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Abstract
Background: Many classifiers have been developed that can distinguish
different types of skin lesions (e.g., benign nevi, melanoma) with varying
degrees of success.1–5 However, even successfully trained classifiers may
perform poorly on images that include artefacts. While problems created by
hair and ink markings have been published, quantitative measurements of
blur, colour and lighting variations on classification accuracy has not yet
been reported to our knowledge.
Objectives: We created a system that measures the impact of various arte-
facts on machine learning accuracy. Our objectives were to (1) quantitatively
identify the most egregious artefacts and (2) demonstrate how to assess a
classification algorithm's accuracy when input images include artefacts.
Methods: We injected artefacts into dermatologic images using techniques
that could be controlled with a single variable. This allows us to quantita-
tively evaluate the impact on the accuracy. We trained two convolutional
neural networks on two different binary classification tasks and measured
the impact on dermoscopy images over a range of parameter values. The
area under the curve and specificity‐at‐a‐given‐sensitivity values were
measured for each artefact induced at each parameter.
Results: General blur had the strongest negative effect on the melanoma
versus other task. Conversely, shifting the hue towards blue had a more
pronounced effect on the suspicious versus follow task.
Conclusions: Classifiers should either mitigate artefacts or detect them.
Images should be excluded from diagnosis/recommendation when artefacts
are present in amounts outside the machine perceived quality range. Failure
to do so will reduce accuracy and impede approval from regulatory agencies.

1 | INTRODUCTION

For at least 3 decades, attempts have been made to di-
agnose melanoma from digital images using computers.6

This effort has been relatively continuous over that
period and recent advances both in the proliferation of
smartphones and the successes ofmachine learninghave
only accelerated the research in this area. The dominant

machine learning approach to lesion diagnosis (clinical
term) or classification (computer science term) of images
is to train a convolutional neural network (CNN). This
training is usually performed in a supervised fashion by
providing images with labels (e.g., diagnoses) which the
network learns iteratively. Trainednetworks can then be
used to perform inference on previously unseen images
assigning the most probable label (diagnosis) to the new

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, pro-

vided the original work is properly cited.

© 2021 The Authors. Skin Health and Disease published by John Wiley & Sons Ltd on behalf of British Association of Dermatologists.

Skin Health Dis. 2021;1:e19. wileyonlinelibrary.com/journal/ski2 - 1 of 8

https://doi.org/10.1002/ski2.19

https://doi.org/10.1002/ski2.19
https://orcid.org/0000-0003-3586-4274
https://orcid.org/0000-0003-3586-4274
http://wileyonlinelibrary.com/journal/ski2
https://doi.org/10.1002/ski2.19


image. Historically, research on this topic has been pre-
maturely interpreted as ready for translation into either
clinical or personal‐use tools (e.g., the proposed decision
support system trained on 358 images7 or the Internet
based screening system trainedon1258 images8). This is
especially problematic for smartphone apps.9–11

Nevertheless, the objective of building tools to
augment clinical diagnostic efforts or to triage lesions
for people who live in underserved regions is impor-
tant. False starts are not a sufficient reason to abandon
efforts, but all ongoing efforts need to proceed with
proper caution and evidence‐based approaches. In this
paper, we demonstrate such an approach with respect
to image artefacts, a common and formidable obstacle
in dermatological images.

Artefacts have become problematic for datasets
used in dermatology machine learning tasks because the
data often comes from a wide variety of undocumented
camera and dermoscopy equipment whose capabilities
have changed rapidly over the large timespan during
which the images were collected. These data exhibit
colour variations, saturation variations and intensity
variations. They also exhibit different kinds of blur and
inclusion artefacts such as bubbles, hair, rulers and black
corners due to dermatoscope field of view limitations.

These artefacts also pose challenges for dermatol-
ogists providing telehealth services. Poor‐quality im-
ages make consultation or diagnosis difficult and risky.
The ability to detect bad images prior to submission
into a telehealth system could reduce the time spent by
providers rejecting images and by patients waiting for
answers.

The goal of this research was not to produce a top‐
of‐the‐leader‐board classifier but rather to quantita-
tively study the impact of artefacts specifically on
machine learning classification. To do that, we needed
to train a classifier and measure how its performance
degraded on images with increasingly severe artefacts.
Since most image classifiers now use CNNs in some
fashion, we chose this as our general classifier archi-
tecture. To avoid simply learning how artefacts behave
with a specific CNN architecture, we trained two
different CNNs that have been reported in the litera-
ture. To further generalize our results, we also trained
each classifier on two different classification tasks (the
diagnosis and the recommendation tasks). We use
established metrics commonly used in the field.

2 | MATERIALS AND METHODS

2.1 | Dataset

The International Skin Imaging Collaboration (ISIC)
archive12 is a publicly available repository of over 23000
digitized dermoscopy images with clinical labels that has
been widely used in image analysis research on skin

lesions.13,14 The dataset includes several thousand
nevus images that contain large coloured marking disks
near the lesion. Early experiments showed that our
CNNs were using those disks as cues and learning on
them. We also noted many images contained black cor-
ners, rulers, ink markings and other inclusions. Many
times, the lesion of interest was a very small portion of
the image and the resizing needed by the CNNs caused
small features to be lost. The Inception‐v3CNNrequired
the images to be square but the ISIC images are rect-
angular and the resulting reshaping created new resizing
artefacts we did not intend to study. For those reasons,
we chose to manually crop the images and train/test on
the cropped images.

Our cropping rule was to keep the cropping region
roughly square and retain a margin around the lesion
no greater than the lesion's diameter. Where possible,
we cropped out the various inclusions.

2.2 | Classification tasks

We used images from the ISIC Archive which are
labelled. These labels include ‘diagnosis’ and ‘diagnostic

What is already known about this topic?

� Imageartefacts reducediagnostic accuracy for
both practitioners and machine learning algo-
rithms. Visual specialities such as ophthal-
mology and radiology are actively engaged in
Image Quality Assessment (IQA). IQA seeks to
quantify ‘human perceived image quality’. In
dermatology, image quality is acknowledged
as an issue but is typically reported in subjec-
tive terms. With few exceptions, the impact of
artefacts on machine learning of dermatologic
images has not been studied.

What does this study add?

� Operational qualification testing is required
for clinical laboratory devices. So too, ma-
chine learning algorithms should be able to
identify which images are outside their range
of interpretation. We introduce the idea of
‘machine perceived image quality’ to quanti-
tatively report the impact of different arte-
fact classes on machine learning algorithms.
Artefacts are modelled on real‐world Mole-
Mapper™ data. This study demonstrates a
method for establishing such ranges for
artefact classes.
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method’ attributes. Using these attributes, we parti-
tioned the data into two different binary datasets.

We defined the first binary diagnosis classification
task as melanoma versus other where ‘other’ included
the following diagnosis labels: actinic keratosis,
angioma, atypical melanocytic proliferation, basal cell
carcinoma, dermatofibroma, lentigo NOS, lentigo sim-
plex, nevus, other, pigmented benign keratosis, sebor-
rheic keratosis, solar lentigo, squamous cell carcinoma
and vascular lesion.

For the management decision task recommending
biopsy or follow, dermatologists in our group helped
create a general set of rules to relabel the images. To
generate the decision labels from the ISIC labels, we
used the following criteria.

� Anything with a diagnosis of actinic keratosis, atyp-
ical melanocytic proliferation, basal cell carcinoma,
melanoma or squamous cell carcinoma was marked
‘biopsy’ regardless of diagnostic method.

� Remaining data with a diagnostic method of ‘histopa-
thology’ were included in the ‘biopsy’ set. Even if the
diagnosis returned ‘nevus’ we considered it suspicious
if a clinician was in enough doubt biopsy it.

� Data with no diagnostic method specified were
excluded from the dataset.

� Data with a diagnostic method specified (but not
‘histopathology’) and had a diagnosis of angioma,
dermatofibroma, lentigo NOS, lentigo simplex, nevus,
seborrheic keratosis, pigmented benign keratosis or
solar lentigo were labelled ‘follow’.

� Any remaining data not fitting these criteria were
excluded from the dataset.

In both partitions, we dropped images that were
either missing a diagnosis or missing a diagnostic
method leaving 23 135 samples in the management
decision task and 23 646 samples for the diagnosis
classification task.

2.3 | Data preparation

The relabelled datasets described above were split into
testing and training data with an 80/20 split into the
training/testing sets. Each set was further designed
such that 40% of the data was labelled with the posi-
tive class (‘melanoma’ or ‘biopsy’ depending on the
task) and 60% was the negative class (‘other’ or
‘follow’). To minimize class bias errors, class imbalance
was compensated for by using class weights on the loss
function such that the smaller class errors carried more
weight. We performed Monte Carlo Cross Validation
splitting the data randomly (bootstrap with replace-
ment) on each training/testing iteration. Results from
nine iterations were averaged together for the final
results.

In the case of the diagnosis task, the constraining
factor was the total number of available melanoma
samples. Preserving the training/testing and class ra-
tios resulted in 4319 images in the training set of which
1728 were labelled melanoma. In the case of the
management decision task, there were many more ‘bi-
opsy’ samples resulting in 17 729 images in the training
set of which 7092 were labelled biopsy.

To compensate for small numbers in the datasets,
data were augmented by resizing images down to
350 � 350 and randomly cropping a 299 � 299 image
from those. The 299 size was chosen because of
Inception‐v3 requirements and kept for theWide ResNet
model for comparative consistency. Once cropped,
imageswere randomlyflippedhorizontally and vertically
using a standard 50–50Bernoulli trial. This allowed us to
substantially increase our effective datasize.

Pretrained PyTorch models expect images to be
colour normalized so for both fine‐tuned transfer
learning and inference, the ISIC image colour channels
were normalized as per the PyTorch documentation
during the image loading process.

2.4 | Framework and training

We implemented our system using the PyTorch 1.2
framework on Python 3.7 using CUDA 10.1 libraries to
take advantage of an NVIDIA GeForce GTX 1060 GPU
running on a Linux (Ubuntu 16.04) system with 16‐GB
RAM and an Intel Core i7‐6700K CPU for training and
inference.

We used the Inception‐v3 and Wide ResNet‐101‐2
models15,16 pretrained on the ImageNet dataset17,18.
The Inception‐v3 model was used in the seminal paper
by Esteva et al.5 while theWide ResNet model is a more
recent CNN. These models were then fine‐tuned using
transfer learning with the new labels.19 This was done
by replacing the final fully connected 1000‐class layer
with a single fully connected binary layer (with random
weights). Training was done using stochastic gradient
descent optimizer with a learning rate of 0.01, mo-
mentum of 0.5 and batch sizes of 8 to stay within
memory constraints on the GPU. Backpropagation was
allowed to change all the weights in the network. The
loss function for these binary classification networks
was the typical binary cross‐entropy with sigmoid loss
implemented with PyTorch's BCEWithLogitsLoss func-
tion. The relatively small dataset sizes described in
detail below resulted in the networks quickly over-
fitting while using the default built‐in regularization in
the networks. Training for 12 epochs was empirically
found to be a reasonable compromise by examining
learning curves constructed from training and valida-
tion set performance. This yielded networks trained to
recognize the diagnostic and recommendation classes
we defined for the dermoscopy images.
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2.5 | Artefact creation and testing

We synthetically generated images with artefacts using
a single numerical parameter to control the amount of
artefact introduced into each test image. Based on
observations from the MoleMapper™ data, we studied
the following classes of artefacts.

2.5.1 | Blur

We simulated image blur by convolving the images with
a Gaussian kernel whose single parameter σ is used for
both x and y directions and represents the standard
deviation of the normal curve measured in pixels. This
is similar to the work of Vasconcelos and Rosado.20

This simulates image blurring caused by the object of
focus being outside of the depth of field or by motion of
the camera along the optical axis.

2.5.2 | Motion

We simulated artefacts created when the user moves
the camera (e.g., slight hand shaking) parallel to the
surface being photographed using a Gaussian kernel
but only in one direction.

2.5.3 | Red colour shifts

To simulate the red shift observed in images, we
measured the average of the standard deviation of the
dataset for the red channel and increased the red
values in the test images by multiples of the standard
deviation. To prevent saturation, we set the maximum
possible value of the mean to one standard deviation
below the highest possible value (255).

2.5.4 | Blue colour shifts

To simulate the blue shift observed in images, we found
that simply lowering the values of the red channel was
enough to mimic this visually. Using the same red
channel standard deviation value for the red‐shift case,
we subtracted multiples from the red channel in the
test images. To prevent under saturation, we set the
minimum possible value of the mean to two standard
deviations above the lowest value (0).

2.5.5 | Saturation

Differences in saturation tend to come from different
models of smartphones. We mimicked observed

saturation differences using the PyTorch adjust_-
saturation function in the transforms.functional
module.

2.5.6 | Intensity

Differences in intensity can also be seen with different
models of smartphones as well as lighting variation. We
mimicked observed intensity differences using the
PyTorch adjust_brightness function in the transforms.
functional module.

3 | RESULTS

We report the results in Figure 1 using the generally
reported area under the curve (AUC) on receiver
operating characteristic (ROC) curves. To assess algo-
rithm performance in terms of clinical performance, we
also report specificity values at defined sensitivity
operating points. This method is also used by Marchetti
et al.13 and repeated by Codella et al.14 who performed
a similar analysis for their classification results.

Table 1 shows the impact of artefacts compared
against the control case of no artefact. The process is
repeated for images distorted by each class of artefact.
The sensitivity control points were chosen using
average sensitivity values of dermatologists on similar
diagnosis and management tasks reported in Table 1 in
Marchetti et al.13 We used values from Table 1 in
Haenssle et al.3 who also report on similar tasks but
differentiate between dermatologist skill level to
calculate differences between average and expert
dermatologists. We then treated our results from the
control tests as expert practitioners. The differences
between expert and average dermatologists were
subtracted from the control specificity and AUC values
to create ‘below average’ thresholds. Artefact tests
resulting in values that dropped below these thresholds
represent ‘below average’ performance and are shown
in bold.

Looking at the impact of blur in Table 1, the Wide
ResNet model was more robust on the management
task, whereas the Inception‐v3 model was more robust
on the diagnostic task. Observe that blur is the most
damaging artefact followed by colour shifts in the blue
direction. ROC curves show that motion blur did not
have as significant an impact possibly because infor-
mation is lost mainly in one direction and there appears
to be enough information in the remaining directions
for the classifier to operate. This is important because
it implies that CNNs are robust to some amount of
human shake during image acquisition. Brightness was a
problem at each extreme. Saturation seemed to have
the least impact of any of the artefacts and, coupled
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F I G U R E 1 Each row represents the effect of injecting a particular artefact. The composite image at the left shows the effect of adding the
artefact at test levels to an example image. ROC curves show sensitivity (y axis) against the false positive rate (x axis). Legends show the
parameter values under test. ROC columns compare melanoma versus other and biopsy versus follow tasks for the Wide ResNet (W) and
Inception (I) CNNs. CNN, convolutional neural network; ROC, receiver operating characteristic
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with the impact of blur, indicates that fine features are
important for classification. Given the relatively small
size of the dataset, we consider the actual numbers to
be preliminary but the process to be reasonable.

4 | DISCUSSION

These results demonstrate the need to calibrate the
range of acceptable artefacts on any given machine
learning task. We have introduced the phrase ‘machine
perceived image quality’ borrowing from the work on
Image Quality Assessment research to describe this

quantification effort. This effort underscores the
concept that the performance of a classifier will vary
widely across images with different impediments and
that simple metrics of accuracy are insufficient to
describe the usefulness of a classifier.

To arrive at the various thresholds used, we fol-
lowed existing published work. In Marchetti et al.’s13

paper, sensitivity numbers were chosen by asking eight
dermatologists to provide diagnosis on a melanoma
versus benign diagnosis task and management decision
on a biopsy versus monitor/reassure recommendation
task and then averaging the results. These are the tasks
we have emulated in our research. However, our

T A B L E 1 Results of artefacts on
AUC and specificity

Diagnostic task Management task

Wide ResNet Inception v3 Wide ResNet Inception v3

Parameter AUC Spec. AUC Spec. AUC Spec. AUC Spec.

Blur 1.00 0.91 0.83 0.90 0.81 0.98 0.95 0.98 0.95

2.17 0.85 0.74 0.85 0.71 0.96 0.91 0.93 0.85

3.33 0.74 0.54 0.78 0.60 0.92 0.83 0.85 0.71

4.50 0.62 0.35 0.72 0.49 0.87 0.75 0.78 0.56

Motion 1.00 0.92 0.84 0.91 0.82 0.99 0.96 0.99 0.96

2.50 0.89 0.80 0.88 0.78 0.98 0.95 0.98 0.94

4.00 0.84 0.72 0.85 0.73 0.97 0.93 0.96 0.88

5.50 0.78 0.63 0.82 0.67 0.96 0.90 0.95 0.86

More red 18.5 0.91 0.84 0.91 0.82 0.98 0.96 0.98 0.95

37.0 0.90 0.81 0.89 0.79 0.97 0.93 0.97 0.92

55.5 0.88 0.79 0.88 0.76 0.96 0.90 0.96 0.88

74.0 0.87 0.77 0.87 0.74 0.95 0.87 0.95 0.86

More blue −18.5 0.90 0.82 0.90 0.81 0.98 0.94 0.98 0.94

−37.0 0.87 0.77 0.87 0.76 0.94 0.83 0.93 0.82

−55.5 0.85 0.72 0.85 0.73 0.88 0.73 0.87 0.71

−74.0 0.81 0.67 0.82 0.66 0.84 0.68 0.84 0.66

Brightness 0.60 0.84 0.72 0.79 0.64 0.93 0.82 0.95 0.87

0.80 0.91 0.82 0.90 0.80 0.98 0.95 0.98 0.95

1.20 0.90 0.82 0.90 0.82 0.98 0.94 0.98 0.95

1.40 0.86 0.74 0.87 0.76 0.93 0.82 0.94 0.84

Saturation 0.75 0.91 0.84 0.90 0.82 0.99 0.96 0.98 0.96

1.25 0.92 0.85 0.91 0.83 0.99 0.97 0.99 0.96

1.50 0.92 0.84 0.91 0.82 0.99 0.96 0.98 0.96

1.75 0.91 0.83 0.90 0.81 0.98 0.96 0.98 0.95

Control 0.0 0.92 0.85 0.91 0.83 0.99 0.97 0.99 0.96

Note: Columns contain the results from two CNNs for each task. Specificity is calculated at
sensitivity = 0.84 for the diagnostic task and 0.89 for the management task. Values in bold represent a
difference greater than between an Expert and Average dermatologist.

Abbreviations: CNN, convolutional neural network; AUC, area under the curve.
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diagnostic task (melanoma vs. other) is more difficult
and hence we would expect both sensitivity and
specificity to be lower. For the purposes of this work,
we are only concerned with relative differences and so
we deemed the tasks similar enough to use as a
baseline.

We did not include bubble artefacts seen in der-
moscopy images because the modality under study in
our group, smartphone images, do not contain bubbles.
We also did not include hair artefacts because they are
difficult to simulate realistically and there is an existing
body of work that is already focused on mitigating the
effects.21–24 Likewise, we did not include tattoo marks
because of the difficulty in simulation but we would
expect even worse outcomes than clinical ink
markings.25

We have demonstrated a method for quantitatively
evaluating the impact of six classes of artefacts on
different tasks implemented using different CNN ar-
chitectures. Our parameter choices were based on
expert judgement after empirically studying our Mole-
Mapper™ data. However, while we have shown that
blurriness simulated with Gaussian kernels can have a
strong negative impact on inference, we do not quan-
titatively know how closely our chosen values reflect
the real‐world data. In follow‐up research, we intend to
quantify the range of realistic simulation parameters
evident in that data using validated computer vision
techniques.

To fully understand the impact of these artefacts,
we need to combine their effects, their prevalence and
their parametric distribution. This is similar to calcu-
lating risk: determining the cost of an event times its
probability. Our ongoing work to measure the preva-
lence of artefacts in over 8000 smartphone images of
moles from our data, coupled with artefact impacts, will
show us which artefacts to prioritize for detection and
mitigation. For these reasons, it is important to
continue to take an evidence‐based approach to un-
derstanding the impact of these artefacts so that the
research community can prioritize their mitigation ef-
forts on the critical classes of artefacts.

Ultimately it is the clinical community who will
approve and recommend the use of devices that
attempt to diagnose or triage skin conditions. Such
devices are expected to be used by people without
clinical training in a wide variety of settings. This will
exacerbate the prevalence of artefacts thus increasing
the number of poor‐quality images that generate
questionable classifications which lead to erroneous
recommendations. Failure by these devices to establish
quantified ranges of acceptable artefacts, and refusing
to make recommendations on images outside of these
ranges, could reduce their accuracy in dangerous ways
and preclude approval from regulatory agencies. The

work presented here is intended to be another tech-
nique for evaluating such devices both internally and
externally and to act as a foundation for minimizing
out‐of‐range image classification.
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