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Neuropharmacokinetic Model

Yohei Kosugi,1,3 Kunihiko Mizuno,1 Cipriano Santos,1 Sho Sato,2 Natalie Hosea,1 and Michael Zientek1

Received 28 February 2021; accepted 29 April 2021

Abstract. The mechanistic neuropharmacokinetic (neuroPK) model was established to
predict unbound brain-to-plasma partitioning (Kp,uu,brain) by considering in vitro efflux
activities of multiple drug resistance 1 (MDR1) and breast cancer resistance protein (BCRP).
Herein, we directly compare this model to a computational machine learning approach
utilizing physicochemical descriptors and efflux ratios of MDR1 and BCRP-expressing cells
for predicting Kp,uu,brain in rats. Two different types of machine learning techniques, Gaussian
processes (GP) and random forest regression (RF), were assessed by the time and cluster-
split validation methods using 640 internal compounds. The predictivity of machine learning
models based on only molecular descriptors in the time-split dataset performed worse than
the cluster-split dataset, whereas the models incorporating MDR1 and BCRP efflux ratios
showed similar predictivity between time and cluster-split datasets. The GP incorporating
MDR1 and BCRP in the time-split dataset achieved the highest correlation (R2 = 0.602).
These results suggested that incorporation of MDR1 and BCRP in machine learning is
beneficial for robust and accurate prediction. Kp,uu,brain prediction utilizing the neuroPK
model was significantly worse compared to machine learning approaches for the same
dataset. We also investigated the predictivity of Kp,uu,brain using an external independent test
set of 34 marketed drugs. Compared to machine learning models, the neuroPK model
showed better predictive performance with R2 of 0.577. This work demonstrates that the
machine learning model for Kp,uu,brain achieves maximum predictive performance within the
chemical applicability domain, whereas the neuroPK model is applicable more widely beyond
the chemical space covered in the training dataset.
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INTRODUCTION

One of the biggest impediments in drug discovery to
accomplish favorable pharmacological effects for central
nervous system (CNS) diseases is to design drugs with high
blood-brain barrier (BBB) permeability (1, 2). Two active
efflux transporters, multiple drug resistance 1 (MDR1) and

breast cancer resistance protein (BCRP), expressed at the
BBB, are mainly responsible for decreased brain concentra-
tion of drugs (3–7). Since higher unbound brain-to-plasma
partitioning (Kp,uu,brain) values are usually favorable to yield a
lower dose and systemic exposure (1, 8), assessments of
Kp,uu,brain are a key process in CNS drug discovery (9). The
Kp,uu,brain is derived from not only in vitro binding in the
plasma and brain homogenate, but also the in vivo brain to
plasma concentration ratio derived in animal studies. These
in vivo studies require significant resource, and also raise
ethical issues. Therefore, a quantitative Kp,uu,brain prediction
based on in silico and in vitro data consisting of in vitro cell
line assessments is beneficial in reducing chemistry cycle
times for chemical optimization.

Several machine learning approaches based on in silico
data have been used for Kp,uu,brain prediction (10–15), and the
predictivity was improved by incorporating the efflux activity
of MDR1 as an explanatory variable (16). However, in a
particular example by Dolgikh and colleagues using MDR1
expressing cells, which did not include BCRP efflux activity in
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the prediction, an influential aspect of their work is the source
of the MDR1 cell line, where the authors used a cell line
supplied by the Netherlands Cancer Institute. The cell line
appears to be less sensitive compared to those established at
National Institutes of Health (NIH), which would lessen the
ability to derive accurate predictions (9, 17, 18). Hence, it is
thought that there is room for further improvement in the
predictivity of machine learning approaches by incorporating
sensitive efflux activities of MDR1 cells from NIH and the
additional activity of BCRP cell lines.

In addition to machine learning models, mechanistic
neuroPK models considering efflux activities of MDR1 and/or
BCRP are also powerful tools to predict Kp,uu,brain (17, 19–
21). Mechanistic neuroPK models enable the translation
across species through the use of relative activity factors
(RAF) and relative expression factors (REF). These scaling
factors bridge in vitro cell lines over-expressing transporters
to tissue/cellular fractions by incorporating proteomic quan-
titation of the transporters and associating to activity (22).
Both of these models have been useful for predicting human
Kp,uu,brain; however, the predictive ability of the neuroPK
model has not been directly compared to machine learning
approaches using the same dataset; therefore, it is still unclear
which approach is more predictive, and better suited in
particular situations.

This study directly compares the predictability of
Kp,uu,brain predictions using both the neuroPK model and
machine learning approach, which incorporates both the
efflux transporter activities of MDR1 and BCRP across the
same dataset.

MATERIALS AND METHODS

Materials

A total of 640 internal compounds were obtained from
Takeda Pharmaceutical Company (Fujisawa, Japan). All
other reagents and solvents were of analytical grade or better
and were commercially available.

Animals

All the experimental protocols and procedures were
approved by the Institutional Animal Care and Use Commit-
tee of the Shonan Health Innovation Park, Takeda Pharma-
ceutical Company Ltd., and all the animal experiments were
performed at an animal research facility in Shonan Health
Innovation Park accredited by the Association for Assess-
ment and Accreditation of Laboratory Animal Care Interna-
tional. Male Sprague-Dawley rats (7–9 weeks old) were
purchased from Charles River Laboratories (Wilmington,
MA).

In Vivo Compound Administration and Sampling of Plasma
and Brain

Plasma and brain concentrations of proprietary com-
pounds after intravenous, subcutaneous, intraperitoneal, and
oral administration were determined. At two time points after
the administration (Supporting Information, Table S5), whole
blood and whole brain were collected. The blood samples

were collected in a heparinized tube from the abdominal
aorta and immediately centrifuged to obtain plasma. Brain
samples were homogenized immediately after collection in 4
times the volume of the brain using saline under ice-cold
conditions. All samples were stored at − 80°C until analysis
by liquid chromatography-tandem mass spectrometry (LC-
MS/MS, Applied Biosystems, Foster City, CA, USA). Before
conducting this analysis, samples were thawed on ice and
mixed with three volumes of acetonitrile. The supernatants
were diluted and injected into the LC-MS/MS system to
quantify compound concentrations using a calibration stan-
dard curve.

In Vitro Permeability MDR1 and BCRP-Expressing Cells

Test compound solubilized in dimethyl sulfoxide
(DMSO) were added to transport buffer (Hanks’ balanced
salt solution with 10 mM HEPES, pH 7.4) at a final
concentration of 2 μM (DMSO < 1%), on either the apical
or basolateral side of the transwell chamber with the Madin-
Darby canine kidney (MDCK)-MDR1 from NIH and
MDCK-BCRP from Solvo Biotechnology (Szeged, Hungary).
The confluent cell monolayers on the transwell were incu-
bated for 1 h at 37°C with 5% CO2. Test compounds were
quantified by LC/MS/MS analysis. Permeation of the test
compounds from apical to basolateral (A to B) direction or B
to A direction and the efflux ratio were determined. The
apparent permeability coefficient Papp (cm/s) was calculated
by using the following equation:

Papp ¼ dCr

dt
� Vr

A� C0
ð1Þ

where dCr/dt is the cumulative concentration of the com-
pound in the receiver chamber as a function of time (μM/s);
Vr is the volume of the solution in the receiver chamber
(0.075 mL on the apical side, 0.25 mL on the basolateral side);
A is the surface area for transport, i.e., 0.0804 cm2 for the area
of the monolayer; and C0 is the initial concentration in the
donor chamber (μM).

The efflux ratio (ER) was calculated using the following
equation:

ER ¼ Papp;B to A

Papp;A to B
ð2Þ

Unbound Fractions in Brain and Plasma of Rats

The unbound fraction in rat plasma and brains for each
compound was evaluated using the equilibrium dialysis
method, details of which have been reported previously
(17). Briefly, test compound solutions in DMSO were diluted
in rat plasma or 20% (w/v) rat brain homogenate in 100 mM
sodium phosphate buffer (pH 7.4) to a concentration of 1 μM.
Dialysis was conducted against an equal volume of 10 mM
phosphate buffer (plasma) and 100 mM sodium phosphate
buffer (brain homogenate) at 37°C for 16–20 h with 8% CO2

(plasma) and without CO2 (brain homogenate). Both the
plasma and the brain homogenate obtained from the
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apparatus were added to equal volumes of control buffer, and
then mixed with three volumes of acetonitrile. After centri-
fugation, the supernatants were analyzed by LC-MS/MS.

The unbound fraction in the incubation mixture
(fu,plasma) was calculated using the following equation:

f u;plasma ¼
compound concentration in buffer
comopound concentration in plasma

ð3Þ

The unbound fractions in the brain (fu,brain) were
calculated using the following equation:

f u;brain ¼ 1

D� 1

f u;brain
0 −1

 !
þ 1

ð4Þ

where D and fu,brain′ represent the dilution factor for the
brain homogenate and unbound fraction determined in the
20% (w/v) brain homogenate, respectively.

Determination of Kp,uu,brain

After determination of concentration in plasma (Cplasma)
and brain (Cbrain), Kp,uu,brain was calculated by using the
following equation:

Kp;uu;brain ¼ f u;brain � Cbrain

f u;plasma � Cplasma
ð5Þ

Prediction of Kp,uu,brain in Rats Based on NeuroPK Model

The neuroPK model used in this study was developed in
a previous study (17). The major assumptions of this model
are that the drug penetration is at steady state, active
transport is governed only by two efflux transporters (whose
flux is measured in vitro as ERMDR1 and ERBCRP), drug flux
from bulk flow is minimal in vivo, and paracellular diffusion is
absent in vitro. Based on these assumptions, Kp,uu,brain can be
described using the following equation:

Kp;uu;brain ¼ 1
1þ α� ERMDR1−1ð Þ þ β � ERBCRP−1ð Þ ð6Þ

where α represents a scaling factor of the in vitro efflux
activity of MDR1 in MDCK cells against that of MDR1
in vivo and β represents a scaling factor of the in vitro efflux
activity of BCRP in MDCK cells against that of BCRP
in vivo. The detailed deviation method leading to Eq. 6 is
discussed in two reported literature references (17, 20).

The parameters α and β in Eq. 6 were fitted simulta-
neously to the observed Kp,uu,brain values in rats using a
nonlinear least-square methods provided by Curve Fitting
Toolbox 3.5.7 equipped with Matlab R2018a (Mathworks
Inc.).

Model Building Using Machine Learning

Each prediction model was generated with StarDrop
(StarDrop v6.5.0, Optibrium Ltd, Cambridge, UK) according
to the previously described method (23, 24). StarDrop uses
2D SMARTS-based descriptors, which are counts of atom
types and functionalities, along with whole molecule proper-
ties such as molecular weight (M.W.), topological polar
surface area (TPSA), and logP (for a total of 330 descriptors).
The descriptors were scaled to unit variance and mean-
centered on zero. The rules for descriptor exclusion were as
follows:

& Descriptors with a standard deviation less than
0.0005,

& Descriptors represented by less than 4% of
compounds, and

& If the pair-wise correlation between any two
descriptors exceeds 0.95, then the descriptor of the
pair with the lowest correlation with the Y column is
excluded.

All in silicomodels were built using random forest regression
(RF) and Gaussian process (GP) model. RF is a flexible, easy to
use machine learning algorithm that produces a great result
frequently, even without hyper-parameter tuning (25, 26). We
used 400 random forest trees for each model. The concept and
detailed implementation of the GP method for regression
problems were described in Obrezanova et al. (27). Briefly, 4
hyperparameters, θ1, θ2, θ3, and γi (i = 1…K), were optimized.
The overall scale for the property values is given by θ1, and the γi
are a set of length scale parameters, one for each descriptor. An
overall constant shift in the function away from zero is given by
θ2. The variance of the assumed noise in the data is described by
hyperparameter θ3. A small value on the γi means that
differences in the corresponding descriptor influence property
values greatly. Hyperparameter tuning of γi was conducted by
conjugate gradient optimization (GPOPT) (28). The descriptors
ranked in the top 20 of feature importance used inGPOPTmodel
for Kp,uu,brain prediction are summarized in Table S4 and
Figure S4.

Model Evaluation

Predictive performance in each model was assessed
based on the coefficient of determination (R2) values and
residual mean squared error (RMSE) as the statistical
indexes. R2 and RMSE were calculated by the following
equations:

R2 ¼ 1−
∑n

k¼1 Observed value−Predicted valueð Þ2
∑n

k¼1 Observed value−Mean valueð Þ2 ð7Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n
�∑n

k¼1 Predicted value−Observed valueð Þ2
r

ð8Þ

where n represents the size of the dataset and k represents
kth data; the resulting RMSE depicts the magnitude of
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difference from the observed value. R2 and RMSE were
calculated using log(Kp,uu,brain) and log(ER). The percentage
of correct answers was evaluated using the number of
predicted values against observed values within 2-fold vari-
abilities. Paired t tests of squared errors were used to assess
statistical differences between machine learning and the
neuroPK models.

Three validation approaches were applied to investigate
the model performance. In the first method, the data set is
clustered using fingerprints of the molecule structures with a
specified Tanimoto coefficient (29), and then split into
training and test set with a ratio of 80:20 depending on the
property value. This approach enables us to estimate the
predictivity for the case that compounds with similar scaffold
were included in training and test data set. In the second
method, time-split validation was applied to estimate the
predictivity for new chemical entities that chemists are likely
to investigate in the future (30). The total data set was split by
date of assay, i.e., 80% of the total data set before a certain
date were assigned as the time-split training set while the
remaining 20% of data after that date were assigned as the
time-split test set. In the third method, 34 commercially
available compounds were used to assess the model perfor-
mance as an external dataset.

RESULTS

Dataset Analysis

In vivo Kp, in vitro brain tissue and plasma protein
binding, and efflux activities of MDR1 and BCRP were
experimentally determined for 640 proprietary compounds.
This study covered a broad chemical diversity representing a
wide range of physicochemical properties, ER and Kp,uu,brain

(Supporting Information, Figure S1 and S2, M.W., 187 to 555;
clogP, 0.291 to 5.20; TPSA, 12.0 to 157; ER in MDR1 cells,
0.563 to 151; ER in BCRP cells, 0.522 to 100; Kp,uu,brain,
0.00354 to 2.82). Data of both Kp,uu,brain and ER in MDCK-
MDR1 from NIH cells and MDCK-BCRP cells did not follow
the normal distribution and were log transformed to reduce
unequal error variances (Fig. 1). The cluster-split training and
test sets showed similar distributions of log(Kp,uu,brain)
(Supporting Information, Figure S1), indicating that the
splitting method adopted was reasonable. However, M.W.,
clogP, and TPSA in the time-split test sets tended to have
higher values than those in the time-split training sets
(Supporting Information, Figure S2). The Kp,uu,brain at the
earlier time point was within 2-fold of that at the later point
for 95.0% of the compounds (Supporting Information,
Figure S3), and therefore, Kp,uu,brain was assumed to be
determined under steady-state conditions. Kp,uu,brain values at
the later time point were used for model building.

Prediction of Efflux Activities of MDR1 and BCRP Using
Machine Learning Approach

Transcellular transport activities characterized using
MDCK-MDR1 cells from NIH and MDCK-BCRP cells were
used to develop the machine learning model. Among tested
compounds, 84.4% of compounds had efflux ratios > 2 in
MDR1 assay and 56.1% for BCRP. The machine learning

models for MDR1 and BCRP developed by GPOPT showed
R2 of 0.581 and 0.499, respectively, in the cluster-split test set
(Table I). The prediction of efflux activities in the cluster-split
dataset also indicated that 71.1% and 75.0% of those
compounds in MDR1 and BCRP models, respectively, were
predicted within 2-fold of the observed values (Fig. 2). The
predictivity of the machine learning models in the time-split
dataset was less than that of the cluster-split dataset,
suggesting that the prediction models for efflux activities
may not be applied to chemotypes different from compounds
included in the training set. In particular, the model for
BCRP showed poor prediction. Therefore, Kp,uu,brain predic-
tion using predicted efflux ratio for MDR1 and BCRP was
conducted only in the cluster-split test set (Supporting
Information, Table S1).

Prediction of Kp,uu,brain Using Machine Learning Approaches

The log(Kp,uu,brain) values were predicted by RF and
GPOPT. For the determination of the percentage of com-
pounds falling within the 2-fold variability, Kp,uu,brain was
transformed from predicted log(Kp,uu,brain) to compare with
the neuroPK model that directly predicted Kp,uu,brain based
on Eq. 6 (Fig. 3 and Table II). The predictivity based on R2

and RMSE was improved by the incorporation of MDR1 and
BCRP efflux activities in both cluster and test-split datasets.
Overall, MDR1 showed the greatest impact on the predictive
performance of Kp,uu,brain compared to the BCRP addition.
The highest R2 of 0.602 was obtained by using GPOPT and
both MDR1 and BCRP activities were taken into account
pertaining to the time-split dataset with 73.4% of the
compounds being predicted within 2-fold of the observed
value (Fig. 3b). When leaving the MDR1 and BCRP activities
out of the prediction, the cluster-split approach resulted in
superior performance compared to the time-split approach
(Table II). Meanwhile, the time-split approach incorporating
both the MDR1 and the BCRP activities performed equally
to the cluster-split approach. The top 20 features obtaining
the lowest length scale were extracted in RF and GPOPT
models incorporating both MDR1 and BCRP activities
(Supporting Information, Figure S4 and Table S4). Efflux
ratios of MDR1 and BCRP were ranked in the top 20 of
feature importance.

Prediction of Kp,uu,brain Using Translational NeuroPK Model

By using the neuroPK model, scaling factors for MDR1
(α) and BRCP (β) were estimated by fitting against Kp,uu,brain

(Table III). Using the model incorporating both efflux
transporter activities, 58.6% of compounds were predicted
within 2-fold of the observed Kp,uu,brain value with a trending
R2 value of 0.386 in cluster test sets (Table III and Fig. 4).
Meanwhile, the time-splitting approach resulted in a lower R2

value of 0.265. Kp,uu,brain prediction utilizing the neuroPK
model was significantly worse compared to machine learning
approaches for the same dataset (p < 0.01). The models
incorporating in silico MDR1 and BCRP showed an even
lower predictive performance than that using experimental
values with an R2 value of 0.268 in the cluster test set
(Supporting Information, Table S2).
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Model Comparison Using External Dataset

The MDR1 and BCRP activities were determined for 34
commercially available compounds in which Kp,uu,brain values
were reported by Friden et al. (11), Summerfield et al. (31),
Kodaira et al. (32), and our previous research (17). In this
external test set for the established models, 18 and 10 of 34
compounds were substrates of MDR1 and BCRP based on
in vitro assessment, respectively, with efflux ratios > 2
(Supporting Information, Table S3). We then applied the
machine learning models and the neuroPK model established
by the 640 compound internal data to the external test set.

Fig. 1. Distribution of a Kp,uu,brain, b log(Kp,uu,brain), c ER, and d log(ER) in MDR1 cells, e ER and f log(ER) in BCRP
cells for 640 compounds

Table I. Predictive Performance of Efflux Activities of MDR1 and
BCRP in Cluster and Time-Split Test Set by GPOPT

MDR1 BCRP

Cluster split % < 2-fold 71.1 75.0
R2 0.581 0.499
RMSE 0.333 0.294

Time split % < 2-fold 50.8 46.9
R2 0.317 0.070
RMSE 0.490 0.558

R2 and RMSE were calculated using log(ER)
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The R2 in neuroPK model was 0.577, which was higher than
those of 0.422 and 0.363 in GP and RF, respectively
(Table IV).

DISCUSSION

It has been reported that MDCK-MDR1 cells obtained
from NIH provide a more sensitive in vitro tool for
determining MDR1-mediated efflux liability than MDCK-
MDR1 from the Netherlands Cancer Institute, or MDR1-
overexpressing Lilly Laboratories cell porcine kidney 1 cells
(LLC-PK1-MDR1) (9, 18). Previously, we also reported that
the NIH cell line MDCK-MDR1 was superior as an MDR1-
overexpressing cell line to LLC-PK1-MDR1 for quantita-
tively predicting brain disposition (17). This work is the first
report to establish machine learning models using efflux
activity data of MDCK-MDR1 from the NIH-supplied cell
line. In addition, there are few reports about quantitative
prediction of the efflux transporter BCRP by in silico
modeling methods, although several qualitative classification
models have been reported (33–39). The in vitro prediction
results of the MDR1 and the BCRP efflux assays indicate that

the predictivity of MDR1 efflux activity was higher than the
predictivity of BCRP efflux activity (Table I). Based on the
results, this difference in predictivity appears to be caused by
the differences of distribution patterns, which log(ER) in
MDR1 showed relatively higher than that in BCRP cells (Fig.
1d and f). The predictivity in the time-split dataset was worse
than that in the cluster-split dataset, suggesting that in silico
MDR1 and BCRP models are more applicable to compounds
with similar structure, or with timely updating of the model
for practical use.

The efflux activities predicted by in silico MDR1 and
BCRP models were used for the Kp,uu,brain prediction as
additional explanatory variables (Supporting Information,
Table S1). In silico predictions of MDR1 and BCRP efflux
resulted in a limited predictivity of the machine learning
model for Kp,uu,brain, suggesting that current dataset scale and
predictivity for MDR1 and BCRP models are not sufficient to
apply the Kp,uu,brain prediction. Meanwhile, in silico ap-
proaches, underpinned by in vitro assessments, can utilize
larger datasets than that by in vivo studies in early discovery,
and therefore, the predictivity will be improved when larger
training sets are employed. Indeed, Dolgikn et al. succeeded

Fig. 2. Comparison of the observed a MDR1 and b BCRP efflux ratio with values
predicted by GPOPT in the cluster-split test set. Each figure represents results of 128
compounds in the test set. Solid line is the line of unity. Dashed lines indicate 2-fold
deviation

Fig. 3. Observed Kp,uu,brain versus values predicted by GPOPT incorporating MDR1 and
BCRP efflux ratio in a cluster-split and b time-split test set. Each figure represents results
of 128 compounds in the test set. Solid line is the line of unity. Dashed lines indicate 2-fold
deviation
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in improving the predictive performance of their model for
Kp,uu,brain by using an internal MDR1 model trained with a
significantly larger dataset (16).

Although several in silico Kp,uu,brain prediction models
have been reported (10–16), there are few Kp,uu,brain predic-
tion models considering experimentally determined MDR1
and/or BCRP activities. This study revealed that the predic-
tive performance of Kp,uu,brain tended to be improved by
considering BCRP activities in both GPOPT and RF models
(Table II), suggesting that the BCRP activity also contributes
in part to the predictivity of Kp,uu,brain. However, the
predictive performance using only MDR1 activity was better
than that of using the BCRP activity alone in both the cluster
and time-splinting datasets. Considering that the expression
level of Mdr1a has been shown to be higher than Bcrp in
brain capillaries of the rat (40), it therefore seems reasonable
that the substrates for MDR1 would have a larger impact on
the Kp,uu,brain assessments compared to BCRP.

In this study, the machine learning models were based on
rational selection using the clustering approach, which often
provided an optimistic prediction result compared to the
time-split approach. The authors believe this is due in part to
the addition of new chemical scaffolds being added over time
(30, 41–43). Indeed, the models developed by only in silico
descriptors showed higher predictivity in the cluster-split
dataset than that in the time-split dataset (Table II), suggest-
ing that practical operation of a machine learning model

warrants timely model updates to cover new chemical space.
Interestingly, the machine learning models incorporating
MDR1 and BCRP activities showed similar predictivity
between the time-split and the cluster-split datasets. This
result indicated that the drawback of the machine learning
model could be resolved by considering MDR1 and BCRP
activities as an explanatory variable.

In the neuroPK model, the α and β in this study were
lower than those in previous studies using Kp,brain ratio
obtained from Kp,brain in wild-type and Mdr1a (−/−)/Bcrp(−/
−) (dual KO) rats even though the same MDR1 and BCRP
cell lines were used. Although the Kp,brain ratio is reported to
be a direct index of Kp,uu,brain based on the effect of the
in vivo MDR1 and BCRP expressed at the BBB (21), actual
Kp,brain ratios tend to be higher than Kp,uu,brain (17). Thus, the
difference between Kp,brain ratio and Kp,uu,brain would lead to
different α and β correction factors. When setting α and β in
the neuroPK model, consideration of both efflux activities in
cell lines and predictive endpoints are necessary for accurate
prediction.

While the time-split approach using in-house data is most
useful in estimating the predictive performance of ongoing
internal drug discovery programs, the authors also investi-
gated whether the established model was applicable to
external compounds (Table IV). Out of 34 external com-
pounds, 44.1% compounds were predicted to within 2-fold of
the observed values in the GPOPT and the neuroPK models.
Meanwhile, based on R2 and RMSE, the neuroPK models
showed better prediction performance compared to machine
learning models. The distribution of M.W., clogP, and TPSA
in the external test set is less consistent with the external test
set (Supporting Information, Figure S5), indicating that the
coverage of a chemical space is different between internal and
external datasets. These results suggested that the neuroPK
model is widely applicable over structurally diverse datasets,
while machine learning would achieve maximum perfor-
mance for predicting compounds with similar chemical
properties to those used in the compound training set.

Another advantage of the neuroPK model is the
utilization of MDR1 and BCRP variables to establish
in vitro to in vivo correlations (IVIVE) to be used in
translation (22). These are presented by α and β, in the

Table II. Predictive Performance of Kp,uu,brain in Cluster and Time-Split Test Set by RF and GPOPT

Efflux ratio MDR1 Not used In vitro Not used In vitro
BCRP Not used Not used In vitro In vitro

RF Cluster split % < 2-fold 68.0 74.2 69.5 76.6
R2 0.363 0.427 0.389 0.489
RMSE 0.310 0.294 0.303 0.277

Time split % < 2-fold 64.8 67.2 66.4 74.2
R2 0.227 0.335 0.318 0.504
RMSE 0.371 0.348 0.354 0.311

GPOPT Cluster split % < 2-fold 69.5 78.1 73.4 77.3
R2 0.422 0.563 0.454 0.536
RMSE 0.297 0.267 0.297 0.286

Time split % < 2-fold 49.2 75.8 60.2 73.4
R2 0.307 0.518 0.427 0.602
RMSE 0.422 0.301 0.377 0.292

R2 and RMSE were calculated using log(Kp,uu,brain)

Table III. Predictive Performance of Kp,uu,brain in Cluster and Time-
Split Test Set by the NeuroPK Model

α [95% Cl] 0.58 [0.44, 0.71]
β [95% Cl] 1.2 [0.75, 1.6]

Cluster split % < 2-fold 58.6
R2 0.386
RMSE 0.396
α [95% Cl] 0.36 [0.25, 0.46]
β [95% Cl] 1.8 [1.3, 2.3]

Time split % < 2-fold 57.8
R2 0.265
RMSE 0.434

R2 and RMSE were calculated using log(Kp,uu,brain)
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aforementioned equations. RAF approach corresponding to
the ratio of in vitro to in vivo efflux activities for MDR1 and
BCRP and REF approach using the ratio of transporter
protein levels between in vitro cell lines and in vivo BBB are
applicable to estimate these variables across the species. In
comparison, the machine learning model suggests that large
datasets are required to build accurate models. Therefore,
building an inclusive model is limited by the lack of species-
specific data, such as non-human primate and human. In
order to estimate the minimum number of data required for
the machine learning model, the model performance was
investigated by changing the number of compounds used for
training via the cluster-split dataset (Supporting Information,
Figure S6). This optimistic assessment suggested that more
than 50 data points were required to obtain equal to or
greater predictivity compared to the neuroPK model. An-
other way to extend the Kp,uu,brain prediction model from rat
to other species is that efflux activities in the rat model can be
corrected by the ratio of in vivo transporter expression levels
between rat and the other species. This hybrid approach
could be applicable for both neuroPK and machine learnings
models; however, additional validation is needed.

CONCLUSIONS

This work has clarified the characterization of the
neuroPK model and machine learning approaches for
Kp,uu,brain prediction. Incorporating in vitro MDR1 and BCRP
activities is useful to improve the predictivity and coverage of
application by machine learning approaches for Kp,uu,brain

prediction. Machine learning models have advantages for a

homologous series of compounds in internal Kpuu,brain pre-
diction where sufficient data can be secured. Since the
machine leaning approach requires a large dataset for model
building, the neuroPK model is preferred in translation of
Kp,uu,brain from rodent to monkey and human by considering
RAF and REF approaches at this time. Additionally, the
neuroPK model provides better predictivity of Kp,uu,brain for
external compounds which are outside the chemical space in
which the model was derived.
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Fig. 4. Comparison of the observed Kp,uu,brain and values predicted by the neuroPK model
in a cluster-split and b time-split test set. Each figure represents results of 128 compounds
in the test set. Fitting was performed to estimate scaling factors α and β against observed
values of Kp,uu,brain in rats. Solid line is the line of unity. Dashed lines indicate 2-fold
deviation

Table IV. Predictive Performance of Kp,uu,brain in External Test Set

Neuro PK RF GPOPT

% < 2-fold 44.1 38.2 44.1
R2 0.577 0.434 0.479
RMSE 0.542 0.609 0.556

R2 and RMSE were calculated using log(Kp,uu,brain)
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