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Observational epidemiological studies often include prevalent cases recruited at various times past diagnosis. This left truncation can
be dealt with in non-parametric (Kaplan–Meier) and semi-parametric (Cox) time-to-event analyses, theoretically generating an
unbiased hazard ratio (HR) when the proportional hazards (PH) assumption holds. However, concern remains that inclusion of
prevalent cases in survival analysis results inevitably in HR bias. We used data on three well-established breast cancer prognosticators
– clinical stage, histopathological grade and oestrogen receptor (ER) status – from the SEARCH study, a population-based study
including 4470 invasive breast cancer cases (incident and prevalent), to evaluate empirically the effectiveness of allowing for left
truncation in limiting HR bias. We found that HRs of prognostic factors changed over time and used extended Cox models
incorporating time-dependent covariates. When comparing Cox models restricted to subjects ascertained within six months of
diagnosis (incident cases) to models based on the full data set allowing for left truncation, we found no difference in parameter
estimates (P¼ 0.90, 0.32 and 0.95, for stage, grade and ER status respectively). Our results show that use of prevalent cases in an
observational epidemiological study of breast cancer does not bias the HR in a left truncation Cox survival analysis, provided the PH
assumption holds true.
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Observational epidemiological studies of cancer are commonly
used to study factors that influence disease risk, with an increasing
trend to extend them to study molecular factors that influence
prognosis. However, many population-based studies recruit cases
at variable times after diagnosis (left truncation). Unlike censored
data, where partial survival information is known for all
individuals, left-truncated data only include information on
prevalent cases that are alive at the time of ascertainment. The
absence of this subset of prevalent cases that fail to survive until
the sampling date results in a study group biased towards
favorable survival; without the employment of proper methods
to adjust for left truncation, this can seriously bias the parameter
estimate (Keiding, 2005).

Although the theoretical basis for treatment of left-truncated
data is well established (Brookmeyer, 2005), there are few
published examples comparing different analytic approaches to
left-truncated data (Cnaan and Ryan, 1989). An example of a
population-based study that has been used in left-truncated
survival time analyses is the Studies of Epidemiology and Risk
factors in Cancer Heredity (SEARCH; Goode et al, 2002; Udler
et al, 2007; Azzato et al, 2008; Barnett et al, 2008; Song et al, 2008).
We have extended our studies in the SEARCH breast cancer study
to compare the results of survival time analyses (1) restricted to

cases enrolled close to the time of diagnosis (limited left
truncation) and (2) using cases with substantial left truncation
for three well-established prognostic factors – clinical stage,
histological grade and oestrogen receptor (ER) status.

MATERIALS AND METHODS

Figure 1A provides a schematic of an observational study with
follow-up data that include prevalent and incident cases. Study
time begins on the date of patient recruitment, R, and continues
until censoring date, C. Participants whose dates of diagnoses (Dx)
occur within the active study period are incident cases.
Participants whose dates of diagnoses occur before patient
recruitment are prevalent cases. Time at risk ends at the
occurrence of the event of interest, E, or at time of censoring, C.
Some individuals were recruited into the study after their date of
diagnosis, Dx, whereas other individuals’ event dates, E, occurred
before study recruitment and were not included in the study. The
standard Kaplan–Meier estimate of the survival curve will
overestimate the true survival curve because it would improperly
account for time at risk in left-truncated cases.

Figure 1B shows the individuals and their respective survival
times that would have been sampled in our observational study;
here we have aligned their survival experiences to begin at time of
diagnosis instead of the calendar time of the study. Allowance for
left truncation can be made by defining the set of individuals ‘at
risk’ (of death, recurrence, etc) at a given time t past diagnosis to
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only include individuals that have not had an event nor been
censored before time t and who are under active follow-up at time t
(Brookmeyer, 2005). In this case, time at risk begins at time of
study recruitment, R, and ends at the either E or C; the time of
delayed entry is not considered ‘at risk’. Therefore, in a survival
analysis allowing for left truncation, a component of each recruited
individual’s time following diagnosis is not considered in the
analysis ‘at risk’ set if the individual is not yet recruited for
the study (delayed entry time, shown by dashed lines); however,
this time is used to align properly individuals on the y axis of time
since diagnosis. Figure 1B also shows how, in a left truncation
survival analysis, the ‘at risk’ set for our example observational
study changes with time since diagnosis. Given independent
delayed entry (no association between study entry time and
truncation time), the conditional hazard ratio (HR) calculated in a
left truncation survival analysis should be equivalent to the
unconditional HR (Klein and Moeschberger, 2003).

Similarly, left truncation must also be accounted for in a
proportional hazards (PH) model that compares the hazard in an
exposed population with that in an unexposed population.
However, when using Cox models, the PH assumption that the
relative hazard remains constant over time must hold. Over a
limited follow-up the PH assumption can be reasonably robust, but
over a longer follow-up the HR of a prognostic variable may
change. Under these circumstances, one option is to treat the
prognostic factor of interest as a time-dependent variable in an
‘extended’ Cox model. In such a case, we add a term involving the
variable and a function of time (a time-varying covariate),
extending the simple Cox model. This analysis can be accom-
modated in most commonly used statistical packages (SAS, STATA
and SPSS). Provided the PH assumption holds, the Cox regression
HR estimated from left-truncated data should be an unbiased
estimate of the true HR; however, inclusion of a time-dependent

covariate will change the practical interpretation of the HRs (Klein
and Moeschberger, 2003).

Cases were selected from the SEARCH breast cancer study, an
ongoing population study of women diagnosed with breast cancer
in the region of England included in the Eastern Cancer
Registration and Information Centre (ECRIC, formerly East
Anglian Cancer Registry). The study started on 1 July 1996.
Eligible participants were women diagnosed with invasive breast
cancer aged 55 or younger since 1 January 1991 and alive at the
start of the study, and women diagnosed with invasive breast
cancer under 70 years of age since the beginning of the study.
Owing to boundary changes, some cases diagnosed before 1995
were identified by the North Thames Cancer Registry.

Of those eligible to take part, 67% have returned a comprehen-
sive epidemiological questionnaire and 64% have returned a blood
sample for genotyping. Response rates were the same for prevalent
and incident cases. All participants in the study provided informed
consent, and the study was approved by the Eastern Multicentre
Research Ethics Committee. These analyses have been limited to
the 4470 individuals that have been included in our ongoing
studies of genetic susceptibility to breast cancer.

Patient date of diagnosis, Dx, in SEARCH corresponds to the
date of diagnosis provided by ECRIC. The date of patient blood
draw for genotyping is considered time of study recruitment, R, as
this is the date the patient entered the cohort. An incident case,
therefore, would have either very little or no time from date of
diagnosis to date of blood draw. Prevalent cases were defined as
cases whose time from date of diagnosis until study entry was 46
months. TNM stage (Sobin and Wittekind, 1997) and histopatho-
logical grade were obtained through ECRIC. ER status was
determined by performing immunohistochemistry on paraffin-
embedded sections of breast tumour using the Novocastra clone
6F11. The Allred system (Harvey et al, 1999) was used for scoring;
scores 42 were considered positive.

The ECRIC and the North Thames Cancer Registry have active
follow-up at years 3 and 5 after diagnosis and then at 5-year
intervals. Follow-up information and all-cause mortality are
obtained by searching hospital information systems for recent
visits. If a patient has not had a recent visit, the patient’s general
practitioner is contacted to obtain the vital status. Death certificate
flagging through the Office of National Statistics also provides the
registries with notification of deaths. The lag time with this process
is a few weeks for cancer deaths and 2 months to a year for non-
cancer deaths.

Statistical methods

We chose to evaluate stage, grade and ER status, as these variables
are well-established breast cancer prognosticators. We compared
individual models for stage and grade fitted as both continuous
and categorical variables. The fit of the two models (categorical vs
continuous) was similar for both variables, so we chose to perform
all the analyses based on the simplest model (continuous).
Univariate Cox regression analysis was performed for each
prognosticator separately to determine the effect of each factor
on survival using three different scenarios: (a) baseline model
using incident cases only (no left truncation, considered unbiased
in respect to survival analyses); (b) prevalent cases only allowing
for left truncation and (c) all cases allowing for left truncation.

For model (a), individual inclusion in the ‘at risk’ set began on
date of diagnosis (Dx). For left-truncated analyses, models (b) and
(c), individual inclusion in the ‘at risk’ set began at time under
observation (R, study entry, the date of blood sample receipt).
Time under observation in models (b) and (c) will correlate with
date of diagnosis for incident cases (Figure 1). Follow-up ended on
the date of death from any cause (E), or, if death did not occur, on
30 November 2006 (C). All analyses were censored at 10 years after
diagnosis, as follow-up became less reliable after 10 years. The PH
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Figure 1 (A) Observational epidemiological study with follow-up data,
(B) survival analysis ‘at risk’ set. (A) Study recruitment starts at R and ends
at C. Date of diagnosis and event are indicated by Dx and E respectively.
(B) Eligible cases are aligned by Dx on y axis of time since diagnosis. Dashed
lines indicate unobserved time.
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assumption for each prognostic factor was assessed under each
model visually using log–log plots, as well as tested analytically
using Schoenfeld residuals, based on a test of non-zero slope in a
generalised linear regression of the scaled Schoenfeld residuals on
a function of time. This is equivalent to testing that the log HR
function is constant over time (PH assumption); rejection of the
null hypothesis indicates a deviation from the PH assumption
(Grambsch and Therneau, 1994).

The parameter of interest from each analysis was the
b-coefficient (natural log of the HR) and associated 95%
confidence interval. Robust variances were calculated (Lin and
Wei, 1989). The primary test was a test of heterogeneity (1 degree
of freedom) for differences between prognosticator parameter
estimates in models (b) and (c) compared to the baseline model
(a). This comparison was performed by generation of a z-statistic,
calculated as the difference in b-coefficients divided by the square
root of the sum of their squared standard errors. In model (c), a
likelihood ratio test (1 degree of freedom) was used to test for
interaction between case type (prevalent and incident) and the
prognosticator. All analyses were performed in Intercooled Stata,
version 9.2 (StataCorp LP, College Station, TX, USA). Statistical
tests were two-sided with an a-level of 0.05.

RESULTS

The survival and prognostic characteristics of the 4470 SEARCH
participants included in these analyses are described in Table 1.

More than 99% of the cases were Caucasian. There were 1231
(27.5%) cases considered to be incident, providing 8517 years at
risk, with a median follow-up time of 7.7 years, and 220 deaths
before 10 years of follow-up. There were 3239 (72.5%) prevalent
cases, providing 16 532 years at risk, with a median follow-up time
of 7.2 years and 490 deaths before 10 years of follow-up. Prevalent
cases were more likely than incident cases to be diagnosed at a
younger age and present with a higher TNM stage.

Analyses without correcting for time-dependent effects

The results of the three Cox models for each prognostic factor are
presented in Table 2. No differences in the parameter estimates for
the different models were seen for stage and grade. However, the
parameter estimate for the baseline model for ER status was
significantly different than those for the other two models
(P¼ 0.0006 and 0.03 respectively). A test for interaction of case
status (prevalent and incident) and prognostic factor in model (c)
was significant for ER status (P¼ 0.001), but not for stage or grade
(P¼ 0.14 and 0.07 respectively).

However, these differences might be expected if the PH
assumption is violated; each prognostic factor had highly
significant tests for PH assumption violation based on Schoenfeld
residuals in model (c) (Po0.0001). The time-dependent effect of
ER status is illustrated in Figure 2A, which shows the annual
mortality rate for incident cases by ER status. Early after diagnosis,
patients with ER-negative tumours experience higher mortality
rates compared to ER-positive tumours; however, this difference

Table 1 SEARCH participant survival and prognostic characteristics

Incident Prevalent Pa

Total number subjects 1231 3239
Total time at risk (years) 8517.1 16 532.2
Median F/U (years)b 7.7 (0.48–10)c 7.2 (0.96–10)c

Median time at risk (years) 7.3 (0.08–9.77)c 4.8 (0.03–9.48)c

Median time from diagnosis to study entry (years)d 0.39 (0–0.5)c 1.84 (0.51–9.34)c

Number of deaths 220 490
Annual mortality rate 0.026 0.03
5-year survival rate 0.88 (0.86–0.89)e 0.89 (0.88–0.91)e

Median age at diagnosis, years 52 (25–65)c 51 (23–69)c 0.001f

Age at diagnosis o0.001g

o40 89 (7.2%) 305 (9.4%)
40–49 290 (23.6%) 1041 (32.1%)
50–59 596 (48.4%) 1206 (37.2%)
60+ 256 (20.8%) 687 (21.2%)

Histopathological grade 0.25g

Well differentiated 282 (22.9%) 592 (18.3%)
Moderately differentiated 494 (40.1%) 1193 (36.8%)
Poorly differentiated 320 (26.0%) 700 (21.6%)
Unknown 135 (11.0%) 754 (23.3%)

Morphological type 0.006g

Ductal 907 (73.7%) 2409 (74.4%)
Lobular 206 (16.7%) 453 (14.0%)
Other 103 (8.4%) 352 (10.9%)
Unknown 15 (1.2%) 25 (0.8%)

Clinical stage 0.005g

1 647 (56.6%) 1544 (47.7%)
2 523 (42.5%) 1460 (45.1%)
3 or 4 44 (3.6%) 150 (4.6%)
Missing 17 (1.4%) 85 (2.6%)

ER 0.41g

Negative 232 (18.9%) 417 (12.9%)
Positive 671 (54.5%) 1304 (40.3%)
Missing 328 (26.7%) 1518 (46.9%)

ER¼ oestrogen receptor. aComparing incident and prevalent cases. bFollow-up censored at 10 years. cRange of variable. dAllowing for left truncation. e95% CI. fTwo-tailed t-test.
gw2-test. Bold values indicate a statistically significant test with Po0.05.
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becomes less with time and, after about 8 years after diagnosis, the
annual mortality for women with ER-positive tumours is greater
than for women with ER-negative tumours. The solid line in
Figure 2B shows the corresponding HRs associated with ER status
(ER-negative status is referent) estimated for different time periods
based on the incident cases only, using a standard Cox PH model
split at various time points. The HR is less than 1 before 8 years,
showing the lower mortality rate associated with ER-positive
tumours, but 41 after 8 years. Had the PH assumption held, the
HR associated with ER status would be the same for various time
points; this would be the overall estimated HR provided by the
standard Cox model. However, in this case, the overall estimated

HR for ER-positive tumours of 0.29 is effectively a weighted
average of the different time-specific HRs (Figure 2B, dotted
reference line). Thus the apparent difference between the
parameter estimates under the different models is not the result
of survival bias, but occurs because the PH assumption is violated.
Under each model, the (time-independent) parameter estimate is a
weighted average of the underlying time-specific parameter
estimates, and as the number of subjects at risk at each time is
different under the various models, the weighted averages will also
be different.

Analyses correcting for time-dependent effects

Cox models for stage, grade and ER status under the three
scenarios were modified to include a covariate to allow for time-
dependent effects (extended Cox model, Table 3). We found that
the best-fit models allowed the b-coefficient to vary linearly with
the natural logarithm of time (instead of varying linearly with
time). Using the extended Cox formula, the HR at time t for time-
varying covariates was calculated as

HRðtÞ ¼ expðbx þ InðtÞdxÞ

where x is the predictor variable, b is the b-coefficient and d is the
time-varying coefficient at time t (Kleinbaum and Klein, 2005).
There were no significant differences between the b-coefficients for
prognostic factors between the incident model and the models
including prevalent cases. The test for interaction of case type and
prognostic factor in model (c) was no longer significant for ER
status (P¼ 0.59) and remained non-significant for stage (P¼ 0.06)
and grade (P¼ 0.07). The test for proportional assumption
violation based on Schoenfeld residuals was no longer significant
for any of the models.

The expected HRs for ER status at different times were derived
from the parameter estimates from model (c) and are shown in
Figure 2B (dashed line). These were very close to the observed
time-specific HRs estimated using incident data only, suggesting
that the extended Cox model fits the data well.

DISCUSSION

Studies with delayed entry – time between date of diagnosis (onset
date) and study entry – are commonly encountered; these include
observational epidemiological studies with prevalent cases. It is

Table 2 Cox models for prevalent and incident breast cancer cases

Prognostic factor Modela b-Coefficient (95% CL)b Heterogeneity test P-valuec

Stage Model (a) 1.15 (0.91, 1.38) Ref
Model (b) 0.95 (0.81, 1.10) 0.15
Model (c) 1.01 (0.88, 1.13) 0.29

Case status interaction P-value¼ 0.14

Grade Model (a) 0.90 (0.68, 1.12) Ref
Model (b) 0.65 (0.50, 0.80) 0.07
Model (c) 0.74 (0.61, 0.86) 0.21

Case status interaction P-value¼ 0.07

ER Status Model (a) �1.25 (�1.56, �0.94) Ref
Model (b) �0.52 (�0.80, �0.24) 0.0006
Model (c) �0.83 (�1.04, �0.63) 0.03

Case status interaction P-value¼ 0.001

ER¼ oestrogen receptor. aEach prognostic factor was modeled separately in a ‘univariate’ Cox model. Unknown or missing data for each prognostic variable were not included.
Model (a): baseline model using incident cases only without allowing for left truncation; model (b): prevalent cases allowing for left truncation; model (c): all cases allowing for left
truncation. A test for interaction of case status and prognostic factor was performed in model (c). bBased on calculation of robust variances. cHeterogeneity test comparing
prognostic factor b-coefficient in models (b) and (c) to baseline model (a). Comparisons of b-coefficients from models (a) and (c) are not strictly valid as the models are not
independent, but, where statistically significant, it demonstrates that estimates differ by more than 2 standard errors. Bold values indicate a statistically significant test with Po0.05.
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commonly thought that the use of prevalent cases in studies of
disease prognosis results inevitably in bias. However, when the
delay time is known, it can be factored into standard time-to-event
analysis methods to provide valid tests of association between risk
factor and event, as well as unbiased estimates of the HR associated
with the risk factor. Our results, based on empirical data,
demonstrate that unbiased estimates of the HR are obtained from
a correctly specified model that adjusts for left truncation and
time-dependent effects.

However, when using these methods for prognostic studies in
prospective cohorts, it is important to note some cautions and
limitations. If the current disease duration is not known (unknown
date of diagnosis), the delayed entry estimator is not a viable
option and biases in the parameter estimate can occur (Brook-
meyer, 2005). If date of entry (age, time to blood draw) is used as a
left truncation point, it does not need to be in the model as a
covariate; in our example, prevalent case status would not need to
be added to the left-truncated model (Klein and Moeschberger,
2003). Further, the methods that allow for left truncation rely on a
key assumption: entry time and event time are conditionally
independent, given the covariates included in the model. If this
assumption is not met, the parameter estimates are not valid.
Further discussion of the independent delayed entry assumption is
provided by Keiding (1992).

Also, although left truncation methods allow the use of prevalent
cases in survival analyses, the sample may represent a patient
subset that is not generalisable to the patient population as a
whole. In our example, we cannot extrapolate our results to
individuals who died too quickly following diagnosis to be
included in our study, either as prevalent or incident cases. Along
these lines, care also needs to be taken in choosing an appropriate
time scale. For example, when comparing treatment for a
metastatic cancer, it would be inappropriate to measure survival
from date of initial diagnosis, as we would not be able to make
reasonable inferences on the disease population as a whole. A more
appropriate onset date would be the date of diagnosis of advanced
disease (Cnaan and Ryan, 1989).

A separate issue when working with a Cox PH model is possible
PH assumption failure as when prognostic factors are time
dependent; in other words, their hazards vary over time. The
extended Cox PH model is adapted to deal with these types of

covariates and can easily be performed with modern statistical
packages. Our results show the importance of taking into account
time-dependent effects in a Cox regression model when predictor
variables violate the PH assumption in a study that includes
prevalent and incident cases. In our example, all three prognos-
ticators had statistically significant deviation from the PH
assumption; this violation was no longer observed once we
accounted for time-dependent effects. Also, besides inclusion of
a time-varying coefficient, other valid methods for dealing with PH
assumption failure exist, including stratification by the variable or
multi-state modeling for Cox regression analysis, frailty models
(Klein and Moeschberger, 2003) and misspecified Cox model
analysis (Lin and Wei, 1989). It is important to note that
interpretation of the HR can vary based on the technique used
(Klein and Moeschberger, 2003).

In conclusion, observational epidemiological studies that
include prevalent cases can provide a useful tool in the study of
prognostic factors for disease, provided appropriate allowance for
the prevalent ascertainment is made in the analysis. The major
advantage of using prevalent cases is the gain in power from
increased sample size which may be particularly important for the
study of germ-line genetic predictors of outcome, where effect
sizes are likely to be modest at best.

ACKNOWLEDGEMENTS

We thank the women who have taken part in the study, the
SEARCH study team, the consultants and general practitioners
throughout East Anglia for their help in recruiting patients, the
staff of ECRIC and North Thames Cancer Registry for
providing outcome and clinical data. EA was supported by the
Intramural Research Program of the NIH, NCI, DCEG and the
NIH– Cambridge Graduate Partnership Program. NC is a
senior investigator in the National Cancer Institute (DCEG). PP
is a Cancer Research UK Senior Clinical Research Fellow and
SEARCH is funded by a programme grant from Cancer
Research UK. This research was supported in part by the
Intramural Research Program of the NIH and the National Cancer
Institute.

Table 3 Time-dependent (extended) Cox models for prevalent and incident breast cancer cases

Prognostic factor Modela b-Coefficient (95% CL)
Log-linear time-varying

coefficient d (95% CL)b
Heterogeneity
test P-valuec

Stage Model (a) 1.74 (1.22, 2.26) �0.51 (�0.89, �0.13) Ref
Model (b) 1.95 (1.51, 2.39) �0.61 (�0.87, �0.36) 0.55
Model (c) 1.78 (1.45, 2.10) �0.52 (�0.72, �0.32) 0.90

Case status interaction P-value¼ 0.06

Grade Model (a) 2.43 (1.61, 3.24) �1.15 (�1.68, �0.63) Ref
Model (b) 1.70 (1.18, 2.22) �0.66 (�0.96, �0.35) 0.14
Model (c) 1.97 (1.55, 2.38) �0.82 (�1.07, �0.57) 0.32

Case status interaction P-value¼ 0.07

ER Status Model (a) �2.39 (�3.21, �1.56) 0.97 (0.36, 1.58) Ref
Model (b) �2.38 (�3.24, �1.51) 1.27 (0.71, 1.84) 0.99
Model (c) �2.42 (�3.02, �1.82) 1.19 (0.78, 1.60) 0.95

Case status interaction P-value ¼ 0.59

ER¼ oestrogen receptor. aEach prognostic factor was modeled separately in a ‘univariate’ Cox model. Unknown or missing data for each prognostic variable were not included.
Model (a): baseline model using incident cases only without allowing for left truncation; model (b): prevalent cases allowing for left truncation; model (c): all cases allowing for left
truncation. A test for interaction of case status and prognostic factor was performed in model (c). bBased on calculation of robust variances. cHeterogeneity test comparing
prognostic factor b-coefficient only in models (b) and (c) to baseline model (a). Comparisons of b-coefficients from models (a) and (c) are not strictly valid as the models are not
independent, but, where statistically significant, it demonstrates that estimates differ by more than 2 standard errors.
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