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Interfacial effect on physical 
properties of composite media: 
Interfacial volume fraction with 
non-spherical hard-core-soft-shell-
structured particles
Wenxiang Xu1,2,3, Qinglin Duan2, Huaifa Ma3, Wen Chen1 & Huisu Chen4

Interfaces are known to be crucial in a variety of fields and the interfacial volume fraction 
dramatically affects physical properties of composite media. However, it is an open problem with 
great significance how to determine the interfacial property in composite media with inclusions 
of complex geometry. By the stereological theory and the nearest-surface distribution functions, 
we first propose a theoretical framework to symmetrically present the interfacial volume fraction. 
In order to verify the interesting generalization, we simulate three-phase composite media by 
employing hard-core-soft-shell structures composed of hard mono-/polydisperse non-spherical 
particles, soft interfaces, and matrix. We numerically derive the interfacial volume fraction by 
a Monte Carlo integration scheme. With the theoretical and numerical results, we find that the 
interfacial volume fraction is strongly dependent on the so-called geometric size factor and sphericity 
characterizing the geometric shape in spite of anisotropic particle types. As a significant interfacial 
property, the present theoretical contribution can be further drawn into predicting the effective 
transport properties of composite materials.

Interfaces are crucial components that can be found in a wide variety of fields like soft matter systems, 
self-assembled structures, and composite materials1–3. In all these cases, materials are normally viewed 
as a three-phase composite consisting of mono-/polydisperse hard particles of anisotropic geometry, 
interfacial layers with a predefined dimension coating around hard particles, and matrix, which is known 
as the hard-core-soft-shell (HCSS) structure3–8. Also, the volume fraction of each constituent phase in 
HCSS structure has a distinct influence on effective properties of materials by effective medium approxi-
mations9–11. However, the interfacial phase is photographed to be essentially a complex network structure 
that neighboring interfacial layers possess an overlapping potential6,7, so that it is a practical challenge 
to capture the volume fraction of interfaces through experiments. Specifically, the geometric configura-
tions of inclusions giving rise to a variation of the interfacial property have been systematically sought 
empirically, since it is expected to allow researchers to better understand behaviors of materials and to 
optimize their design.
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Theoretical and numerical studies for the interfacial volume fraction have been attempted in the last 
two decades. It can be traced back to the late 20th century, the pioneering work from Lu and Torquato12 
that developed a theory of the nearest-surface distribution functions to compute the so-called void “exclu-
sion” probability. Thereafter, considerable attention has been paid to the application of such the theory to 
the interfacial volume fraction around spherical or ellipsoidal particles13–15. Additionally, the interfacial 
volume fraction around ellipsoidal particles was also evaluated numerically by the Monte Carlo sim-
ulations14,15. But the derived results are widely divergent. All these inconsistent results underscore the 
difficulty in determining the interfacial volume fraction around ellipsoidal particles. As a sophisticated 
approximation for hard cores, regular convex polyhedra have been extensively proposed to represent 
hard inclusions in the research of composite media16–18. Also, the interfacial volume fraction around 
polydisperse Platonic particles was recently presented19. In the above previous studies, the interfacial vol-
ume fraction around anisotropic particles is typically investigated on a case-by-case basis using computer 
simulations or approximate schemes, even though these predominant lines of research are of significance 
for understanding the interfacial volume fraction, there is yet no a theoretical framework to systemati-
cally estimate the interfacial volume fraction so far. Furthermore, how anisotropic morphological details 
affect the interfacial volume fraction remains dubious. It is our objective in this work to address this gap.

Results
Theoretical framework for interfacial volume fraction.  We find that the theory of the near-
est-surface distribution functions12 can be well applied to derive the interfacial volume fraction around 
anisotropic particles, the detailed derivation of which is presented in Methods section. The formulas of 
the interfacial volume fraction are given by
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where Vsi and Vp are the volume fractions of interfaces and particles, respectively. Deq is an equivalent 
diameter defined as the diameter of a sphere having the same volume as an anisotropic particle14,19. 〈  〉  
indicates a number-averaged treatment. m is a parameter, the value of which depends on the theoretical 
approximation of the radial distribution function of spherical particle systems, such as m =  0 being the 
Percus-Yevick approximation20, m =  2 being the Carnahan-Starling approximation21, and m =  3 being the 
scaled-particle approximation22. It is noted that the value of m does not seem to make much difference, 
since the term of equation (4) limited by the value of m is only a little contribution to the determina-
tion of the interfacial volume fraction (see Supplementary Information, Fig. S1). t and s are the inter-
facial dimension and sphericity defined as the ratio between the surface area of a sphere and that of a 
non-spherical particle with the same volume23, respectively, which is used as a morphological descriptor 
of anisotropic particles. In the whole particle system, sphericity of each particle is assigned to be identical 
so as to assess the impact of morphological details of anisotropic particles.

In order to account for the effects of geometric details of anisotropic particles, monodisperse particle 
structures should be considered. Accordingly, the parameters eʹ, d ʹ, and gʹ are expressed as
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In the substitution of equations (5)–(7) into equation (1), and then let λ =  t/Deq (λ is defined as a 
geometric size factor of an anisotropic particle), Vsi is rearranged by
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In accordance of the term of equation (8), the interfacial volume fraction of monodisperse aniso-
tropic particle structures predominantly relies on the geometric size factor λ  controlled by the coupling 
of interfacial dimension and equivalent diameter, except the sphericity of anisotropic particles. That 
suggests the constant λ  with different t and Deq possessing the uniform Vsi. It is an interesting generali-
zation that can allow researchers to just control the geometric size factor λ  to design the specific inter-
facial property in composite materials, instead of varying the interfacial dimension and the particle size 
described in the past. On the other hand, the investigation of polydisperse particle systems is illustrated 
in the Supplementary methods (S8). It is essentially stressed that the present contribution can also be 
extended to predict the mean spacing of complex geometric voids that is the topic in porous materials, 
even if the physical characteristic is not the focus of this work.

Numerical experiments for interfacial volume fraction.  We implement a series of numerical 
experiments to anisotropic particles of different types so as to verify the reliability of the theoretical 
scheme proposed above. Firstly, we simulate three-phase composite media by using the HCSS structure 
that is composed of hard anisotropic particles, soft interfaces, and matrix. Soft interfaces with a con-
stant dimension are required to coat on the surface of each particle. The realistic morphology of such 
the interface can be realized by the Minkowski addition manner24,25, the details of which have been 
demonstrated in the recent study25. Fig. S2 displays some visualization examples for the construction 
of interfacial profiles around convex polyhedra by the Minkowski addition manner (see Supplementary 
Information, Fig. S2).

We start our computer simulations by packing non-spherical particles like spheroids, spherocylinders, 
regular tetrahedrons, hexahedrons, octahedrons, dodecahedrons, and icosahedrons into a matrix viewed 
as a cubic structure. We create macroscopic assemblages of hard particles using a random sequential 
addition procedure26,27. The details of random sequential addition procedure are briefly reviewed in 
the Supplementary methods (S9). Then, a uniform interfacial shell described above is coated on the 
surface of each hard particle, as well as the adjacent interfaces may intersect in order to cater for the 
HCSS structure. As schematic drawings, Fig.  1 depicts nine three-phase composite models composed 
of matrix, interfaces, and monodisperse non-spherical particles of nine geometric shapes. Fig. S3 shows 
further packing systems of polydisperse non-spherical particles with a uniform interfacial shell (see 
Supplementary Information, Fig. S3). Subsequently, a Monte Carlo random point sampling algorithm 
is performed to obtain the interfacial volume fraction, and its operation strategy is executed in the 
Supplementary methods (S10).

Discussion
In this section, some results on the influences of particle geometries on the interfacial volume fraction 
are displayed and discussed by the proposed theoretical and numerical approaches. We employ mon-
odisperse particle systems to investigate the effects of geometric size factor and particle shape so as to 
explicitly reveal the mechanisms of geometric features of particles. On the other hand, the impact of 
particle size distribution is described in Supplementary results (S11).

Figure 2 displays the effect of geometric size factor λ of anisotropic particles on the interfacial vol-
ume fraction Vsi by theoretical and numerical methods presented above. From Fig.  2, it can be seen 
that the theoretical results are in good agreement with the numerical results of Vsi for different λ and 
Vp. It indicates that the stability of the present theoretical scheme for the interfacial volume fraction of 
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monodisperse anisotropic particle systems is favorable. On the other hand, under the same particle vol-
ume fraction, Vsi firstly increases with the increase of λ. When λ increases to a critical value, Vsi keeps a 
stable value equal to 1–Vp, in other words, the interfaces overlap enough to fill up the remaining matrix 
as λ reaches a threshold. This reflects that the proposed theoretical scheme exactly provides an efficient 
method for obtaining the threshold. It seems that it is the first time to our knowledge that such a corre-
lation is presented. In addition, according to the definition of geometric size factor of λ =  t/Deq, we can 
find that the interfacial volume fraction intensively depends on the coupling of interfacial dimension 
and equivalent diameter, rather than the single factor like interfacial dimension or equivalent diameter. 
It is an interesting finding that can allow researchers to just optimize the geometric size factor to design 
the interfacial property in composite materials. To verify the validity of interesting generalization, we 
further test the effect of single factor on the interfacial volume fraction with a fixed geometric size factor.

Without the loss of generality, we use the theoretical and numerical models to evaluate the influence 
of interfacial dimension t on the interfacial volume fraction with a constant geometric size factor, in 
which constant geometric size factors of five kinds are investigated, as shown in Fig.  3. As expected, 
Fig. 3 shows that, for each fixed λ, the theoretical and numerical results of Vsi are completely invariants 
with varying the interfacial dimension. This confirms the validity of the above generalization. To be 

Figure 1.  Schematic views of geometric models of composite materials constructed by hard-core-soft-
shell structured particles with monodisperse particle systems. (a) Spheres, (b) prolate ellipsoids (κ =  2.5, 
κ is the aspect ratio), (c) oblate ellipsoids (κ =  0.6), (d) spherocylinders (H/D =  2.5, H and D are the height 
and diameter of a sphrocylinder, respectively.), (e) tetrahedra, (f) hexahedra, (g) octahedra, (h) dodecahedra, 
and (i) icosahedra. The interfacial dimension t, particle volume fraction Vp, and cubic cell dimension L are 
set to be t =  2.0, Vp =  0.32, and L =  100, respectively.
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specific, in a monodisperse particle system, the interfacial volume fraction is only limited by the geomet-
ric size factor under the constant particle shape and volume fraction.

Figure 4 depicts the effect of sphericity s as the shape descriptor of anisotropic particles on the inter-
facial volume fraction for various geometric size factors λ by theoretical and numerical models. For the 
smaller λ, Fig. 4 shows that Vsi decreases with the increase of s, and reaches the minimal value with s =  1, 
i.e., spheres. It means that anisotropic particles give rise to an increment of interfacial volume fraction 
with respect to isotropic spheres. Thereby, the derived results demonstrate the assumption of spherical 
particles underestimates the interfacial volume fraction in composite materials. The case numerically 
attributes to the sharp increase of the packing fraction of anisotropic particles as particles deviate from 
spheres reported in relevant references17,23,28–30. Indeed, the packing of hard particles is denser; the over-
lap potential between interfaces around particles is more significant, which induces the expected increase 
of interfacial volume fraction. Experimentally, The reason is that the required amount of matrix for 
wrapping the surface of spherical particles is lower than that for wrapping the surface of anisotropic par-
ticles, so that interfaces generated in the vicinity of spherical particles are less than those generated in the 
vicinity of anisotropic particles, since the packing constraint of the particle surface on matrix gives rise to 
the formation of interfaces in some composite materials, such as ceramic and cementitious composites.

Figure 2.  Effect of geometric size factor λ of particles on the interfacial volume fraction Vsi for two 
given particle volume fractions of Vp = 0.2 and 0.3. The lines and circular points denote theoretical and 
numerical results, respectively. Numerical experiments are implemented in monodisperse octahedron 
(s =  0.846) particle systems with the constant interfacial dimension of t =  0.03.

Figure 3.  Comparison of the same geometric size factor with different interfacial dimensions. Effect of 
the interfacial dimension t on the interfacial volume fraction Vsi. The lines and cross-shaped points represent 
theoretical and numerical results, respectively. Numerical experiments are executed in monodisperse oblate 
ellipsoid (s =  0.562) particle systems with the constant particle volume fraction of Vp =  0.2.
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Interestingly, for the larger λ, e.g., λ =  0.7, theoretical and numerical results consistently display that 
Vsi keeps basically the constant (Vsi =  1 −  Vp =  0.8) with s, as shown in Fig. 4. In other words, the volume 
of interfaces occupies to the whole matrix in composite materials. It reveals that the response of interfa-
cial volume fraction on the geometric size factor is more sensitive than that on the geometric shape of 
anisotropic particles. It is worth pointing out that the present theoretical results just take into account 
sphericity of particles regardless of different types of anisotropic particles, but the numerical results 
reported in Fig. 4 originate from spheroids of different aspect ratios, according to the relation between 
aspect ratio and sphericity, that is
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where κ is the aspect ratio of a spheroid, ϕ is defined as ϕ =  arcos (η), η =  1/κ (κ >  1) or η =  κ (κ <  1). 
Although the numerical results are in good line with the theoretical results for spheroids, as shown in 
Fig. 4, it is unclear whether the present theoretical framework is suitable for other anisotropic particles 
with the same sphericity. So, it is very necessary to address the gap in the following.

In order to discuss the issue, we set numerical experiments of three groups, and each group possessing 
a uniform sphericity contains four types of anisotropic particles, such as convex polyhedrons, prolate 
spheroids, oblate spheroids, and spherocylinders, as shown in Fig. 5. With the present numerical model 
applied, the numerical results of interfacial volume fraction for anisotropic particles of different types are 
derived. We compare the numerical experimental results of each group with the theoretical solution of 
interfacial volume fraction for a constant sphericity, as shown in Fig. 5. For the first group experiment 
with the uniform s =  0.6711, Fig. 5(a) presents the numerical results for tetrahedrons, oblate spheroids 
of κ =  0.2292, prolate spheroids of κ = 6.6252, and spherocylinders of the aspect ratio of α =  5.7232 are 
so in good agreement with the theoretical solution of interfacial volume fraction for various geometric 
size factors, even if the numerical results for four types of anisotropic particles are slightly distinguishable 
each other, because of the inevitable machine errors. It is noted that α is the aspect ratio of a spherocyl-
inder, i.e., α =  H/D, In terms of the definition of sphericity, the relation between α and s is expressed as
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Moreover, for the other two groups, Fig. 5(b,c) illustrate the same rule in relation to Fig. 5(a). Therefore, 
the proposed theoretical framework as a generalized scheme integrates the interfacial volume fraction for 
anisotropic hard particles of different geometric types. Also, it is required that we need only to input the 
geometric shape factor, i.e., sphericity s, of anisotropic particles for determining the interfacial volume 
fraction under the same other parameters, no longer need a case-by-case consideration.

Figure 4.  Effect of particle shape characterized by sphericity s on the interfacial volume fraction Vsi 
in monodisperse particle systems. The dashed lines and cubic-shaped points represent theoretical and 
numerical results, respectively. Numerical experiments are executed with the constant particle volume 
fraction of Vp =  0.2 and interfacial dimension of t =  5.
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Methods
As a theoretical foundation of the interfacial volume fraction, the theory of the nearest-surface distri-
bution functions will be reviewed briefly to formulate the interfacial volume fraction. In the theory, a 
so-called void “exclusion” probability of composite media composed of spherical particles and voids is 
derived by the statistical geometry of composites and geometric probability12
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where eV (r) is defined as the probability of finding a region that is a spherical cavity of radius r centered 
at some arbitrary point, empty of such composite media. In practice, the void exclusion probability eV 
(r) displays the expected fraction of voids in such two-phase composites10. ρ is the number density of 
spherical particles with radius R, and η is a dimensionless reduced density defined by
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where 〈 V〉  is the number-averaged volume of hard particles, Г (x) is the gamma function. From equation 
(15), η denotes actually the volume fraction of hard spherical particles in three-dimensional space.

Suppose that a composite material consists of hard spherical particles and matrix, eV (r) described 
above can thus be mapped into the volume fraction of matrix in a two-phase composite material. 
Similarly, if considering a three-phase composite material of HCSS structure, namely, mono-/polydis-
perse hard particles of complex geometries, interfaces with a constant dimension of t =  r coating around 
hard particles, and matrix, as shown in Fig. 1 and Fig. S3. The quantity eV (t) can still characterize the 
volume fraction of matrix besides hard cores and soft shells, since each particle and its interface can be 
viewed as a composite particle, so that the three-phase structure is reduced to a two-phase system con-
taining composite particles and matrix.

Nevertheless, for such three-phase composite materials, eV (t) does not follow equations (11)–(14), 
but it is subjected to geometric configurations of anisotropic particles. To identify geometric details of 
particles, we rearrange equations (11)–(14):

Figure 5.  Comparisons of Vsi of the same s with different particle types. Three groups of the numerical 
experiments are set as (a) s =  0.6711, (b) s =  0.806, and (c) s =  0.939. Each group contains four types of 
anisotropic particles of the same sphericity. The lines and points represent theoretical and numerical results, 
respectively. Note that basic parameters in Fig. 5 are in agreement with those in Fig. 4.
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where 〈 S〉  is the number-averaged surface area of hard particles. According to equations (16)–(19), we 
can see that, for spherical particle systems, eV (t) mainly relies on the size (R), number density (ρ), and 
surface area (S) of spherical particles. Likewise, for anisotropic particle systems, eV (t) should be con-
trolled by those geometric characteristics of anisotropic particles. Hence, the key component is how to 
determine these characteristic parameters of complex geometric particle systems.

In accordance with the preponderance of previous researches, an equivalent diameter Deq has been 
broadly employed to represent the size of a non-spherical particle14,19. Herein, Deq is still adopted as the 
size of a complex geometric particle. The number density of anisotropic particle systems can be unbias-
edly estimated by quantitative stereological theory31, which equals to the ratio of the volume fraction of 
solid phase to the average volume of hard particles, or the ratio of the specific surface area of solid phase 
to the average surface area of hard particles. In terms of the definition of Deq, the average volume 〈 V〉  
and surface area 〈 S〉  of hard non-spherical particles can be given by
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The volume fraction of solid phase with various geometries has been confirmed equivalent approxi-
mately to the volume fraction of hard particles by numerical experiments26,32. Thus, the number density 
NV of anisotropic particle systems is given by the stereological theory
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where SV is the specific surface area of hard anisotropic particles. In the submission of equations (20) and 
(21) into equations (16)–(19), eV (t) for HCSS structures with complex geometries can be expressed by
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where e′ , t′ , and g′  are parameters written as equations (2), (3), and (4), respectively. Consequently, for 
three-phase composite materials, the interfacial volume fraction is the remainder outside all the hard 
particles and matrix, that is
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As an application, we also present the theoretical framework how to apply to estimate the effective 
diffusivity of composite materials, which is demonstrated in the Supplementary results (S12).
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