

In addition, there is an unexpected result: in Figure 6A we see
a plateau-like region which is due to the partial synchronization
of the frequencies of the oscillators of the coherent cluster by
the leading oscillator (peacemaker). Figure 6C shows the time
averaged frequencies of all the oscillators corresponding to1ω =

−0.2437 (increasing) within the plateau-like region. It shows
that, on the plateau, the average frequency of the pacemaker is
the same as that of the coherent region.

By way of discussion, we mention that this behavior is
reminiscent of the resonance that occurs in a system of LC
shunted Josephson junctions, in which the Josephson frequency
can be controlled via the dc-bias current to resonate with the
natural frequency of the shunting circuit, giving rise to a so-called
resonance circuit branch (rc-branch) (Shukrinov et al., 2015).
Such resonance tends to synchronize the Josephson junctions.
Here, the pacemaker oscillator appears to act like the resonance
circuit in the sense that it causes the partial synchronization
of the oscillators in the coherent cluster by the same type
of “frequency pulling” mechanism that is well-know in many
non-linear systems (Hilborn, 2000). Note that, unlike Shapiro
steps, which occur in the driven Josephson junction due to
frequency locking with the external excitation, the rc-branch is
not completely flat, like the plateau seen here.

Furthermore, when the pacemaker frequency becomes too
different from that of the coherent part, we also observe a
transition off the plateau, which is akin to reaching the ends
of the rc-branch. In fact, this behavior of the current system
may also be related to that of coherence-resonance chimeras,
as originally reported in Semenova et al. (2016). In the latter
work the locations of coherent and incoherent domains is also
observed to interchange, much like we saw in Figures 4B,E.

Moreover, in our case the fluctuations in the cij, brought about by
the Hebb rule, may play an analogous role to the noise in systems
exhibiting coherence-resonance chimeras. In future work we
intend to investigate these questions in greater detail.

4. CONCLUSION

We can think of the chimera as a harmonious pattern, whose
structure within, serves a function that the uniform synchronized
state could not. We can study the brain with the special eye on
how a chimera state can help in organization of the cognitive state
(Bansal et al., 2019).

In the model we studied, with the synapses being of the Hebb
type, we discovered that the coupling or the strength of the
synapse goes through an evolution. As the synapses are modified,
the collection learns. But eventually, upon reaching the steady
state, all synapses are statistically in the same modified state, and
memory is lost. Although we have a memory that forgets, the
approach to the modified state of the synapses could be designed
to take an arbitrarily long time. In this way, the chimera could
give a more advanced learning/memory.
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APPENDIX: COMPUTATIONAL METHODS

Equations (1)–(3) constitute a set of (2n + 1)N coupled

differential equations. Even for N = 40 and n = 14, (2n +

1)N amounts to more than a thousand equations, making it

time consuming to solve. It thus becomes essential to set up

FIGURE A1 | Fortran 90 code for returning the vector of first derivatives for the system of Equations (1)–(3). The parameters are stored in the vector v in the order σ ,

α, τp, τd, and ǫ. The variable theta corresponds to 1ϕij in Equations (1)–(2).

and solve Equations (1)–(3) in a way that is computationally
efficient. In the present work we have used a convenient and
efficient combination of Fortran 90 and Python 3 codes. To
benefit from the greater computational efficiency of Fortran
90, compared to Python, we coded a Fortran 90 subroutine
for returning the first derivatives. In this subroutine we use a
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FIGURE A2 | Python function for generating the index matrix ii that is passed via the 6th argument into the Fortran 90 subroutine shown in Figure 1.

Python generated index matrix ii to stack only the 2nN non-zero
components of the adjacency matrix into the returned vector of
first derivatives. For convenience we list the Fortran 90 code for
returning the first derivatives in Figure A1. Figure A2 gives the
python function for generating the index matrix ii that is passed
into the Fortran subroutine.

To solve the system we first wrap the Fortran subroutine
into a Python callable function using f2py and then employ
the Dormand–Prince routine dopri5 (Hairer et al., 1993)
from the Python module scipy.integrate (Virtanen
et al., 2020). In dopri5 we set both the relative and
absolute integration error tolerances to 10−12. At these settings
the code uses approximately 0.427[(2n + 1)N]1.704 CPU

seconds to evolve the system by 100 000 time units and is
available online:
https://doi.org/10.24433/CO.9507305.v1.

In Figure 2, we obtained the best fit parameters for
Equation (4) by using the Python routinecurve_fit, imported
fromscipy.optimize (Virtanen et al., 2020), with the default
optimization method, leastsq.

For the running averages, such as those plotted in
Figures 1A,C,E,H, we have averaged over 128 time units,
sampling every 0.5 time units. When we apply a pacemaker,
as shown in Figure 3, for example, we change the pacemaker’s
natural frequency, ωi (for some fixed i), by 5 × 10−5 every 0.5
time units.
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