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The ‘social microbiome’ can fundamentally shape the costs and benefits of
group-living, but understanding social transmission of microbes in free-
living animals is challenging due to confounding effects of kinship and
shared environments (e.g. highly associated individuals often share the
same spaces, food and water). Here, we report evidence for convergence
towards a social microbiome among introduced common vampire bats,
Desmodus rotundus, a highly social species in which adults feed only on
blood, and engage in both mouth-to-body allogrooming and mouth-to-
mouth regurgitated food sharing. Shotgun sequencing of samples from six
zoos in the USA, 15 wild-caught bats from a colony in Belize and 31 bats
from three colonies in Panama showed that faecal microbiomes were more
similar within colonies than between colonies. To assess microbial trans-
mission, we created an experimentally merged group of the Panama bats
from the three distant sites by housing these bats together for four
months. In this merged colony, we found evidence that dyadic gut micro-
biome similarity increased with both clustering and oral contact, leading
to microbiome convergence among introduced bats. Our findings demon-
strate that social interactions shape microbiome similarity even when
controlling for past social history, kinship, environment and diet.
1. Introduction
The ‘social microbiome’—defined as the collective microbial community of an
animal social network—can fundamentally shape the costs and benefits of
group living [1]. A social microbiome is measured by sampling microbes
across the social network that provides a reservoir of both pathogens and
beneficial microbes [2–8]. To balance the costs and benefits of these various
microbes, individuals can increase microbial transmission by performing
behaviours such as mouth-to-mouth regurgitations or consuming faeces [1],
or decrease microbial transmission through behaviours such as avoiding sick
individuals [9].

Understanding the effects of social transmission on microbiome similarity
in free-living animals is challenging, however, due to confounding effects of
kinship and shared environments [1]: offspring might acquire microbes from
parents, and individuals that are highly associated will often share the same
spaces, food and water. Such influences are hard to disentangle in observational
field studies. A more powerful approach is to control these confounding factors
experimentally, rather than statistically.

Here, we introduce individuals from distant sites and track their social inter-
action rates to assess the role of social interactions in shaping gut microbiome
composition. We used the common vampire bat, Desmodus rotundus, a highly
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social species and obligate blood feeder. Due to this special-
ized diet, dietary variation plays a smaller role in explaining
microbial diversity among vampire bats [10–12] compared to
mammals with less specialized diets [13]. On the other hand,
social transmission of microbes is likely a causal driver of
microbial diversity in this species because female vampire
bats hang in tight clusters and spend about 5% of their
awake time grooming other individuals’ wings or fur with
their mouths [14]. In addition, females regurgitate blood to
their offspring and to other highly associated adults that
failed to feed [14–17]. This oral contact (mouth-to-body
allogrooming and mouth-to-mouth regurgitated food
sharing) provides channels for microbial sharing between
individuals.

To assess evidence for group-level convergence in the
vampire-bat social microbiome, we sampled the faecal and
gut microbiome of captive-born vampire bats from six zoos,
15 female vampire bats from a wild colony in Belize and an
‘experimentally merged’ colony composed of 26 wild-
caught vampire bats and five captive-born offspring sourced
from three distant sites in Panama, then housed together in
captivity for four months. In the experimentally merged
colony, social networks of rates of clustering and oral contact
predicted gut microbiome similarity, and faecal samples
showed evidence for microbiome convergence over time.
2. Material and methods
(a) Sample collection
To assess colony-level variation in faecal microbiomes, we
obtained three to six faecal samples from vampire bats housed
at six zoos: (i) North Carolina Zoological Park, Asheboro,
North Carolina; (ii) Cincinnati Zoo and Botanical Garden, Cin-
cinnati, Ohio; (iii) Dallas World Aquarium, Dallas, Texas; (iv)
Memphis Zoological Garden and Aquarium, Memphis, Tennes-
see; (v) Aquarium and Rainforest at Moody Garden, Galveston,
Texas; and (vi) Sedgwick County Zoo, Wichita, Kansas. In
Belize, we collected faecal samples from 15 female bats (capture
and fieldwork described previously [18]). In Panama, we indivi-
dually sampled 26 wild-caught bats that were experimentally
merged into one colony, as well as five captive-born offspring,
for studies on social relationship formation (electronic sup-
plementary material, table S2). We captured all bats from three
distant wild roosts (120–340 km apart): six adult females, one
juvenile female and two juvenile males from a cave at Lake
Bayano, Panamá, 10 adult females from a hollow tree in Tolé,
Panamá (including one bat that was not part of the merged
colony) and eight adult females from a hollow tree in La Chor-
rera, Panamá. We then housed these bats together in an
outdoor flight cage for four months as described previously
[19]. We opportunistically took 85 faecal samples from isolated
bats from 19 May 2019 to 16 October 2019. In all study colonies,
faecal samples were smeared in duplicate on FTA cards
(Whatman, GE Healthcare, sup. no. WB120055).

In the experimentally merged colony, bats were fed with
cattle or pig blood from a meat processing plant that was chemi-
cally defibrinated with 44 g of sodium citrate and 16 g of citric
acid per 19 l container. The blood was either refrigerated for
up to 6 days or stored frozen, then thawed immediately before
being provided to the bats. Nine bats developed a Staphylococcus
infection during the study, which required administration of
enrofloxacin and isolation from the rest of the colony from 21
July to 5 August. However, no faecal samples were collected
after 13 July, and we also failed to detect any clear effect of this
antibiotic on the diversity of final gut microbiome sampled on
15 October (mean and 95% CI of Simpson diversity: 19 untreated
bats = 0.881 [0.874, 0.887], nine treated bats = 0.876 [0.868, 0.883];
t-test: t = 0.92, d.f. = 19.3, p = 0.4). For the final gut sample, bats
from the experimentally merged colony were sacrificed using
isoflurane to anaesthetize them (inhaled ≥ 5%) prior to rapid
decapitation. Gut samples were collected from the distal colon
and smeared on FTA cards.

(b) Social network construction
In the merged colony, we recorded clustering and oral contact
from video recorded by three infrared surveillance cameras
(Foscam NVR Security System) for 6 h each day from 23 June
2019 to 4 August 2019, and from 11 August 2019 to 14 October
2019 (a total of 640 sampled hours), as described previously
[19]. To measure clustering, all bats that were roosting in a con-
tiguous group at the start of each half-hour were scored as
associated. To measure rates of oral contact (which includes
mouth-to-body or mouth-to-mouth contact), we measured the
duration of any bout of licking that was at least 5 s in duration,
noting the actor and receiver. Because mouth-to-mouth contacts
were rare (never observed in 71% of pairs), we do not analyse
them separately from mouth-to-body contacts.

We calculated undirected clustering networks using the
simple ratio index in the R package asnipe [20], and undirected
contact rates as the mean of the total duration of dyadic inter-
action bouts in both directions for each sample hour during
which both bats were present in the flight cage. To reduce
extreme skew in the edge weights for oral contact, we applied
an inverse reciprocal transformation to (1+ oral contact rates).
We scaled network matrices to standardize units to standard
deviations across variables.

(c) Microbiome sequencing
DNA was extracted from FTA cards in a designated pre-PCR
BSL-2 laboratory using the Qiagen PowerSoil kit (Qiagen; cat.
no. 47014). Every batch of 8–24 sample extractions included a
negative control. Samples with discoloration after the wash
buffer step in the protocol were eluted and re-bound to filter col-
umns with binding buffer for one to three additional washes.

Genomic libraries were constructed using the Illumina DNA
Prep kit (Illumina, cat. no. 20018705). Duplicate samples were
randomly selected or combined for separate library builds for
the Belize colony, the aggregated zoo populations and the exper-
imentally merged colony (electronic supplementary material,
table S1). Extraction negatives had negligible quantities of
DNA as quantified by Qubit readings (ThermoFisher Scientific,
cat. no. Q32851), and were combined to make per-population
negative libraries. A separate library negative was also con-
structed. Overall, 145 samples, including samples, duplicates
and listed negative controls, were sequenced on a NovaSeq
6000 S4 lane (Illumina), resulting in approximately 1.75 billion
150 bp paired-end reads. Because we used DNA extraction with-
out reverse transcription, our microbiome analyses do not
include RNA viruses.

(d) Bioinformatics
Sequences from negative extraction and sequencing libraries
were used to create population-specific filtering databases in
addition to the human genome database provided by KneadData
to filter all sample reads [21]. Paired-end reads were combined
and taxonomically profiled using MetaPhlAn 3 [21]. MetaPhlAn
3 was run using default parameters, assigning taxonomy to
genus/species based on unique nucleotide sequence markers
and ignoring sequences that fail to match these markers [22].
We found high consistency in the duplicates from these initial
profiles, varying less than 5% in read counts attributed to each
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Figure 1. Mean faecal microbiome similarity between bats from the same or different colonies is consistent with social convergence. Microbiome similarity was
measured for faecal samples of two bats from the wild (red), two bats from the zoo (green) or one zoo and one wild bat (blue). Mean microbiome similarity with
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taxa. Once initial analyses were complete, duplicates (both
paired sets of reads) were combined with their partner for
further analyses.

MetaPhlAn 3 identified 102 species-level taxa across all
three populations [21]. Alignment data were analysed using the
phyloseq R package [23–25]. To account for variable sequencing
depth, we used a variance stabilized transformation, and
assessed abundance in sample types and populations using
DESeq2 [26]. Functional analysis of the filtered reads was done
with HUMAnN3; hits were grouped by enzyme classes and
split to taxonomic levels where possible [21]. We converted tax-
onomy-associated read data into Bray–Curtis distances, and
defined ‘microbiome similarity’ as 1—Bray–Curtis distance.
(e) Statistical inference
To test the simultaneous effects of clustering and oral contact net-
works on gut microbial similarity in the experimentally merged
colony, we used multiple regression quadratic assignment pro-
cedure with double semi-partialing (MRQAP-DSP) from the
asnipe R package [20,27]. To create all 95% confidence intervals
shown in square brackets, we used percentile bootstrapping in
the boot R package [28].

To test for evidence of convergence in similarity of faecal
samples, we compared the similarity of initial opportunistic
pre-merge faecal samples from five Lake Bayano bats on 19
May 2019 to later samples from other Lake Bayano bats and to
later samples from three Tolé bats that were also sampled
before and after the merge on 14 June 2019. We then calculated
the change in similarity for the 25 pairs where both bats were
sampled before and after the merge (10 pairs captured at the
same wild roost and 15 pairs introduced in captivity). To test
the prediction that faecal microbiomes converged for introduced
pairs and diverged for same-roost pairs, we fit a general linear
mixed effects model (MCMCglmm function and package using
default priors) where fixed effects were time (days since initial
sample, scaled), dyad type (same-roost versus introduced) and
the interaction between time and dyad type. Both bats were
entered as a multi-membership random effect. After an inter-
action was detected, we fit the same mixed model for both
dyad types separately with time as the fixed effect. As an
alternative approach, we also tested the interaction term using
a permutation test; to get a permutation p-value, we fit the
model with the same fixed effects (no random effects), then simu-
lated the null hypothesis by randomizing the time differences
within each dyad 1000 times to generate a distribution of
expected values to compare with the observed.
3. Results
Bats from the same colony had more similar faecal micro-
biomes than bats from different colonies (β = 0.55, n = 57
bats, p < 0.001; figure 1). The rank order of faecal microbiome
similarity from high to low was: (i) bats from the same colony,
(ii) bats from different colonies merged into one colony and
(iii) bats from different colonies, with clear differences in
similarity among all cases (figure 1).

Over four months together, all of the introduced Panama
bats from distant sites engaged in clustering, and most
engaged in oral contact (78%, electronic supplementary
material, figure S1). The final gut microbiome similarity
was predicted by rates of both oral contact and clustering,
each when controlling for the other (MRQAP: oral contact
β = 0.24, n = 27, p < 0.0001; clustering β = 0.28, p < 0.0001).
Each effect also remained when controlling for whether the
bats shared their capture site (clustering: β = 0.37, p < 0.001,
n = 27, capture site: β =−0.30, p = 0.003; oral contact: β =
0.32, p < 0.001; capture site: β =−0.21, p = 0.07). After four
months together, bats sourced from the same wild roost did
not have more similar gut microbiomes than introduced
bats (β =−0.17, p = 0.2), and we did not detect that the five
mothers had more similar gut microbiomes to their own
pups (mean similarity = 0.974 [0.966, 0.981]) compared to
other pups (0.972 [0.968, 0.975]).

All 25 pairs that were sampled both before and after the
merge had faecal microbiome similarities that changed in
the predicted direction (MCMCglmm: posterior estimate of
interaction with 95% credible interval =−0.12 [−0.13, −0.09],
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pMCMC< 0.001, permutation test p-value < 0.001); they increa-
sed in the 15 introduced pairs (+0.08 [0.06, 0.10], pMCMC<
0.001), and decreased in the 10 same-roost pairs (−0.04 [−0.05,
−0.03], pMCMC< 0.001, figure 2).
4. Discussion
Three lines of evidence from both our broader sampling and
controlled experiment suggest social transmission of microbes
in common vampire bats leads to a ‘social microbiome’ [1].
First, vampire bats from the same colony had more similar
faecal microbiomes than bats from different colonies, in both
captivity and in the wild (figure 1). Second, after bats from
three wild colonies were introduced in captivity and housed
together for four months, the identity of their original wild
colony did not predict gut microbiome similarity; instead,
gut microbiome similarity in the experimentally merged
colony was predicted by rates of clustering and oral contact
(electronic supplementary material, figure S1). Third, analysis
of microbial similarity in opportunistic faecal samples from
eight bats in the experimentally merged colony found that
all 15 introduced pairs converged while all 10 same-roost
pairs diverged (figure 2).

These findings corroborate previous studies of primates
and rodents showing that social networks predict microbiome
similarity after statistically controlling for environment and
diet [6,29–41]. For example, laboratory mice housed together
show convergence in their microbiomes [42,43]. A key advan-
tage of our study is that we combined a controlled diet and
environment with high-resolution interaction rates (sampling
6 h d−1 for four months) among both familiar individuals and
individuals with no previous contact. Our findings confirm
that direct horizontal social transmission of microbes is an
important component of microbiome similarity [1]. While
mammalian gut microbiomes can be seeded through vertical
transmission at birth [44], these microbiomes are highly muta-
ble [34–39,45]. Even in highly constrained communities, like
the gut microbiomes of the common vampire bat, we still see
identifiable variation across populations and over time.

A common challenge in microbiome studies, especially in
novel host animals, is the inability to identify significant por-
tions of the microbial community. In studies of social
transmission of microbes, strain-level identification appears
to present the most robust evidence for social behaviours
transmitting microbes, yet this method is rare [46,47]. Increas-
ing the depth and breadth of sequencing of a microbiome, as
done here, is a useful step in providing sequence data for
novel and less-characterized microbes, which can aid
attempts to better track specific taxa that are socially trans-
mitted. The high consistency of identified species in the
microbiomes we observed within and across vampire bat
colonies from different geographical locations and states of
captivity might be a result of their obligate and specialized
diet, but many of our reads (approx. 76%) could not be
assigned to any known taxa, showing yet unknown complex-
ities in the common vampire bat’s microbiome.
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