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Until 2016, worldwide obesity has nearly 
tripled since 1975, 39% of  adults were 
overweight and 13% were obese.[1] The 
increasing prevalence of  obesity means 
that associated metabolic comorbidities 
and complications pose a serious health 
and economic burden to societies around 
the world. In genomics research, numerous 
genome-wide association studies (GWAS) 
have discovered a large number of  
gene loci[2] linked to obesity. The single-
nucleotide polymorphisms (SNPs) in 
particular significantly affect the occurrence 
and development of  obesity and related 
metabolic diseases. However, the results 
from recent studies on obesity-related SNPs 
have varied considerably, even with similar 
participants and interventions.[3] These 
inconsistencies may be the result of  gene–
gene and gene–environment interactions, 
including the regulation of  gene expression 
and epigenetic modification.

Dietary intervention is one of  the most 
common strategies for traditional medical 
nutritional weight loss among obese 
patients. It contributes to changes in the 
composition of  intestinal flora,[4] which 
is also an important environmental factor 
affecting the epigenetic regulation of  genes. 
It is therefore important to understand how 
to integrate the influence of  genes and 
environmental factors to predict the risk 
of  obesity development, and thus choose 
the most effective dietary intervention 
strategies. One possible approach is the 
application of  precision nutrition in the 
field of  medical weight loss.

The concept of  precision nutrition was 

first proposed during the 9th Congress of  
the International Society of  Nutrigenetics/
Nutrigenomics.[5] It was defined as a medical 
model integrating phenotype, genotype, 
and social, environmental, and other 
factors to provide individualized nutrition 
interventions. In the field of  medical weight 
loss,[6] precision nutrition is interpreted as 
formulating a customized medical weight 
management program based on genotype 
or phenotype, adjusting the total daily 
energy intake or consumption following 
individual metabolic or anthropometric 
responses. Compared with the previous 
weight loss programs solely based on the 
basic metabolism of  the individual, the 
application of  genomics, metabolomics, and 
other technologies makes the formulation of  
the program more personalized and precise.

Numerous GWAS studies have identified 
SNPs related to dietary intervention.[7] 
Participants who carry these alleles tend 
to lose more weight on specific diets. 
These SNPs are mainly located in the key 
regulatory genes involved in transportation 
and utilization of  glucose or lipids. For 
example, participants carrying the GG 
genotype (wild-type) population of  the gene 
encoding adipocytokine resistin (RETN) 
rs1862513[8,9] and adiponectin (ADIPOQ) 
rs1501299[10,11] appear to benefit the most 
from low-fat and high-monounsaturated 
fat diets. Meanwhile, high-protein and 
low-carbohydrate diets may be the optimal 
dietary choice for people with wild-type 
variants in β-3-adrenergic receptor (β3-
AR) gene rs4994[12] and uncoupling protein 
3 (UCP3) gene rs1800849, [13] because 
the proteins encoded by these genes are 
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important in the development of  insulin resistance.

However, dietary interventions for obesity have shown 
significant interactions with genetic effects. These 
interactions include epigenetic modifications induced by 
foods with antioxidant properties[14] and direct regulation 
of  gene expression by the metabolites of  intestinal 
flora.[15] In one study, the Preventing Overweight Using 
Novel Dietary Strategies (POUNDS LOST) trial, the 
researchers provided carriers of  the minor alleles of  
PCSK7 gene rs236918[16] and FGF21 gene rs838147[17] 
with a high-carbohydrate diet. They found significant 
reduction in waist circumference, total body fat mass, 
insulin, and HOMA-IR levels, which was contrary to 
the consensus prediction on the metabolic benefits of  
low-carbohydrate diets for weight loss. These unusual 
changes may be because gene expression is affected by 
carbohydrates with a low glycemic index. Wang et al.[15] 
presented a prediction model including genes (FFAR2, 
FFAR3, ANGPTL4, CD36, SLC16A1, SLC16A3, 
SLC16A4, SLC5A8, and TLR4) that played an important 
role in the transportation and recognition of  metabolites 
of  intestinal flora. The calculated weighted genetic risk 
score (wGRS) was significantly related to the variation in 
body mass index. These results solidified the knowledge 
that interactions between host genes and gut microbiota 
influenced predisposition to obesity.

Participants with the same SNP genotype may show 
different intervention outcomes, sometimes because 
the studies are conducted in different districts. These 
discrepancies are also one of  the foci of  precision nutrition. 
Two clinical trials involving the same intervention of  a 
low-fat diet for participants with the same genotype in 
melatonin receptor 1B (MTNR1B) rs10830963 showed 
opposite results for anthropometric and metabolic 
responses, one in Valladolid, Spain,[18] and the other in 
Boston, Massachusetts, and Baton Rouge, Louisiana.[19] To 
minimize the confounding effect of  race specificity, Dastani 
et al.[20] used the MANTRA (meta-analysis of  trans-ethnic 
association studies) software to analyze GWAS data from 
different races. This meta-analysis of  multiple GWAS gene 
loci can control the impact of  study duration, race, and 
other environmental factors on genetic polymorphisms 
using heterogeneity analysis and help us explore the effect 
of  gene–environment interactions.

Calculation of  the genetic risk score (GRS)[21] is a polygenic 
approach that can evaluate the cumulative effect of  high-
risk genes at multiple SNP loci, and thereby help to predict 
the risk of  diseases. The GRS calculated by Itziar[22] on the 
single-nucleotide variants derived from 25 obesity-related 
genes (including BDNF, CADM2, and FANCL) showed 
the predictive effect on the weight loss trajectory following 

intervention. Analysis of  the interaction between diet and 
the GRS for BMI-related SNPs[23] can help to evaluate the 
effect of  dietary interventions. Integrating genetic and 
environmental factors could minimize the interference of  
gene–gene and gene–environment interactions. The use of  
a wGRS[24] integrates even more genetic, phenotype, and 
environmental information to predict the effect of  different 
dietary regimens on weight loss. This is therefore helpful 
in the development of  personalized weight management 
programs.

The most common models used in the analysis of  gene–
environment interactions are general linear models[25] and 
linear mixed models.[26] However, the introduction of  
machine learning models can compensate for researchers’ 
lack of  understanding of  nonlinear high-dimensional 
interactions. This, in turn, allows more gene–environmental 
factors to be included in the predictive model for obesity 
and metabolic diseases. For example, the support vector 
machine algorithm used to solve the multiclass problem 
was used in the screening of  obesity-related SNPs and 
effective attribution in the metabolic syndrome prediction 
model.[27] The addition of  the random forest algorithm[28] 
can effectively avoid the over-fitting of  the model and 
improve the accuracy and stability of  predictions. Eun-
Kyung[29] constructed a prediction model for metabolic 
syndrome with five kinds of  machine learning methods, 
including naïve Bayes, random forest, support vector 
machine, multilayer perceptron, and decision trees. This 
model comprehensively considered the effect of  clinical 
features (for example, age, gender, body mass index, 
smoking, drinking, and exercise) and genetic information 
(10 SNPs), providing an innovative and comprehensive way 
to analyze the impact of  gene–environment interactions 
in medical weight loss (Figure 1). 

To minimize the effect of  gene–environment interactions, 
our group established a knowledge map of  medical weight 
loss with deep-learning models. The issues, approaches, and 
recommendations in the knowledge map were based on 
the evidence-based guidelines on nutritional management 
of  overweight/obesity, as well as the real-world evidence 
obtained from the 8000 patients’ database established 
by us. To build up this machine learning models, we 
extracted the characteristics and clinical indicators of  
various genotypes and metabolic types for evaluation and 
classification. With this knowledge map, we are committed 
to creating an intelligent weight management system that 
applies medical nutritional weight loss programs. This 
system can formulate precise nutritional weight loss 
regimens based on personalized data and provide users 
with artificial intelligence-assisted follow-up tailored to 
their needs. With implementation and application of  such 
deep-learning technology into weight loss strategies, the 
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majority of  obese patients will be provided an efficient and 
convenient method for whole-process weight management 
based on individualized characteristics. In addition, the 
artificial intelligence-assisted follow-up platform can also 
reap the benefits in improving patients’ adherence to health 
behavior change, achieving weight loss maintenance, and 
implementing an efficient conduct of  group-based weight 
management programs. 

In summary, GWAS have found many SNP loci that 
are significantly correlated with variation in response to 
dietary interventions for weight loss. This information 
can be used to guide the formulation of  personalized 
weight management programs. However, the relationships 
between SNP variants and the changes in metabolism and 
body weight after weight loss interventions are also affected 
by gene–gene and gene–environment interactions. These 
complex multifactor effects mean that when SNPs are 
used to indicate individualized dietary interventions, the 
actual responses might be affected by diet composition, 
metabolites of  gut flora, race, and other factors. The use 
of  state-of-the-art technologies can integrate genetic and 
environmental factors in a more effective and accurate 
way, including GWAS in-depth analysis methods such as 
MANTRA studies, GRS calculation, and machine learning 

models such as support vector machines and random forest 
algorithms. These technologies and strategies for precision 
nutrition therefore provide a promising future for medical 
weight loss. They may potentially enable responses to 
different weight loss regimens to be predicted accurately on 
an individual basis and individualized dietary intervention 
to be achieved. 
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