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Abstract
Emotion can be influenced during self-isolation, and to avoid severe mood swings, emotional regulation is meaningful. To 
achieve this, efficiently recognizing emotion is a vital step, which can be realized by electroencephalography signals. Previ-
ously, inspired by the knowledge of sequencing in bioinformatics, a method termed brain rhythm sequencing that analyzes 
electroencephalography as the sequence consisting of the dominant rhythm has been proposed for seizure detection. In this 
work, with the help of similarity measure methods, the asymmetric features are extracted from the sequences generated 
by different channel data. After evaluating all asymmetric features for emotion recognition, the optimal feature that yields 
remarkable accuracy is identified. Therefore, the classification task can be accomplished through a small amount of channel 
data. From a music emotion recognition experiment and a public DEAP dataset, the classification accuracies of various test 
sets are approximately 80–85% when employing an optimal feature extracted from one pair of symmetrical channels. Such 
performances are impressive when using fewer resources is a concern. Further investigation revealed that emotion recognition 
shows strongly individual characteristics, so an appropriate solution is to include the subject-dependent properties. Compared 
to the existing works, this method benefits from the design of a portable emotion-aware device used during self-isolation, as 
fewer scalp sensors are needed. Hence, it would provide a novel way to realize emotional applications in the future.

Keywords Brain rhythm sequencing · Electroencephalography · Emotion recognition · Asymmetric features · Symmetrical 
channels

Introduction

Currently, coronavirus disease 2019 (COVID-19) is causing 
a terrible health crisis worldwide, and many governments 
have imposed strict regulations to prevent infections, such 
as self-isolation. During isolation periods, emotions can be 
strongly influenced. Therefore, to avoid severe mood swings, 
emotional regulation is meaningful. To achieve this goal, 
efficiently recognizing the emotional state is a vital step. 
Previously, emotion recognition has been realized by vari-
ous modalities, including speech [1], facial expression [2], 
and body posture [3]. Nonetheless, the emotions indicated 
by these approaches are subjective and can be easily dis-
guised, especially when the subjects are unwilling for them 
to be recognized. In addition, a camera and microphone are 
required for constantly recording the response data; this 
method is unrealistic for self-isolation due to violations of 
personal privacy. In this regard, the electroencephalography 
(EEG) signal is more suitable because it is a tool that has 
been extensively employed to assess the electrical activities 
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of the brain, which is the control center of emotion. Mean-
while, abnormalities in EEG can also aid in the diagnosis of 
COVID-19 [4]. Therefore, emotion recognition using EEG is 
a potential method used for achieving emotional regulation 
during the self-isolation due to COVID-19.

In order to achieve emotion recognition, it is necessary 
to extract trustworthy features from EEG. The typical EEG 
features can be fundamentally categorized into time-domain, 
frequency-domain, time–frequency domain, and others. 
Time-domain features apply statistical measurements to 
characterize EEG, such as the mean, standard deviation, 
kurtosis, skewness, first difference, and second difference 
[5]. Frequency-domain features focus on the spectral proper-
ties of EEG, such as the powers of frequency subbands and 
higher-order spectra (HOS) [6]. Time–frequency domain 
features are mainly from the time–frequency analysis 
(TFA), which enables frequency information to be related 
to the time domain. Thus, TFA can provide the features that 
present dynamic variations in both the time and frequency 
directions [7]. For example, discrete wavelet transform 
(DWT) decomposes the EEG into several components that 
correspond to various frequency subbands and simultane-
ously conserve time-related information [8]. Similarly, 
intrinsic mode functions (IMFs) acquired from empirical 
mode decomposition (EMD) can be denoted as the features 
to indicate the amplitudes, frequencies, and phases of EEG 
[9]. Finally, the entropy (approximate entropy (ApEn), dif-
ferential entropy (DE), sample entropy (SampEn), etc.) that 
reveals the irregularities of EEG [10] and the connectivity 
(brain symmetry index (BSI), rational asymmetry (RASM), 
differential asymmetry (DASM), etc.) that characterize the 
hemispherical asymmetry of the brain [11] are also valuable 
features in this field.

An earlier work [12] mentioned that the signal powers 
with the spectra of EEG are widely used in emotion recog-
nition. In addition, Niknazar et al. [13] claimed that the fre-
quency subbands contain more details regarding constituent 
neuronal activities underlying EEG. Therefore, the charac-
teristics in the EEG that are not evident in the full spectrum 
can be amplified when each subband is considered sepa-
rately. Such spectra are termed brain rhythms: δ (0–4 Hz), 
θ (4–8 Hz), α (8–13 Hz), β (13–30 Hz), and γ (30–50 Hz) 
[14]. Furthermore, the existing works all concluded that 
their variations could help to assess emotion accordingly. 
For instance, γ power is sensitive to sadness and happiness 
[15]. θ power exhibits a negative correlation with arousal 
[16]. In the T3–T4 channels, a hemispherical asymmetry 
exists in β power when the emotion is fear, while another 
hemispherical asymmetry of α power appears when the emo-
tion is sadness [17].

Generally, the rhythmic features are extracted from 
multichannel data. Such a large data size incurs a heavy 
computational burden of feature extraction and increases 

the hardware complexity of emotion recognition. Hence, 
selecting the optimal features from several representative 
channels is an efficient solution. This consideration is vital 
when designing a portable emotion-aware device applied 
for self-isolation because fewer sensors or electrodes placed 
on the scalp can support a convenient way to measure EEG. 
Therefore, channel selection is needed, and several works 
have been conducted to achieve this goal. Zheng and Lu 
[11] employed deep belief networks (DBNs) to recognize 
three types of emotions (positive, neutral, and negative) and 
explored the representative channels that outperform full-
channel data with less performance loss. The power spectral 
densities (PSDs) of five brain rhythms, RASM, DASM, and 
the differences between the DE of 23 pairs of channels were 
employed as the features. These results indicated that the 
classification accuracy using 4 channels (T7, T8, FT7, and 
FT8) was 82.88% that using 12 channels (C5, C6, CP5, CP6, 
T7, T8, FT7, FT8, P7, P8, TP7, and TP8) was 86.65%, and 
that using all 62 channels was 86.08%. Menezes et al. [18] 
extracted the PSDs of five brain rhythms from 4 channels 
(FP1, FP2, F3, and F4) for emotion recognition. With the 
help of the support vector machine (SVM), the classifica-
tion accuracies achieved 71.7% for arousal and 73.8% for 
valence. In addition, the features of δ and θ produced better 
results than the others. Wang et al. [19] applied normalized 
mutual information (NMI) for emotion recognition. First, 
short-time Fourier transform (STFT) was used to obtain 
EEG spectrograms. Then, all spectrograms were utilized 
to calculate the NMI connection matrix. Finally, emotion 
recognition was accomplished by thresholding with connec-
tion matrix analysis. This approach can achieve classifica-
tion accuracies of 74.41% for valence using 8-channel data 
and 73.64% for arousal using 10-channel data. Mohammadi 
et al. [20] performed DWT to investigate a minimum number 
of channels and the optimal rhythmic features for emotion 
recognition. They applied the entropies and PSDs of five 
brain rhythms as the features. The results revealed that five 
pairs of symmetrical channels (FP1–FP2, F3–F4, F7–F8, 
FC1–FC2, and FC5–FC6) realize the classification accura-
cies of 84.05% for arousal and 86.75% for valence. Zheng 
[21] developed group sparse canonical correlation analysis 
(GSCCA) for emotion recognition and utilized logarithm 
frequency subband powers of five brain rhythms as features 
to train the classification model. The results demonstrated 
that the higher frequency subbands (such as β and γ) are 
more appropriate for emotion recognition. In addition, the 
accuracies through 4, 12, and 20 channels were 80.20%, 
83.72%, and 82.45%, respectively.

The above works mainly used PSDs, DE, etc., of five 
brain rhythms for emotion recognition, and the channel 
selection is implemented by the classification accuracies 
accordingly. Nevertheless, the chronological variations in 
brain rhythms have not yet been considered. Inspired by 
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the knowledge of sequencing in bioinformatics, the char-
acteristics of different species are represented as biological 
sequences, which can be used for data mining, analysis, and 
classification [22]. Then, if the brain rhythms are interpreted 
in a sequential format, the time–frequency characteristics of 
EEG can be expressed simultaneously. Such time-series data 
are also available for classification. To this end, a method 
termed brain rhythm sequencing (BRS) that analyzes the 
EEG as the sequence consisting of a dominant rhythm has 
been proposed for seizure detection in previous work [23]. 
Now, considering that similarity is a fundamental analysis 
derived from homology theory [24] and that asymmetry can 
be denoted by measuring the similarity between pairwise 
sequences, in this work, the similarity measures are oper-
ated on the brain rhythm sequences generated by symmetri-
cal channels (e.g., FP1–FP2, F3–F4, and F7–F8). Then, the 
asymmetric feature that shows neuronal synchrony of the 
left and right hemispheres can be acquired for emotion rec-
ognition. This method provides a novel way to study brain 
asymmetry, where asymmetry is a vital aspect of cognitive 
functions, including emotion [25], and most of the exist-
ing works usually analyze asymmetry through frontal alpha 
asymmetry or the brain asymmetry index [26]. In addition, 
asymmetric features can be extracted from all pairs of sym-
metrical channels. After these evaluations, the best one that 
produces impressive accuracy is found. Therefore, high clas-
sification accuracy can be accomplished by an optimal fea-
ture extracted from only one pair of symmetrical channels. 
Such results also contribute insights to explore individual 
characteristics of emotion recognition. In short, the novelties 
of this work are as follows:

• The BRS concentrates on the chronological variations 
of brain rhythms, and with the help of similarity meas-
ure methods, asymmetric features can be extracted and 
applied for emotion recognition.

• The representative symmetrical channels of emotion rec-
ognition are studied by considering the optimal asymmet-
ric features found, so the portable emotion-aware device 
can be further simplified with fewer channels of data.

• The emotional EEG recordings are acquired from a 
music emotion recognition (MER) experiment and pub-
lic DEAP dataset [16], so the proposed method can be 
extensively evaluated, providing insights for exploring 
individual characteristics in different scenarios.

For illustration, Fig. 1 shows the system workflow of 
this work. First, the EEG recordings are acquired from the 
MER experiment and public DEAP dataset. Then, the brain 
rhythm sequences of different channels are generated using 
the reassigned smoothed pseudo Wigner-Ville distribution 
(RSPWVD) method. Second, the generated sequences are 
paired based on symmetrical channels located on the left 

and right hemispheres. Hence, a number of asymmetric 
features can be extracted from various pairs of symmetri-
cal sequences through similarity measure methods. Subse-
quently, k-nearest neighbors (k-NN), support vector machine 
(SVM), and linear discriminant analysis (LDA) are applied 
to train and test the extracted features based on leave-one-
trial-out (LOTO) cross-validation. Therefore, the classifi-
cation accuracies of all asymmetric features are evaluated. 
Finally, the optimal feature and its related channels are iden-
tified by considering the highest classification accuracies. 
Such results are also utilized to investigate individual char-
acteristics. Meanwhile, a comparative study with the existing 
works that exploit symmetrical spatial features is conducted.

The rest of this work is as follows: the “Experimental 
data” section describes the EEG data acquired from the 
self-designed MER experiment and public DEAP dataset. 
The “Proposed methodology” section introduces the details 
about the BRS and its classification method using asymmet-
ric features. The “Results and discussion” section shows the 
results from the respective scenarios, with discussion and 
performance comparisons. The “Conclusion” section is the 
summary and future work.

Experimental Data

Data acquisition is the first stage in an EEG-based study. 
In this work, the EEG recordings from two scenarios are 
included. One is from the self-designed MER experiment, 
and the other is from the public DEAP dataset, as detailed 
below.

Self‑Designed MER Experiment

The MER experiment that evokes emotion through music 
clips was conducted in the laboratory at the Department of 
Electrical and Electronic Engineering, Southern University 
of Science and Technology, Shenzhen, China. The experi-
mental procedures involving human subjects were performed 

Fig. 1  System workflow of this work
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in accordance with the ethical standards of the institutional 
research committee. A Neuroscan 64-channel system (62 
scalp channels, 2 periocular channels) was applied to record 
the EEG. Thirty-six healthy subjects (13 women, 23 men, 
22.22 ± 3.13 years) were recruited. The musical clips (each 
30 s) from the PMEmo dataset [27] were employed to evoke 
different emotional reactions of the subjects. The PMEmo 
contains 794 songs (almost all are in English) selected from 
three popular music charts, with annotations of arousal and 
valence (normalized into 0–1) rated by 457 subjects. To per-
form balance elicitation in this work, 40 stimuli were cho-
sen based on the emotional annotations, in which 10 stimuli 
were used for each category, i.e., HAHV (high arousal high 
valence), HALV (high arousal low valence), LAHV (low 
arousal high valence), and LALV (low arousal low valence). 
Here, the threshold of high and low was 0.5. In addition, 
these 40 stimuli were divided into two sessions for presenta-
tion, and there was a break (5 min) between the two sessions. 
Meanwhile, each trial included three phases: rest (10 s), 
music listening (30 s), and self-assessment (20 s). Thus, the 
duration of one trial was 1 min, and the entire experiment 
required 45 min per subject, as depicted in Fig. 2.

In the beginning, the subjects were informed about the 
procedure, and they signed the consent form after their ques-
tions and doubts were fully answered. After that, a ques-
tionnaire including age, gender, body condition, and habits 
was collected. To protect personal privacy, the names of the 
subjects were denoted by S1, S2, S3, and so on. During the 
experiment, the subjects performed self-assessments after 
listening to each musical clip, and their ratings (from 1 to 9) 
were based on five factors: arousal, valence, liking, familiar-
ity, and understanding. The experimental trials are labeled 
high or low, where the threshold is 5 [20]. Then, five test 
sets were obtained: set-A (arousal), set-V (valence), set-L 
(liking), set-F (familiarity), and set-U (understanding).

Figure 3 illustrates the system overview of the MER 
experiment. The subjects sat on a sofa and listened to the 
musical clips with earphones. A stimuli computer scheduled 
and presented the musical clips, while a data acquisition 
computer measured the EEG data. Thus, the full data of all 
trials were contained in the recordings after pairing the two 
computers. In addition, an amplifier was applied to connect 
the data acquisition computer and the EEG cap. For pre-
processing, the raw EEG recordings were downsampled to 

Fig. 2  Paradigm of the MER 
experiment

Fig. 3  System overview of the 
MER experiment
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200 Hz and then a bandpass filter with a cut-off frequency of 
0.01–50 Hz was utilized for data filtering [28]. Subsequently, 
the EEG artefacts (e.g., eye movements, muscle activities) 
were removed by employing independent component analy-
sis (ICA) through the EEGLAB toolbox [29]. Finally, the 
preprocessed data were acquired for method validation.

Pubic DEAP Dataset

DEAP [16] is one of the most famous public datasets and 
has been extensively evaluated in emotion recognition. In 
this dataset, a 32-channel system was employed to record 
the EEG data from 32 healthy subjects (15 women, 17 men, 
27.19 ± 4.45 years). Regarding the stimuli, 40 musical videos 
(each 60 s) were utilized to evoke the emotions. Thus, the 
emotional EEG size of each subject was 32 channels × 40 
trials × 60 s. After watching each video, the subjects per-
formed self-assessments (from 1 to 9) based on two factors: 
arousal and valence. Hence, the trials were also labeled and 
divided into two test sets, where set-A is high arousal (HA), 
A ≥ 5, and low arousal (LA), A < 5; set-V is high valence 
(HV), V ≥ 5, and low valence (LV), V < 5. Moreover, DEAP 
provides the preprocessed data, in which the raw recordings 
were downsampled to 128 Hz and filtered through a bandpass 
filter with a cut-off frequency of 0.01–100 Hz. Therefore, the 
preprocessed data were applied for method validation.

Proposed Methodology

To achieve emotion recognition using the BRS, signal pro-
cessing by the RSPWVD is conducted first, which aims to 
extract the rhythmic powers of the EEG. Then, from the 
resulting time–frequency plane, the instantaneous powers 
of five brain rhythms in the same time bin are estimated, 
so the dominant rhythms can be determined and used for 
generating the sequence data. Next, the asymmetric fea-
tures are extracted through the similarity measure methods 
of the rhythm sequences from the symmetrical channels. 
Finally, the classification task is achieved by the asymmetric 
features after training and testing based on LOTO cross-
validation. The above operations are detailed in the follow-
ing subsections.

Signal Processing by TFA

The sequence data need the dominant rhythms along the 
time scale of EEG, so it is necessary to find a particular 
brain rhythm in each time bin. This objective can easily be 
realized by considering the instantaneous power distribu-
tions in the time–frequency plane. To this end, TFA is used 
to extract the signal power information first. Previously, 
several TFA techniques have been employed for emotion 

recognition, such as STFT [19], DWT [20], Hilbert-Huang 
transform (HHT) [30], and Wigner-Ville distribution 
(WVD) [31]. After comparisons, WVD was chosen because 
it is good at tracking the sudden variations of the signal in 
the time domain and at preserving both the time and fre-
quency shift information [32]. Consequently, the instantane-
ous power distributions in the time–frequency plane can be 
acquired by WVD (1):

where x(t) denotes the input signal, t and ω are time and fre-
quency, respectively, and * refers to the complex conjugate.

However, WVD suffers from cross-terms in its result-
ing plane. Cross-terms cause multiple irrelevant regions, 
which can be regarded as the artefacts that appear in the 
WVD representations. Such artefacts falsely show the 
signal components and interfere with the power localiza-
tion in the plane accordingly [33]. To eliminate the cross-
terms, the smoothing version of WVD over time and fre-
quency is needed (2):

where h(t) and g(t) are the smoothing windows applied to the 
frequency and time to eliminate the cross-terms, and H(ω) 
denotes the Fourier transform of h(t).

In this work, the smoothing window is the Hamming win-
dow, and the independent controls are equipped with the 
WVD. This variant is smoothed pseudo WVD (SPWVD) 
(3):

Furthermore, the reassignment provides the effectiveness 
to enhance the readability of the TFA [34], so it is conducted 
in SPWVD. Its principle is to rearrange the coefficients of 
the time–frequency distributions around new zones to pro-
duce a high-resolution result, which can be viewed as a com-
plement to achieve the true region of the analyzed signal. 
For instance, relocate each value of SPWVD at any point (t, 
ω) to another point ( ̂t , �̂� ), which is the center of gravity of 
the power distribution around (t, ω). Hence, the reassigned 
value of SPWVD at any point ( ̂t , �̂� ) is the sum of all of the 
values reassigned to that point (4):

(1)Wx(t,�) =

+∞

∫
−∞

x(t +
�

2
)x∗(t −

�

2
)e−j��d�

(2)Wh(t,�) = g(t)H(−�)

(3)

SPWx(t,�) =

+∞

∫
−∞

h(�)

+∞

∫
−∞

g(s − t)x(s +
�

2
)x∗(s −

�

2
)e−j��dsd�

(4)

SPW (r)
x
(t�,𝜔�

;g, h) =

+∞

∫
−∞

+∞

∫
−∞

SPWx(t,𝜔;g, h)𝛿

(t� − t̂(x;t,𝜔))𝛿(𝜔� − �̂�(x;t,𝜔))dtd𝜔



 Cognitive Computation

1 3

where:

A result using RSPWVD to process an EEG signal (F8 
channel, subject S2, DEAP) is presented on the left side of 
Fig. 4, in which the horizontal and vertical axes are time 
and frequency, respectively, and the color bar indicates the 
variations in the signal powers.

Generation of Rhythm Sequence

In the resulting time–frequency plane from RSPWVD, 
the frequency axis is divided into five parts based on five 
rhythms. Meanwhile, the time axis is separated into various 
time bins (t1, t2, t3 …), which can be referenced by the aver-
age reaction time of neurons from the existing works. Previ-
ously, Chandra et al. [35] claimed that the average reaction 
time of neurons is approximately 0.14–0.2 s. Rey et al. [36] 
employed the TFA method to analyze the EEG and found 
that the average evoked power occurs at approximately 0.2 s. 

(5)t̂(x;t,𝜔) = t −
SPWx(t,𝜔;𝜏g, h)

2𝜋SPWx(t,𝜔;g, h)

(6)�̂�(x;t,𝜔) = 𝜔 + j
SPWx(t,𝜔;g,Dh)

2𝜋SPWx(t,𝜔;g, h)

In addition, in two EEG-based studies, Korik et al. [37] and 
Azevedo et al. [38] exploited the 0.2 s time bin EEG data 
to accomplish the decoding of hand motion trajectories and 
seizure detection, respectively. Based on these findings, the 
time bin of BRS is 0.2 s.

Next, the dominant rhythm in each time bin is acquired 
by considering the instantaneous power because it has been 
demonstrated to be the key to emotion recognition [39]. For 
this aim, the five rhythmic powers in the same time bin are 
calculated. For instance, on the right side of Fig. 4, α power 
at t3 has been illustrated, which is estimated by the average 
of all powers located inside the boundary. In this way, all five 
rhythmic powers at each 0.2 s are obtained, and the domi-
nant rhythm having the maximum instantaneous power in 
each time bin of the EEG can be identified, which forms the 
rhythm sequence accordingly. A sample is depicted in Fig. 5, 
where an EEG signal from the PO3 channel of subject S2 in 
DEAP is displayed at the bottom, and its generated sequence 
(20–25 s) is shown at the top.

Asymmetric Features Extraction

As stated, emotion is an inner reaction controlled by the 
brain, which is a complex network system organized into 
different functional areas. Typically, functional differences 
appear between the left and right hemispheres on particu-
lar tasks, such as motor control, perception, memory, and 
emotion [40]. Such differences are ubiquitous across brain 
information processing. Consequently, the asymmetric fea-
tures are valuable to assess emotion, and they have been 
considered in this work.

As seen, the proposed sequence discloses the chrono-
logical variations of the dominant rhythms on a specific 
channel during the emotional process. Hence, the neuronal 
synchrony of the left and right hemispheres can be indi-
cated through similarity measures to those sequences from 
the symmetrical channels, then denoted as the asymmetric 
features. To this end, it is necessary to pair them based on 
the scalp locations, as summarized in Table 1, in which the 
first column displays the scalp regions and the remaining 
columns list the details of the symmetrical channels from 
DEAP and MER.

Fig. 4  Power distributions of five brain rhythms in each 0.2 s time bin 
on a time–frequency plane from the RSPWVD method. The EEG sig-
nal is from the F8 channel of subject S2, DEAP. The left side depicts 
a result using RSPWVD and the right side illustrates the estimations 
of the instantaneous rhythmic powers at each 0.2  s time bin of the 
signal

Fig. 5  EEG signal analysis 
using BRS, which is generated 
by the dominant rhythm having 
the maximum instantaneous 
power in each 0.2 s time bin. 
The EEG signal is from the PO3 
channel of Subject S2, DEAP
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In Table 1, the scalp is divided into five regions: frontal, 
central, parietal, temporal, and occipital, so the total number 
of symmetrical channels is 14 and 27 from DEAP and MER, 
respectively. Next, a more important step is to appropriately 
measure the similarity levels between the pairwise rhythm 
sequences so that the asymmetric features can be extracted 
correspondingly. To this end, seven typical similarity meas-
ure methods are considered, including Jaccard index (JAC), 
Hamming distance (HAM), Levenshtein distance (LEV), 
dynamic time warping (DTW), mutual information (MUT), 
local sequence alignment (LSA), and global sequence align-
ment (GSA).

JAC is a statistical approach that measures the per-
centage of overlap between pairwise sequences. HAM 
and LEV belong to distance-based methods, in which 
HAM calculates the number of elements at which the 
pairwise sequences differ, and LEV finds the minimum 
number of edits (either insertion, deletion, or substitu-
tion) required to change one sequence to be the same 
as the other. DTW applies a time-warping function that 
transforms or warps the elements to align the pairwise 
sequences. Hence, it can generate an optimal alignment 
between them. MUT evaluates the interdependence inter-
actions derived from the concept of entropy in informa-
tion theory. Therefore, it can estimate the information 
integration of pairwise sequences to reveal their similar-
ity levels. LSA and GSA are widely used in bioinformat-
ics, as they are good at identifying the similarity regions 
between pairwise sequences, where LSA is operated 
by the Smith-Waterman algorithm that aligns a portion 
between the sequences and GSA is implemented by the 
Needleman-Wunsch algorithm that aims for an end-to-
end alignment.

Figure 6 shows the extraction of asymmetric features. 
First, the brain rhythm sequences are paired based on the 
symmetrical channels listed in Table 1, such as FP1–FP2, 
AF3–AF4, P7–P8, and O1–O2. Then, the aforementioned 
similarity measures are performed on all pairwise sequences. 
Here, the total number of extracted features per subject 
was 3920 (14 pairs × 7 measures × 40 trials) and 7560 (27 
pairs × 7 measures × 40 trials) on DEAP and MER, respec-
tively. Such asymmetric features can achieve emotion 
recognition after training and testing by the classifiers, as 
described in the next stage.

Classification Method

After extraction, the number of each asymmetric feature 
(e.g., FP1–FP2 by DTW) per subject is 40. Compared with 
the deep learning method, the conventional classifier is 
more appropriate, as it can build up a classification model 
when the feature size is small, which also yields a good per-
formance in the existing works [20, 41]. Therefore, k-NN, 
SVM, and LDA are utilized in this work.

For k-NN, k means the number of nearby instances used 
for deciding the category of testing data. This value typically 
approximates the square root of the number of the training 
set, and it prefers to be a small positive integer. In addi-
tion, keeping its value odd makes the decision process faster. 
Following this rule, the value of k is chosen as 5, as the 
number of training sets on DEAP and MER is 39 trials per 
case. SVM creates a classification model based on a decision 
boundary or a maximal margin that separates the training set 
into two categories. Hence, the testing data can be classified 
by its location. LDA is a linear classifier that establishes 
a probabilistic model for each category by considering the 
specific distribution of the input training set. Thus, the test-
ing data can be classified based on its conditional probability 
belonging to the category with a higher probability.

To reduce perturbations incurred by different trials and 
solve the overfitting risks, LOTO cross-validation is applied 
in training and testing. Its procedure is allocating the feature 
from one trial as testing data and then assigning the features 

Table 1  The symmetrical 
channels based on the five scalp 
regions from DEAP and MER

Region DEAP MER

Frontal FP1–FP2, AF3–AF4, F3–F4 FP1–FP2, AF3–AF4, F1–F2, F3–F4, F5–F6
Central FC1–FC2, FC5–FC6, C3–C4 FC1–FC2, FC3–FC4, FC5–FC6, C1–C2, C3–C4, C5–C6
Parietal CP1–CP2, CP5–CP6, P3–P4 CP1–CP2, CP3–CP4, CP5–CP6, P1–P2, P3–P4, P5–P6
Temporal F7–F8, T7–T8, P7–P8 F7–F8, FT7–FT8, T7–T8, TP7–TP8, P7–P8, PO7–PO8
Occipital PO3–PO4, O1–O2 PO3–PO4, PO5–PO6, O1–O2, CB1–CB2

Fig. 6  Extraction of asymmetric features based on similarity meas-
ures of the brain rhythm sequences from symmetrical channels 
located on the left and right hemispheres
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from the remaining trials as the training set. This process is 
repeated by defining the features from various trials as the 
testing data until all of them are classified. After comparing 
the testing results with the original labels, the classification 
accuracy by each type of asymmetric feature is obtained, and 
the optimal feature that produces the best result for emotion 
recognition can be identified. Consequently, high classifica-
tion accuracy is accomplished with an optimal asymmetric 
feature only.

Results and Discussion

In this work, MATLAB R2021a was applied for program-
ming the proposed methodology, and the results in various 
test sets are from its calculations. Then, for the results, the 
performances of seven similarity measure methods with 
three classifiers are discussed to summarize the appropri-
ate method for measuring the similarity levels of rhythm 
sequences and the suitable classifiers for asymmetric fea-
tures. In addition, the representative symmetrical channels 
used for recognizing specific emotional factors are ana-
lyzed based on the optimal features found. Note that the 
conditions are different between DEAP and MER, so the 
results and discussion are separated into two subsections. 
Finally, the performance comparison with the existing 
works that consider symmetrical spatial features is car-
ried out.

Results From the DEAP Dataset

The average classification accuracies of the asymmetric 
features extracted by seven similarity measure methods are 
presented in Tables 2, 3, and 4, respectively, in which the 
first column lists the methods and the remaining columns 
display the accuracies of set-A and set-V using the asymmet-
ric features extracted from the sequence data from the first 
30-s (F30 s), last 30-s (L30 s), and all 60-s (A60 s) periods. 
Here, to calculate the classification accuracy of each subject, 
40 experimental trials are classified. Thus, these results are 
from 40 simulation runs per subject and then averaged by 
32 subjects. In addition, the best of each case is underlined.

Meanwhile, for illustration, Fig. 7 depicts a comparative 
histogram to display the average accuracies of three classifi-
ers with different similarity measure methods on set-A of the 
DEAP dataset, where the data sources are from the L30 s. 
As observed, the performances of SVM are similar to those 
of LDA, while k-NN yields better results. Similar trends can 
also be found in the other scenarios. The main reason may 
be the properties of the classifiers. SVM generates a hyper-
plane that separates the training set in the frontier between 
two classes, and LDA makes a hyperplane that separates the 
training set. Thus, both achieve classification by separating 
the hyperplane with a special margin. Then, k-NN conducts 
the classification through a cluster determined by known 
neighbors (i.e., a training set) around the testing data. Such 
results also reveal that the distribution of the asymmetric 

Table 2  The average 
classification accuracies 
(mean ± standard deviation 
%) of the asymmetric features 
using k-NN, DEAP dataset

The prominent scalp region is marked in bold and underlined for each test set

Similarity 
measure

Set-A_F30 s Set-A_L30 s Set-A_A60 s Set-V_F30 s Set-V_L30 s Set-V_A60 s

JAC 82.42 ± 7.66 81.33 ± 7.78 81.33 ± 7.96 78.36 ± 6.59 78.91 ± 4.49 78.13 ± 6.19
HAM 82.58 ± 7.45 83.67 ± 6.69 82.50 ± 6.57 78.44 ± 6.56 78.13 ± 4.58 78.20 ± 6.00
DTW 82.50 ± 8.11 83.98 ± 6.75 82.58 ± 6.58 78.05 ± 6.53 80.01 ± 5.89 78.75 ± 7.01
MUT 81.48 ± 7.04 82.11 ± 6.81 81.95 ± 7.59 79.38 ± 6.96 79.22 ± 4.37 79.61 ± 6.16
LEV 81.95 ± 7.20 82.89 ± 6.54 80.70 ± 7.71 79.22 ± 7.36 79.14 ± 5.88 77.89 ± 5.12
LSA 81.95 ± 7.45 82.34 ± 7.45 81.64 ± 7.28 77.73 ± 6.82 79.22 ± 5.40 77.81 ± 6.31
GSA 82.27 ± 7.17 81.64 ± 7.56 81.48 ± 6.63 78.83 ± 5.57 78.98 ± 5.49 77.66 ± 5.57

Table 3  The average 
classification accuracies 
(mean ± standard deviation 
%) of the asymmetric features 
using SVM, DEAP dataset

The prominent scalp region is marked in bold and underlined for each test set

Similarity 
measure

Set-A_F30 s Set-A_L30 s Set-A_A60 s Set-V_F30 s Set-V_L30 s Set-V_A60 s

JAC 77.27 ± 5.25 78.20 ± 6.03 77.97 ± 6.24 75.63 ± 4.58 76.02 ± 4.11 76.09 ± 3.59
HAM 77.27 ± 5.33 77.89 ± 6.03 78.13 ± 6.12 75.63 ± 4.71 76.09 ± 4.01 76.33 ± 3.76
DTW 78.98 ± 5.95 77.89 ± 5.12 78.59 ± 6.35 77.03 ± 4.90 76.56 ± 4.57 76.80 ± 4.03
MUT 78.36 ± 5.45 77.73 ± 5.01 78.59 ± 4.75 75.31 ± 3.46 77.34 ± 5.08 75.78 ± 5.06
LEV 78.98 ± 5.75 78.59 ± 5.85 78.36 ± 6.49 76.25 ± 4.07 76.17 ± 4.75 76.72 ± 5.40
LSA 79.38 ± 5.43 78.36 ± 5.56 78.59 ± 6.75 76.80 ± 4.85 77.58 ± 4.47 75.31 ± 4.20
GSA 79.53 ± 5.73 78.67 ± 5.35 78.13 ± 6.02 76.80 ± 3.55 77.97 ± 4.09 75.55 ± 4.43
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features is more fit with k-NN. The comparisons indicate 
that k-NN is more suitable for use as the classifier for train-
ing and testing the asymmetric features in this work.

In addition, when using the same classifier, the perfor-
mances by different similarity measure methods are close, 
as their variations are slight. This indicates that there are 
no substantial differences in similarity measure methods for 
the asymmetric features. The main reason may be that the 
components of the sequences are only five brain rhythms, 
and their length is either 150 (i.e., 30 s) or 300 (i.e., 60 s), so 
they can be viewed as a short string. For the methods inves-
tigated, even though some are distance-based, and some are 
shape-based, they may not produce different performances 
in the similarity levels between such strings. Here, DTW 
provides approximately 1–2% higher accuracy than the oth-
ers. Based on the above considerations, it can be said that 
the performances by different similarity measure methods 
are close when using the same classifier. Overall, DTW is 
slightly better. Therefore, DTW is recommended as the simi-
larity measure method to extract the asymmetric features in 
this work.

Furthermore, the length of the brain rhythm sequence 
is the same as the length of EEG, so different lengths are 

evaluated to investigate the time effect in emotion recogni-
tion. Here, close results are obtained when employing 30 s 
and 60 s data on the respective classifiers, disclosing that 
the 30-s period is sufficient to realize a similar performance 
as 60 s. As a result, the time applied for emotion recog-
nition can be further reduced from 60 to 30 s, which also 
removes the redundant data at the time scale. More impor-
tantly, the L30 s data exhibit slightly better results than the 
F30 s data. This may be due to the later periods containing 
more emotion-related information than the earlier periods. 
Similar findings have been reported previously. Kumar et al. 
[42] compared the classification accuracies on DEAP by F30 
s and L30 s data, respectively. The results revealed that the 
L30 s period is more associated with emotion. In another 
work, Jatupaiboon et al. [43] assessed the accuracies of 
arousal and valence through the F30 s, L30 s, and A60 s 
data, respectively. They claimed that the L30 s data yield the 
best average accuracy. Thus, the aforementioned works also 
demonstrated that the results from the proposed methodol-
ogy are reasonable.

The above analysis indicates that the DTW is appro-
priate for the similarity measure, k-NN is suitable for 
the classifier, and the L30 s period is proper for emotion 

Table 4  The average 
classification accuracies 
(mean ± standard deviation 
%) of the asymmetric features 
using LDA, DEAP dataset

The prominent scalp region is marked in bold and underlined for each test set

Similarity 
measure

Set-A_F30 s Set-A_L30 s Set-A_A60 s Set-V_F30 s Set-V_L30 s Set-V_A60 s

JAC 78.13 ± 8.73 78.44 ± 8.18 78.44 ± 9.06 74.69 ± 5.60 74.84 ± 4.96 75.31 ± 5.71
HAM 78.13 ± 8.73 78.44 ± 8.18 78.44 ± 9.06 74.69 ± 5.60 74.84 ± 4.96 75.31 ± 5.71
DTW 78.13 ± 8.59 78.36 ± 7.97 79.14 ± 8.49 73.75 ± 5.61 74.06 ± 5.49 74.06 ± 6.59
MUT 77.34 ± 8.20 78.13 ± 7.65 78.52 ± 7.98 74.22 ± 5.66 75.23 ± 6.61 73.36 ± 6.14
LEV 79.45 ± 7.85 78.59 ± 8.61 78.67 ± 8.91 74.92 ± 6.14 74.38 ± 6.60 74.77 ± 5.76
LSA 78.75 ± 7.78 79.14 ± 8.41 78.91 ± 8.16 74.45 ± 5.23 74.30 ± 6.10 75.47 ± 5.37
GSA 78.75 ± 7.78 79.30 ± 7.71 79.45 ± 8.22 74.69 ± 5.56 74.69 ± 6.25 75.78 ± 5.55

Fig. 7  Average classifica-
tion accuracies (set-A_L30 s, 
DEAP) using the asymmetric 
features extracted from different 
similarity measure methods 
with three classifiers (k-NN, 
SVM, and LDA)
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recognition. Based on such properties, the classification 
accuracies using the asymmetric features extracted from 
various symmetrical channels are evaluated. Figure 8 illus-
trates the results of subject S3 from DEAP, in which a and 
b depict the accuracies on set-A and set-V, respectively. 
The deeper the red, the higher the classification accuracy. 
In Fig. 8, the accuracies of the asymmetric features vary 
with the emotional factors, even for the same subject. For 
example, the asymmetric feature of FC1–FC2 yields a 
remarkable accuracy (95%) on set-A, but it is not the best 
(75%) on set-V, while CP1–CP2 is more useful (80%) on 
set-V. Such findings further imply that the similarity levels 
of rhythm sequences between FC1 and FC2 and between 
CP1 and CP2 are sensitive to variations in arousal and 
valence, respectively. Consequently, the emotion recogni-
tion of subject S3 can be directly achieved by the corre-
sponding asymmetric features.

Further investigations were conducted to determine the 
performances of asymmetric features among different sub-
jects on the same test set. Figure 9 draws the accuracies 
of the asymmetric features for set-A from four subjects 
(S3, S5, S21, and S25) on DEAP. As observed, although 
the asymmetric features are extracted and classified in 
the same way, their performances change by subject. For 
instance, the asymmetric feature of FC5–FC6 is only vital 
for subject S21 (Fig. 9c), while it is not active for the oth-
ers. Such distinctness implies that emotion recognition 
exhibits subject-dependent properties, consistent with 
earlier works [44, 45].

Taking the highest accuracy, the optimal asymmetric 
features are identified for all subjects of DEAP. It is inter-
esting to know the locations of the optimal features. To this 
end, the statistical percentages based on five scalp regions 

are presented in Table 5, in which the first row denotes the 
region and the remaining rows display the percentages on 
different test sets. The results reveal that the optimal fea-
tures are mainly from the symmetrical channels located in 
the frontal or parietal regions. Regarding brain function, the 
frontal region regulates cognitive awareness from stimuli, 
and the parietal region processes perceptual information 
from audio and vision. Thus, the EEG recordings from such 
regions function in the reactions under stimuli. This may be 
why frontal asymmetry has been commonly used to assess 
emotions [25, 26]. In addition, Table 5 implies the involve-
ment of other regions in emotion recognition, revealing that 
an appropriate solution considers the representative sym-
metrical channels per subject, rather than a fixed feature for 
all cases. In this regard, the proposed methodology is valid 
for obtaining the optimal feature for each test set.

Fig. 8  Classification accuracies using the asymmetric features 
extracted from various symmetrical channels (subject S3, DEAP). 
The deeper red indicates a higher classification accuracy: a set-A, b 
set-V

Fig. 9  Classification accuracies of four subjects on set-A of DEAP: a 
S3, b S5, c S21, and d S25

Table 5  Statistical percentages of optimal asymmetric features based 
on five scalp regions from 32 subjects of DEAP

The prominent scalp region is marked in bold and underlined for each 
test set

Region Frontal Central Parietal Temporal Occipital

Set-A (%) 31.25 18.75 21.88 15.62 12.50
Set-V (%) 25.00 12.50 25.00 18.75 18.75
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Results From the MER Experiment

Using DTW and k-NN, the results from the MER experi-
ment are obtained. Here, the analysis and discussion also 
consider the optimal asymmetric features found. For this 
aim, the statistical percentages based on five regions are 
summarized in Table 6, in which the first row shows the 
region, and the remaining rows list the percentages of the 
respective test sets (arousal, valence, liking, familiarity, and 
understanding).

In Table 6, the MER results of set-A and set-V are simi-
lar to the DEAP results displayed in Table 5, as the opti-
mal asymmetric features are also mainly from the frontal 
or parietal regions. Such consistency proves that the pro-
posed methodology is available to select the representative 
symmetrical channels under different experimental condi-
tions. Moreover, regarding the three test sets (set-L, set-F, 
and set-U) that are not investigated in DEAP, their optimal 
features are primarily located in the temporal, parietal, and 
frontal regions, respectively. Usually, the temporal region 
copes with sound information such as music. Therefore, it 
is reasonable that the data from this region can assess the 
liking feeling when listening to the music. As discussed, 
the parietal region always addresses perceptive information 
involving audio. Hence, its data can disclose the effect of 
familiarity evoked by the music. The frontal region controls 
conscious thought from external stimuli, so its data can help 
to answer whether the lyrics or musical rhythm is understood 
by the subjects.

In addition, the statistical percentages in Table 6 exhibit 
individual characteristics. To further discuss such charac-
teristics, Fig. 10 illustrates the optimal asymmetric features 
used for recognizing five emotional factors for subjects S9 
and S14 of MER, where different colors correspond to vari-
ous emotional factors. As observed, the locations of the opti-
mal features are adjacent, revealing that the emotional reac-
tion should be a complex procedure that requires a group of 
surrounding channels to process. Moreover, different factors 
are typically recognized by particular symmetrical channels, 
and such properties also vary with the subjects. This may 

imply that there is no general model of emotion elicitation 
among the different cases. Previously, Lim [46] claimed that 
emotion is related to the cultures, backgrounds, and experi-
ences of the subjects, so emotion recognition is likely to be 
subjective, such as in the results found here.

Performance Comparison

A performance comparison with the existing works is sum-
marized in Table 7, in which the first column lists the work 
and the remaining columns show the number of channels 
applied for emotion recognition, methodology, and the clas-
sification accuracies on various cases correspondingly. In 
addition, the best of each case is underlined.

In Table 7, all of these works consider the symmetri-
cal spatial features to investigate the DEAP dataset. For 
example, Wang et al. [19] used the NMI matrix derived 
from the spectrograms of all pairs of symmetrical chan-
nels. Mohammadi et al. [20] applied entropies and PSDs 
from five pairs of symmetrical channels. Kumar et al. [42] 
utilized bispectrum analysis of the symmetrical channels 
FP1–FP2. Islam et al. [47] designed Pearson’s correlation 
coefficient images from all pairs of symmetrical channels. 
Xing et al. [48] developed a linear mixing model based 
on the frequency subband power features from all pairs of 
symmetrical channels. Ahmed et al. [49] proposed a two-
dimensional vector consisting of the asymmetry in different 
brain regions and termed it AsMap. Cui et al. [50] exploited 
the regional asymmetric features located on the left and 
right hemispheres of the brain. From the comparisons, even 
though the accuracies are not the best when using the pro-
posed BRS method, it achieves impressive results through 
an asymmetric feature extracted from only one pair of sym-
metrical channels. In addition, deep learning methods such 
as neural networks achieve superior accuracy. However, 

Table 6  Statistical percentages of optimal asymmetric features based 
on five scalp regions from 36 subjects of MER

The prominent scalp region is marked in bold and underlined for each 
test set

Region Frontal Central Parietal Temporal Occipital

Set-A (%) 27.78 13.89 25.00 19.44 13.89
Set-V (%) 22.22 16.67 25.00 19.44 16.67
Set-L (%) 19.44 19.44 16.67 27.78 16.67
Set-F (%) 22.22 19.44 30.56 13.89 13.89
Set-U (%) 33.33 22.22 16.67 22.22 5.56

Fig. 10  The optimal asymmetric features used for recognizing five 
emotional factors of two subjects of MER: a S9, b S14
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their main limitation is that a large training dataset is 
needed, so all channel data are usually applied, meaning 
that when the dataset is smaller, it is not easy to train a neu-
ral network with outstanding performance. In this regard, 
the proposed methodology is more suitable for processing 
a smaller dataset because the number of applied channels 
is comparatively lower. This property fully considers the 
trade-off between classification accuracy and the number 
of channels. Therefore, different approaches can determine 
various conditions of emotion recognition.

Moreover, this work obtains superior results in the MER 
experiment, while most of the existing works were without self-
designed experiments. This comparison demonstrates that the 
proposed methodology has stable performances on both the 
public dataset and the experimental data, indicating that it is 
reliable for different scenarios. In addition, in this work, the 
simulation conditions are central processing unit (CPU): Intel 
Core i5-10,505@3.20 GHz; random access memory (RAM), 
8 GB; hard disk drive, 1 TB, 7500 revolutions per minute. 
Using it, the time of sequencing is approximately 18 s when 
the EEG length is 30 s, and it is approximately 52 s when the 
EEG is 60 s. After that, for each subject, with the sequences 
generated by different channel data, it takes approximately 
49 s to extract the asymmetric features using seven similarity 
measure methods. Finally, regarding the classification through 
k-NN, SVM, and LDA, the time including the training and test-
ing periods is approximately 31 s. Therefore, the settings of 
DTW, k-NN, and L30 s are formed, which can simplify the 
whole classification process. Note that there is no strict mem-
ory requirement for the proposed methodology. Undoubtedly, a 
larger memory size speeds up the simulation runs. In short, the 
BRS exhibits advantages in simplifying portable emotion-aware 
devices such as low-cost EEG headsets, which further provide 
a solution to recognize the emotions of the human being during 
self-isolation through the use of fewer electrodes or sensors.

Conclusion

In this work, the asymmetric features derived from the similar-
ity measures of brain rhythm sequences have been proposed, 
which provide a potential solution to design low-cost emotion-
aware devices used for self-isolation during the COVID-19 
pandemic. The method validation was performed on the EEG 
recordings from the MER experiment and the public DEAP 
dataset. The results revealed that one pair of symmetrical 
channels is sufficient to extract an optimal feature for produc-
ing classification accuracies up to 80–85%. In addition, the 
asymmetric features found are beneficial for investigating the 
response mechanisms of emotion, and further investigation 
showed that emotion recognition exhibits strongly individual 
characteristics. Therefore, to achieve an impressive perfor-
mance, an appropriate approach is to consider the subject-
dependent properties, which can be obtained by the proposed 
methodology. Finally, compared to the existing works that 
consider symmetrical spatial features, this method contributes 
insights to guide emotion recognition with fewer resources. 
In the future, to realize emotion recognition and regulation, a 
hardware design embedded with the BRS will be developed.

Appendix

The source codes with an example have been uploaded to the 
IEEE DataPort (https:// doi. org/ 10. 21227/ dzsq- b842).
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