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The combination antiretroviral therapeutic (cART) regime effectively suppresses human 
immunodeficiency virus (HIV) replication and prevents progression to acquired immunode-
ficiency diseases. However, cART is not a cure, and viral rebound will occur immediately 
after treatment is interrupted largely due to the long-term presence of an HIV reservoir that 
is composed of latently infected target cells that maintain a quiescent state or persistently 
produce infectious viruses. CD4 T cells that reside in B-cell follicles within lymphoid tissues, 
called follicular helper T cells (TFH), have been identified as a major HIV reservoir. Due to 
their specialized anatomical structure, HIV-specific CD8 T cells are largely insulated from 
this TFH reservoir. It is increasingly clear that the elimination of TFH reservoirs is a key step 
toward a functional cure for HIV infection. Recently, several studies have suggested that 
a fraction of HIV-specific CD8 T cells can differentiate into a CXCR5-expressing subset, 
which are able to migrate into B-cell follicles and inhibit viral replication. In this review, we 
discuss the differentiation and functions of this newly identified CD8 T-cell subset and pro-
pose potential strategies for purging TFH HIV reservoirs by utilizing this unique population.

Keywords: follicular CD8 T  cells, B-cell follicles, human immunodeficiency virus infections, human immuno-
deficiency virus reservoir, CXCR5+CD8 T cells

iNTRODUCTiON

Human immunodeficiency virus (HIV)-specific CD8 T cells play an important role in suppressing 
HIV replication (1–5). The onset of HIV-specific CD8 T cell responses is concomitant with a reduc-
tion in plasma viremia (6–8). The rapidity and magnitude of HIV-specific CD8 T-cell responses 
correlate inversely with set-point viremia in hyperacutely infected patients (9). However, diminished 
HIV-specific CD8 T cell responses are accompanied by disease progression (10). Furthermore, elite 
controllers of HIV infection exhibit specific major histocompatibility complex (MHC) class I alleles 
and a wide spectrum of HIV-specific CD8 T-cell responses (11–15). Additionally, CD8 T cell-specific 
epitope mutants emerge to evade CD8 T-cell recognition during HIV infection (16, 17). Most direct 
evidence comes from rhesus macaques with chronic simian immunodeficiency virus (SIV) infection, 
in which transient CD8 T cell depletion resulted in a substantial increase in plasma viremia, while 
the subsequent replenishment of CD8 T cells led to a reduction in viremia (18–20). Despite the 
importance of HIV-specific CD8 T cells, they are not capable of fully eliminating HIV-infected target 
cells, mainly CD4 T cells. A wide variety of extrinsic and intrinsic factors are required to cripple 
HIV-specific CD8 T-cell mediated inhibition of HIV replication. One key factor lies in the func-
tional exhaustion of HIV-specific CD8 T cells due to persistent T-cell receptor (TCR) stimulation  
and inhibitory microenvironments (21–23). Additionally, recent progress has been made to realize 
that HIV preferentially targets TFH cells in B-cell follicles for both long-term latent infection and 
the persistent production of infectious viral particles (24–28), and the majority of HIV-specific CD8 
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T cells are excluded from B-cell follicles (29–31). Therefore, the 
exhaustion of HIV-specific CD8 T cells and the anatomical sepa-
ration of latently infected TFH cells and HIV-specific CD8 T cells 
might represent two primary barriers for HIV-specific CD8 
T  cells to eradicate HIV infection. Combination antiretroviral 
therapeutic (cART) is extremely effective at decreasing viremia to 
an undetected level (32–34); however, the viremia rebounds soon 
after the cessation of treatment (35–37). These facts further sug-
gest that exhausted HIV-specific CD8 T cells cannot efficiently 
inhibit residual viral replication in the presence of effective cART 
treatment. However, a small fraction of CD8 T  cells has been 
discovered to appear in B cell follicles in HIV infection as early 
as 1980 and 1990s (38–43). In 2007, Quigley et al. also reported 
that early effector memory CXCR5+CD8 T cells infiltrated into 
B cell follicles in human tonsil (44). Until recently, several groups 
reported a novel subset of exhausted HIV-specific CD8 T cells 
expressing CXCR5 and capable of migrating to B-cell follicles 
during HIV/SIV infection that rekindled interest in the filed 
(45–54). In this review, we focus on understanding the properties 
of HIV-specific CXCR5-expressing follicular cytotoxic cells and 
propose strategies for the functional cure of HIV infection by 
combining cART and CXCR5+CD8 T cells.

iMMUNe eXHAUSTiON OF viRUS-
SPeCiFiC CD8 T CeLLS DURiNG 
CHRONiC Hiv iNFeCTiON

In response to an acute viral infection, virus-specific CD8 T cells 
recognize viral peptide–MHC class I complexes presented on 
the surface of antigen-presenting cells and subsequently become 
activated by signals transduced from TCR complexes and co-
stimulatory receptors (55–57). The activated CD8 T cells in turn 
undergo dramatic proliferation and differentiate into effector 
CD8 T cells that are capable of efficiently clearing virally infected 
target cells by secreting anti-viral cytokines, such as TNF-α and 
INF-γ, as well as cytotoxic molecules, including perforin and 
granzymes. In the case of mouse lymphocytic choromeningitis 
virus (LCMV)-Armstrong and human influenza infection, and in 
response to smallpox and yellow fever vaccines, a large number 
of effector CD8 T cells with potent anti-viral functions eventu-
ally eradicate infectious viral particles within 8–10 days (58–60). 
Consistent with the resolution of viral infection and inflamma-
tion, the majority (>90%) of virus-specific effector CD8 T cells 
die of apoptosis, while a small fraction of these effector cells will 
survive and progressively differentiate into memory CD8 T cells 
(61–63). Memory CD8 T cells possess a stem cell-like property, 
being able to maintain themselves long-term through antigen-
independent self-renewal driven by the cytokines interleukin-7 
and IL-15 (59, 64). Most importantly, quiescent memory CD8 
T  cells largely preserve the epigenetic modification features of 
genes associated with effector functions that are developed at 
the effector stage, allowing these cells to rapidly exert multiple 
effector functions and efficiently clear invaded viruses soon after 
re-infections occur (65–67).

In contrast to acute viral infection, the continuous stimula-
tion by persistent viral antigens due to unresolved chronic viral 

infection leads to a distinct differentiated state of activated 
virus-specific CD8 T cells termed immune exhaustion (68–71). 
Distinct from memory CD8 T  cells, exhausted CD8 T  cells 
exhibit several unique features, including, but not limited 
to, reduced cell proliferation potential upon re-stimulation, 
enhanced turnover rate due to being more prone to apoptosis, 
programmed and hierarchal loss of the ability to secrete cytokines 
and release cytotoxic granule components, prolonged and 
enhanced expres sion of an array of inhibitory receptors, altered 
epigenetic and metabolic signatures, and a failure to further 
convert to traditional memory CD8 T cells (72–76). The exhaus-
tion of CD8 T  cells was first discovered in a mouse model of 
chronic infection with LCMV and later on confirmed in various 
chronic viral infections in human, such as HIV and the hepatitis  
C and B viruses (21, 68, 77–80).

Similar to chronic LCMV infection in mice, chronic HIV 
infection does not clonally delete HIV-specific CD8+ T  cells; 
instead, these cells also undergo a progressive and hierarchical 
loss of effector functions and display enhanced expression of a set 
of inhibitory receptors, such as programmed cell death-1 (PD-1), 
cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), lym-
phocyte activation gene 3, and T cell immunoglobulin domain 
and mucin domain 3 (Tim-3), and a failure to differentiate into 
classical memory CD8 T cells evidenced by elevated apoptosis, 
diminished proliferation potential, and a rapid loss of CD127 
expression (81–90). Moreover, at the genome-wide transcriptome 
level, similarities have been observed between exhausted LCMV-
specific CD8 T  cells and HIV-specific CD8 T  cells (88,  91). 
The antigen load appears to be a critical cause that drives the 
development of these shared transcriptional signatures associ-
ated with CD8 T cell exhaustion in both chronic LCMV and HIV 
infection (23, 69, 92). The durable exposure to persistent antigen 
stimulation profoundly impacts the intrinsic epigenetic program 
and alters the expression mode of key transcriptional factors, 
such as T-bet, Eomes, TCF-1, Batf, and Id2-E2A, in exhausted 
LCMV- and HIV-specific CD8 T cells (23, 45, 72, 91, 93). The 
co-expression of inhibitory molecules, such as PD-1, CTLA4, 
and Tim-3, further promotes the extent of CD8 T cell exhaustion 
(22, 94–96). Additionally, the lack of optimal CD4 T cell help, at 
least partially mediated by IL-21 secreted from this population, 
represents another important factor for CD8 T cell exhaustion in 
both chronic LCMV and HIV infection (97–102). Furthermore, 
regulatory T cells (Tregs) and myeloid-derived suppressor cells 
(MDSCs) may further corroborate the progress of CD8 T  cell 
exhaustion (103–107). The general similar characteristics between 
exhausted LCMV- and HIV-specific CD8 T  cells highlight the 
great value of murine LCMV chronic infection as an informative 
experimental system to explore and reveal novel aspects of CD8 
T-cell immunity in chronic HIV infection, even though murine 
LCMV infection is not an ideal model for HIV virology.

Although exhausted CD8 T  cells are unable to differentiate 
into classical memory T  cells, they are also not all terminally 
differentiated cells, which is supported by the consequences of 
the partial rescue of proliferative potential and effector function 
of exhausted CD8 T cells by targeting the PD-L1/PD-1 inhibitory 
pathway with an antibody blockade both in vivo (mouse chronic 
LCMV infection and rhesus macaque chronic SIV infection) 
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and in vitro (co-culturing PD-L1 blockade antibodies with HIV-
specific exhausted CD8 T cells) (108–110).

Furthermore, at the population level, exhausted CD8 T cells 
are not functionally inert and still maintain the critical ability to 
suppress viral replication during chronic LCMV and HIV infec-
tion (16–19, 111). The non-terminal differentiation state and 
partially preserved effector function of exhausted CD8 T  cells 
provide precious opportunities for therapeutically targeting and 
reinvigorating exhausted CD8 T cells, which can possibly lead to 
the efficient control of chronic viral infection.

DiFFeReNTiATiON OF THe FOLLiCULAR 
CXCR5-eXPReSSiNG CD8 T-CeLL 
SUBSeT DURiNG Hiv iNFeCTiON

Although exhausted, virus-specific CD8 T cells preserve a certain 
ability to mediate an imperative suppression of viral replication 
in both chronic LCMV and HIV infection (3, 112–114). Given 
that the majority of virus-specific CD8 T  cells are functionally 
exhausted, it is of great interest to investigate whether the exhausted 
CD8+ T cell pool contains a specific subset that are responsible 
for effectively keeping viral replication in check during chronic 
viral infection. Our recent study has found that during mouse 
chronic infection with the LCMV-Cl13 strain, but not acute 
infection with the LCMV-Armstrong strain, a unique subset of 
exhausted CD8 T cells expressing the chemokine receptor CXCR5 
was differentiated (45). These virus-specific CXCR5+CD8 T cells 
possess the ability to migrate into B-cell follicles. Furthermore, 
CXCR5+CD8 T cells express lower levels of inhibitory receptors, 
such as PD-1, 2B4, and Tim-3, than their CXCR5− counterparts, 
and accordingly, these cells demonstrate more potent cytotoxicity 
than the CXCR5− subset. The Id2/E2A axis was found to play an 
important role in the generation of this subset. Specifically, E2A 
promotes the generation of this population while Id2 antagonizes 
this effect. In patients with chronic HIV infection, a virus-specific 
CXCR5+CD8 T cell subset was also identified in blood and lymph 
nodes, and the number of HIV-specific CXCR5+CD8 T  cells 
inversely correlated with the viral load in blood. Similar to the 
scenario in chronic LCMV infection, HIV-specific CXCR5+CD8 
T cells also show up in the follicular zone (45). Furthermore, HIV-
specific CXCR5+CD8 T cells exhibit a reduction in Id2 expression 
compared to HIV-specific CXCR5−CD8 T  cells. These similar 
characteristics of CXCR5+CD8 T cells during both chronic LCMV 
and HIV infection indicate that the differentiation of this unique 
subset might represent a common mechanism for defense against 
chronic viral infection.

Several other groups have also reported CXCR5+CD8 T cell 
populations during chronic LCMV infection, SIV and HIV infec-
tion. In chronic SIV and HIV infection, these reports uniformly 
demonstrated the follicular localization of CXCR5+CD8 T cells 
in lymphoid tissues (46, 47, 49, 53, 115, 116). The follicular 
location may depend on CXCR5 expression (117). However, in 
LCMV-Cl13 infection in mice, Im et al. found that the majority of 
these cells were localized in the T-cell zone (52), while we reported 
that these cells preferentially localized to the B-cell zone (45). This 
divergence remains an important issue to be further clarified 

and a possible explanation may be that Im et al. used antibody 
recognizing TCF-1 to stain CXCR5+CD8 T cells. As TCF-1 is also 
highly expressed in T-cell zone residing naïve and memory T cells 
(118, 119), which may potentially cause false positive. Intra-vital 
multi-photon confocal microscopy represents a reliable tool to 
visualize the dynamics of follicular-residing lymphocytes in a 
real-time pattern, which may provide more solid evidence as to the 
exact locations of virus-specific CXCR5+CD8 T cells in lymphoid 
tissues during chronic viral infection. Furthermore, both studies 
found that CXCR5+CD8 T cells preserved a better proliferative 
potential than CXCR5−CD8 T cells (45, 52). We also defined the 
continuous conversion of CXCR5+CD8 T cells into CXCR5−CD8 
T cells during LCMV chronic infection in mice, which was likely 
driven by elevated Id2 expression in CXCR5+CD8 T cells (45). 
The replenishment of this population critically depends on new 
emigrants from the thymus (45). It is worthwhile to investigate 
whether these features also hold true in chronic SIV and HIV 
infection, which can be determined by using non-human primate 
models and a bone marrow–liver–thymus humanized mouse 
model, respectively.

It should be noted that in chronic LCMV-Cl13 infection in 
mice, viruses seldom infect cells residing in B-cell follicles, while 
in chronic SIV and HIV infection, viruses predominantly and 
productively infect follicle-residing TFH cells (25, 120–122). 
Therefore, in LCMV-Cl13 infection, the antigen loads and inhibi-
tory microenvironment in B-cell follicles are relatively friendly 
toward virus-specific CXCR5+CD8 T  cells, and B-cell follicles 
may function as a sanctuary for virus-specific CXCR5+CD8 
T  cells to prevent the rapid loss of their number and effector 
functions. In contrast, in chronic SIV and HIV infection, viral 
replication is more concentrated in TFH cells in B-cell follicles 
(29, 120, 123). Therefore, the high antigen loads in B-cell fol-
licles may drive the more severe exhaustion of follicle-residing 
HIV-specific CXCR5+CD8 T cells. The enhanced strength and 
duration of TCR stimulation from high antigen loads cause 
the rapid loss of these exhausted cells by apoptosis, which may 
partially explain the scarcity of this subset in B-cell follicles 
in chronic SIV and HIV infection. PD-1 is a central mediator 
that negatively regulates the exhaustion of virus-specific CD8 
T  cells (81, 124). In chronic LCMV infection, virus-specific 
CXCR5+CD8 T  cells were found to express relatively lower 
PD-1 levels compared to virus-specific CXCR5−CD8 T  cells 
(45). In contrast, during chronic HIV infection, HIV-specific 
CXCR5+CD8 T cells expressed higher levels of PD-1 than their 
CXCR5− counterparts (47). This divergence in PD-1 expression 
in virus-specific CXCR5+CD8 T  cells during chronic LCMV 
and HIV infection might be largely attributed to the different 
antigen load levels in B-cell follicles during chronic LCMV and 
HIV infection (Figure 1) (Table 1).

THe FUNCTiONALiTY OF FOLLiCULAR 
CXCR5-eXPReSSiNG CD8 T-CeLL 
SUBSeT DURiNG Hiv iNFeCTiON

In LCMV-Cl13 infection, compared to CXCR5−CD8 T cells, virus-
specific CXCR5+CD8 T  cells exhibit elevated effector cytokine 
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TABLe 1 | The similarities and differences of CXCR5+CD8 T cells in lymphocytic choromeningitis virus (LCMV)-CI13 and human immunodeficiency virus (HIV)/simian 
immunodeficiency virus (SIV) infection.

•	The number is inversely correlated with viral load in blood
•	The subset was identified in blood and lymphoid organs

Similarities •	Preserve a better proliferative potential than CXCR5−CD8 T cells
•	Transcription factor feature: Id2 ↓, E2A ↑
•	Possess the ability to migrate into B cell follicles

Lymphocytic choromeningitis virus Siv/Hiv

Differences Viruses seldom infect cells residing in B-cell follicles, providing a friendly 
microenvironment (low antigen load) for CXCR5+CD8 T cells

Viruses predominantly infect follicle-residing TFH cells leading to a 
nasty microenvironment (high antigen load) for CXCR5+CD8 T cells

Lower programmed cell death-1 (PD-1) expression than CXCR5− counterparts Higher PD-1 expression than CXCR5− counterparts

More potent cytotoxicity than CXCR5− counterparts (e.g. IFN-γ, TNF-α, and 
degranulation)

Controversial issue: enhanced or comparable effector functions 
relative to CXCR5−CD8 T cells?

FiGURe 1 | Comparison of CXCR5+CD8 T cells in lymphocytic choromeningitis virus (LCMV)-Cl13 and human immunodeficiency virus (HIV) infection. In chronic 
LCMV-Cl13 infection, viruses seldom infect B-cell follicles, thus B-cell follicles function as a sanctuary for CXCR5+CD8 T cells to prevent rapid exhaustion.  
In contrast, HIV virus preferentially targets TFH cells in B-cell follicles for productive and latent infection, thus accumulating high antigen loads in B-cell follicles  
may drive more severe exhaustion of CXCR5+CD8 T cells.
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expression, including IFN-γ and TNF-α, in response to antigen 
stimulation. They also display enhanced degranulation. Consistent 
with these characteristics, these cells are more efficient at killing 
target cells in vivo than the CXCR5− counterparts. Furthermore, 

when adoptively transferred to CD8-deficient recipients chroni-
cally infected with LCMV-Cl13, virus-specific CXCR5+CD8 
T cells, but not CXCR5−CD8 T cells, can effectively inhibit viral 
replication in recipients (45). Together, these results demonstrate 
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that virus-specific CXCR5+CD8 T cells preserve better effector 
functions than CXCR5−CD8 T cells in suppressing chronic viral 
infection. However, there are conflicting results regarding the 
functionality of CXCR5+CD8 T cells in chronic HIV infection. 
Several reports have shown that compared to CXCR5−CD8 
T cells, CXCR5+CD8 T cells show an increase in the production 
of IFN-γ, TNF-α, and perforin; enhanced degranulation and 
cytolytic activities (45, 46, 53, 115). In contrast, a recent study 
demonstrated the comparable production of cytolytic proteins 
between HIV-specific CXCR5+CD8 T  cells and CXCR5−CD8 
T cells in lymphoid tissues from patients with chronic infection, 
but much lower than that of HIV-specific CD8 T cells in blood 
(50). It should be noted that HIV-specific CXCR5+CD8 T cells 
are still exhausted cells. Similar to LCMV-specific CXCR5+CD8 
T  cells, these cells are most likely heterogeneous, consisting of 
newly recruited cells (less exhausted due to the short exposure 
time to antigens) from thymic outputs and past generated cells 
(more exhausted due to the concentrated viral replication in 
B-cell follicles). Whole body viral loads and disease progression 
might potentially influence the ratio between newly and past 
generated HIV-specific CXCR5+CD8 T cells. Interestingly, Miles 
et  al. reported that the majority of follicular CD8 T  cells are 
regulatory CD8 T cells with the expression of CD44 and CXCR5. 
This regulatory subset expresses less perforin and high level of 
Tim-3 to inhibit IL-21 production by TFH cells and impairs 
GC function in SIV and ex vivo HIV infection (49). However, 
whether these regulatory CD8 T cells are SIV- or HIV-specific 
awaits further investigation. Furthermore, we may not rule out 
the possibility that certain subset of antigen-specific CD8 T cells 
become de novo CXCR5-expressing cells and be included in the 
analysis in responding to antigen stimulation. Furthermore, the 
more exhausted state of CXCR5+CD8 T  cells from more con-
centrated viral antigens in B-cell follicles may also explain their 
lower cytolytic activities when compared to total HIV-specific 
CD8 T cells in blood. Next, it is interesting to directly compare 
the functional capacity of HIV-specific CXCR5+CD8 T cells from 
lymphoid tissues and blood (50).

Although there are conflicting results regarding the expression 
of inhibitory molecules and their functional capacities, it is a con-
sensus that the number of HIV- or SIV-specific CXCR5+CD8 T cells 
inversely correlates with plasma viremia and disease progression 
(31, 45, 48, 54, 116), highlighting a critical functional role of this 
subset in viral control during chronic SIV or HIV infection. Given 
the possible downregulated effector functions and cytolytic activi-
ties, this important characteristic of CXCR5+CD8 T cells might 
be largely attributed to their non-terminal differentiation state 
and better-retained proliferative potential. Indeed, HIV-specific 
CXCR5+CD8 T cells express less Id2 (promoting terminal differen-
tiation) and higher TCF-1 (promoting memory differentiation and 
proliferative potential) than CXCR5−CD8 T cells (45, 47, 51, 125). 
In a chronic LCMV-Cl13 infection model, overexpressing Id2 or 
ablating TCF-1 leads to the impaired generation of virus-specific 
CXCR5+CD8 T  cells and accordingly to increased viral loads 
(45, 47, 52). Moreover, virus-specific CXCR5+CD8 T cells, but not 
CXCR5−CD8 T cells, respond to the PD-1–PD-L1 pathway block-
ade and increase clonal expansion (45, 52). In chronic HIV infec-
tion, memory-like HIV-specific CXCR5+CD8 T cells may persist 

longer than their CXCR5− counterparts at population levels and 
continuously kill virus-infected cells. By contrast, because B-cell 
follicle-residing TFH cells are major virus producers compared to 
other CD4 T cell types in the T cell zone in HIV infection (24, 120), 
it is reasonable to infer that HIV-specific CXCR5+CD8 T cells, but 
not CXCR5−CD8 T cells, have chances to come into contact with 
and kill these target cells. Therefore, HIV-specific CXCR5+CD8 
T cells primarily rely on their memory-like properties and unique 
anatomical location for their critical control of viral replication in 
the context of chronic HIV infection.

STRATeGieS FOR eMPLOYiNG 
CXCR5+CD8 T CeLLS TO PURGe Hiv 
ReSeRvOiRS iN B-CeLL FOLLiCLeS

It has been well-documented that virus-specific CD8 T  cells 
are required for the elimination of HIV reservoirs (3, 112, 126). 
Accumulating evidence has demonstrated that TFH cells in B-cell 
follicles of lymphoid tissue serve a major HIV reservoir, as viruses 
preferentially target TFH populations for productive and latent 
infection (25, 26). Taking into account that a limited number and 
exhausted state of HIV- or SIV-specific CXCR5+CD8 T cells were 
present in B-cell follicles, this unique strategy largely protects 
these viruses from the attacks mediated by virus-specific CD8 
T cells. Indeed, in elite controllers from chronic SIV infection, 
SIV-specific CD8 T cells can effectively control viral replication 
at extra-follicular sites; however, the majority of these cells fail 
to migrate to B-cell follicles to clear SIV-producing TFH cells 
(19, 30, 31). In ART-treated, aviremic non-human primates 
and patients, lymph node PD-1+TFH populations also serve as 
a major reservoir for active and persistent viral transcription 
(28). Thus, HIV reservoirs harbored in TFH cell populations 
in lymph node B-cell follicles represent a major obstacle for a 
functional cure for HIV infection. To this end, the appearance 
of a large number of HIV-specific CXCR5+CD8 T cells equipped 
with potent cytotoxic functions is a prerequisite for effectively 
eliminating TFH reservoirs under cART treatment. Additionally, 
CXCR5+CD8 T cells are not stable and will eventually convert 
into CXCR5−CD8 T  cells, which will exit B-cell follicles (45). 
Therefore, we speculate that the rational design of strategies for a 
functional cure for HIV infection will rely on the following three 
important aspects: (1) enhanced virus-specific CXCR5+CD8 T cell 
differentiation, (2) preserved lineage stability, and (3) functional  
reinvigoration.

In chronic LCMV-Cl13 infection, we have shown a greater 
therapeutic potential for LCMV-specific CXCR5+CD8 T  cells 
than the CXCR5− subset upon adoptive transfer to chronically 
infected mice, as well as synergistic effects that reduce the viral 
load when combined with anti-PD-L1 treatment (45). In an SIV 
model or HIV patients, it is also worth testing the efficacy of this 
combination for suppressing HIV replication and latency in TFH 
cells in non-human primates or patients under ART treatment. 
Virus-specific CXCR5+CD8 T cells, but not CXCR5−CD8 T cells, 
are PD-1 pathway blockade responders (52). In this regard, PD-1 
blockade antibodies can effectively expand transferred virus- 
specific CXCR5+CD8 T  cells and boost the effector functions 
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of these cells. Velu et  al. demonstrated that during chronic 
SIV infection, PD-1 blockade resulted in rapid expansion of 
virus-specific CD8 T  cells with improved functionality (127). 
However, the reduction of plasma viral load seemed not to be 
that impressive, which may be due to a very limited number 
of CXCR5+CD8+ T cells in  situ. Therefore, the combination of  
PD-1 blockade with adoptive transfer of large number of virus-
specific CXCR5+CD8 T  cells may further improve the control 
of viral replication. Furthermore, the PD-1 pathway blockade 
may also have partial effects on TFH cells, which express a high 
abundance of PD-1. The activation of TFH cells latently infected 
with viruses by the PD-1 antibody blockade may enhance the 
transcription of viral genes, which may increase antigenic expo-
sure for cytotoxic killing due to the transfer of virus-specific 
CXCR5+CD8 T cells. In addition to the adoptive transfer of in vitro 
expanded endogenous CXCR5+CD8 T  cells from blood, it is 

also possible to transfer genetically modified virus-specific CD8 
T cells over-expressing transcriptional factors that promote the 
differentiation and lineage stabilization of CXCR5+CD8 T cells, 
such as E2A and Bcl-6 (Figure 2). Besides, adoptive transfer of 
antiviral chimeric antigen receptor (CAR) T cells co-expressing 
the follicular homing chemokine receptor CXCR5 could potently 
suppress SIV replication in vivo (128). In addition to adoptive 
transfer, therapeutic vaccination plus the PD-1 pathway block-
ade may also boost the differentiation and functional rescue of 
virus-specific CXCR5+CD8 T  cells (129,  130). Furthermore, a 
recent study has demonstrated that a novel IL-15 agonist ALT-
803 could activate and direct SIV-specific CD8 T cells into B cell 
follicles via upregulation of CXCR5 (131). Thus, the combination 
of IL-15 agonist and strategies mentioned above may offer a new 
immunotherapeutic agent for purging HIV reservoirs in B-cell 
follicles.

A

B

C

FiGURe 2 | Potential strategies for employing CXCR5+CD8 T cells to purge human immunodeficiency virus (HIV) reservoirs in B cell follicles. (A) Adoptive transfer  
of in vitro expanded endogenous CXCR5+CD8 T cells from blood. As CXCR5+CD8 T cells from peripheral blood will further differentiate into CXCR5−CD8 T cells 
upon antigen re-stimulation, the development of in vitro culturing conditions optimal for both expanding and preserving the migratory and functional characteristics 
of CXCR5+CD8 T cells should be a focus for future investigations. (B) Transfer genetically modified virus-specific CD8 T cells over-expressing transcriptional factors 
that promote the differentiation and lineage stabilization of CXCR5+CD8 T cells. (C) Programmed cell death-1 pathway blockade may effectively expand transferred 
virus-specific CXCR5+CD8 T cells and boost the effector functions.
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