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miRgo: integrating various off-
the-shelf tools for identification of 
microRNA–target interactions by 
heterogeneous features and a novel 
evaluation indicator
Yen-Wei Chu1,2,3,4,5,6, Kai-Po Chang6,7, Chi-Wei Chen1,8, Yu-Tai Liang1, Zhi Thong Soh1,9 &  
Li‐Ching Hsieh1,4,5,6,10,11*

MicroRNAs (miRNAs) are short non-coding RNAs that regulate gene expression and biological 
processes through binding to messenger RNAs. Predicting the relationship between miRNAs and their 
targets is crucial for research and clinical applications. Many tools have been developed to predict 
miRNA–target interactions, but variable results among the different prediction tools have caused 
confusion for users. To solve this problem, we developed miRgo, an application that integrates many 
of these tools. To train the prediction model, extreme values and median values from four different 
data combinations, which were obtained via an energy distribution function, were used to find the 
most representative dataset. Support vector machines were used to integrate 11 prediction tools, and 
numerous feature types used in these tools were classified into six categories—binding energy, scoring 
function, evolution evidence, binding type, sequence property, and structure—to simplify feature 
selection. In addition, a novel evaluation indicator, the Chu-Hsieh-Liang (CHL) index, was developed to 
improve the prediction power in positive data for feature selection. miRgo achieved better results than 
all other prediction tools in evaluation by an independent testing set and by its subset of functionally 
important genes. The tool is available at http://predictor.nchu.edu.tw/miRgo.

MicroRNAs (miRNAs) are short non-coding RNAs (~21 nucleotides) that have important roles in cell biology. 
miRNAs are involved in the control of a variety of physiological processes including development, cell prolif-
eration, apoptosis, tissue differentiation and metabolism, by binding to and then silencing translation of target 
mRNAs1–4. The function of miRNAs in regulation of gene expression was first described by researchers studying 
C. elegans; they found that miRNA lin-4 was able to suppress the expression of the lin-14 target gene5. In animals, 
the mechanism by which miRNAs silence gene expression can be described in three steps. In the first step, a 
hairpin-shaped transcript of the DNA encoding the miRNA, referred to as the primary miRNA, is trimmed 
by Drosha and Pasha into a loop-shaped structure ~70 nucleotides in length, resulting in the pre-miRNA. The 
pre-miRNA is then transported into the cytoplasm by exportin-5 and then is processed by Dicer to cleave the 
hairpin structure into two single strands. One of the strands becomes the mature miRNA and then binds with 
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Argonaute protein to form an RNA-induced silencing complex, which blocks mRNA translation or induces 
mRNA degradation6.

To understand the function of a miRNA, one must first determine its target genes and binding sites, but 
this task can be challenging because miRNA–mRNA binding is often incomplete in vivo7, and the mechanism 
by which miRNAs are targeted to specific genes is mostly unknown. Most miRNAs bind to the 3′-untranslated 
region (UTR) of the target mRNA at a 2- to 8-nucleotide region near the 5′ end, the “seed region”8. Because there 
are often mismatches, gaps, and G:C wobble outside the seed region, it may be possible to deduce the binding 
site by identifying the seed region based on these features. However, G:C wobble often occurs in the seed region, 
so this approach is unreliable9. To study the miRNA–mRNA relationship, numerous laboratory methods, such 
as western blotting, luciferase reporter assay, green fluorescent protein (GFP) reporter assay, reverse transcrip-
tion polymerase chain reaction (RT-PCR), pulsed stable isotope labeling by amino acids in cell culture (pulsed 
SILAC or pSILAC), microarray analysis, branched DNA probe assay, and northern blotting, have been used by 
researchers, but these laboratory methods often require considerable resources10. To save time and resources, 
many researchers have developed tools that predict miRNA–mRNA binding sites and the gene regulatory effect 
of miRNAs11.

Previously published miRNA target site prediction tools can be classified into five categories: sequence-based 
tools such as TargetScan12, miRanda13, PITA14, and PACCMIT-CDS15; energy-based tools such as PicTar16, 
RNAhybrid17, RNAduplex18, and microT-CDS19; machine learning–based tools such as MBSTAR20, MiRTDL21, 
TarPmiR22, and miRDB23; statistics-based tools such as RNA2224; and database-based tools such as StarMirDB25. 
The results generated by different tools are not always consistent. In other research fields that have problems in 
result variability among different tools, researchers often combine multiple tools into integrated systems. This 
approach has proven successful for predicting protein interactions26, protein subcellular location27, miRNA in 
transcripts28, and protein stability changes29. In this study, we have integrated existing tools to develop a novel 
prediction system, miRgo, which is free for use by researchers worldwide. This system integrates 11 prediction 
tools and was trained using miRTarBase30, which is a curated database of miRNA–mRNA interactions with 
360,000 laboratory data entries obtained from western blotting, luciferase reporter assays, microarray analyses, 
and next-generation sequencing.

miRgo was developed with the support vector machine (SVM) algorithm31 and the minimum redundancy–
maximum relevance (mRMR) feature selection method32. To reduce the size and dimension of the training set, 
three smaller datasets were obtained by filtering according to extreme values and middle values of binding energy, 
which was calculated with an energy distribution function. Another dataset, which was randomly selected from 
the database, was included for comparison. To reduce the number of features, the prediction results from different 
prediction tools were classified into six categories—binding energy, scoring function, evolution evidence, binding 
type, sequence property, and structure—to simplify the feature selection process. miRgo shows superior accuracy 
compared with other tools in 10-fold cross-validation33 of the top 30% of features of the training set. For testing 
with an independent testing set, because of the limited performance of Matthews Correlation Coefficient (MCC), 
Accuracy (Acc), and the F1 scores in interpretation of test results, an evaluation function, the CHL index, was 
designed and defined as the normalized harmonic mean of MCC, Acc, and the F1 score. This index prevents the 
accuracy paradox34 problem and emphasizes prediction of positive data. When evaluated by the CHL index and 
the F1 score, miRgo performed better than all other tools in the independent testing set and in its subsets of func-
tionally important genes. A website tool based on miRgo was built, and prediction data generated using miRgo 
are reported for future use by researchers.

Material and Methods
Data collection and positive and negative set construction.  There were 2,588 human mature 
miRNA sequences in miRBase35 version V21. We acquired 322,352 records describing the relationship between 
the 2,588 human miRNAs and 14,886 targets from miRTarBase release 7.030. To reduce the amount and dimen-
sion of the data, the CD-HIT-EST36 clustering tool from the CD-HIT toolkit was used under a sequence iden-
tity threshold of 0.8. After removal of sequence redundancy, 292,686 records related to the 2,588 miRNAs were 
obtained and defined as the total positive dataset. The total negative dataset was generated by the permutation 
method described by Zhang et al.37.

To train the models, four training sets—trA, trB, trC, and trR—were used. The first three training sets (trA, 
trB, and trC) were selected from the aforementioned records using the binding energy distribution function 
(Fig. 1) obtained by RNAhybrid17 and RNAduplex18. The proportion of positive and negative data in the train-
ing sets was adjusted by a positive/negative (P/N) ratio analysis from the energy distribution function. The trA 
dataset, with 5,176 total records, consisted of the positive subset trA_P, which contained 2,588 records from the 
most stable miRNA–target pairs to the 2,588 selected miRNAs, and the negative subset trA_N, which contained 
2,588 records from the most unstable pairs. The trB dataset, with 10,352 total records, consisted of 5,176 records 
from the most stable and second-most stable pairs (the trB_P subset) and 5,176 records from the most unstable 
pairs and second-most unstable pairs (the trB_N subset). The trC dataset, with 10,352 total records, consisted of 
pairs with extreme and mid-range binding energy. The last training set, trR, consisted of 10,532 randomly selected 
records. To test the models, 1,877 data records related to 38 miRNAs and 1,258 genes retrieved from MiRTDL21 
(originally from TarBase v7.038) were used. After removal of data that was duplicated in the training sets, the test-
ing data included 1,248 positive records and 241 negative reports. In addition, the genes with the Gene Ontology39 
annotation in the aforementioned testing set were selected for evaluation of the accuracy of the models.

Tool integration.  Since 2005, a number of computational tools for predicting miRNA–target interactions 
have been published (Table 1). To build the miRgo prediction system, a meta-predictor was developed via inte-
gration by SVM of 11 of the 14 prediction tools: RNA22, RNAhybrid, TargetScan, PITA, miRanda, RNAduplex, 
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microT-CDS, StarMirDB, PACCMIT-CDS, MBSTAR, and TarPmiR. PicTar was excluded from integration 
because of its outdated database, miRDB was excluded because of the lack of information it provided, and infor-
mation from MiRTDL was not integrated because it was used as a testing set for miRgo.

Feature extraction and encoding.  To integrate the results of the prediction tools, the feature encoding 
system must first be integrated. There are differences in feature encoding among the results of the prediction tools. 
The results of some prediction tools are encoded as 1 and 0 to represent a binding pair and a non-binding pair, 
respectively. The prediction results of miRanda13 are encoded into four categories: good mirSVR13 score, con-
served miRNA (miRanda_S_C); good mirSVR score, non-conserved miRNA (miRanda_S_0); non-good mirSVR 
score, conserved miRNA (miRanda_0_C); and non-good mirSVR score, non-conserved miRNA (miRanda_0_0). 
The prediction results of STarMirDB25 are encoded into six categories: 3′ UTR-seed sites (STMDB_3US), 3′ 
UTR-seedless sites (STMDB_3ULS), CDS-seed sites (STMDB_CS), CDS-seedless sites (STMDB_CLS), 5′ 
UTR-seed sites (STMDB_5US), and 5′ UTR-seedless sites (STMDB_5ULS). To develop miRgo, 32 feature types 
from the various tool results were selected for encoding and integrated into six categories: energy, scoring func-
tion, evolution evidence, binding type, sequence property, and structure. The feature types selected are listed in 
Table 2 and are explained below. All feature encoding systems included are listed in Supplementary Table S1.

The seed type of the miRNA–gene binding based on the results of the prediction tools STarMirDB25, PITA14, 
MBSTAR20, and TargetScan12 was taken as an encoded feature. For encoding of the seven canonical seed types 
used in these tools, a seven-dimension vector was constructed. If a particular seed type was present in a miRNA–
target pair, the value of that seed in the vector was set to 1; otherwise the value was set to 0. The feature codes are 
shown in Supplementary Table S2.

The dataset in TargetScan includes binding position and range, which can be encoded into the nucleotide 
composition of the binding site sequence. In addition, each record from the prediction results of miRanda, 
RNAduplex, and StarMirDB, which includes information about the starting and ending positions of a binding 
site, can also be converted into the nucleotide composition of the binding site sequence. No range information is 

Figure 1.  Distribution of binding energy of miRNA–mRNA pairs for positive (red) and negative data (blue).

Tool
Input 
typea Method Availability Year Integrationb

PicTar m or g Sequence complementarity, thermodynamics and statistical model Web-based 2005 x

RNA22c m and g Sequence complementarity, thermodynamics and statistical model Stand-alone 2006 ○

RNAhybridc m and g Thermodynamics and statistical model Stand-alone 2006 ●

TargetScan m and g Sequence complementarity, thermodynamics Web-based 2007 ●

PITAc m and g Site accessibility, thermodynamics Stand-alone 2007 ○

miRandac m and g Sequence complementarity, thermodynamics Stand-alone 2008 ●

miRDB m or g Machine learning (support vector machines) Web-based 2008 x

RNAduplex m and g Thermodynamics and statistical model Stand-alone 2011 ●

microT-CDSc m or g Sequence complementarity, thermodynamics Stand-alone 2012 ●

STarMirDB m and g Sequence complementarity, thermodynamics and statistical model Web-based 2013 ●

PACCMIT-CDS m and g Sequence complementarity and statistical model Web-based 2013 ○

MBSTAR m and g Machine learning (support vector machines) Stand-alone 2013 ○

MiRTDL m and g Machine learning (convolutional neural network) Web-based 2016 x

TarPmiR m and g Machine learning (random forest) Stand-alone 2016 ○

Table 1.  Computational tools for predicting miRNA–target interactions. aThe required input information. m: 
microRNA, g: gene. bWhether the tool integrated in miRgo. ○: the tool integrated in miRgo, ●: the integrated 
tool with selected features, x: the tool not integrated in miRgo. cThese tools provide web-based service as well, 
but miRgo utilizes the results generated from stand-alone programs.
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included in PITA and MBSTAR, so only the binding position was obtained and encoded as data from these tools. 
For miRNA–target pairs with no prediction result, the value for the position and nucleotide proportion was set 
to 0.

Feature selection and model construction.  After constructing the training sets and integrating the pre-
diction methods and feature encoding system (as described above, we selected the dataset used for training of 
the classifiers based on 10-fold cross-validation. To further improve the accuracy of the classifiers, a number of 
features selected by the incremental feature selection (IFS) method40 followed by the mutual information quotient 
(MIQ) scheme of the mRMR method32 were included in the model. The SVM classifier and learning method were 
selected by comparing seven classifiers from the Weka toolkit41—baye, function, lazy, meta, misc, rule, and tree—
and 47 learning methods with LIBSVM31. Because of the difficulty in obtaining consistent results using current 
evaluation indicators to evaluate the performance of miRgo and other tools, a novel evaluation indicator, the CHL 
index, was developed and is described in next paragraph. The miRgo development flowchart is shown in Fig. 2.

Classifier performance evaluation.  To evaluate the performance of classifiers, four values are commonly 
measured: (1) true positive rate (TP), the proportion of miRNA-target pairs that bind to each other and are 
correctly predicted by the classifier as binding pairs; (2) false negative rate (FN), the proportion of pairs that 
bind to each other but are falsely predicted by the classifier as non-binding pairs; (3) false positive rate (FP), the 
proportion of pairs that do not bind to each other but are falsely predicted by the classifier as binding pairs; and 
(4) true negative rate (TN), the proportion of pairs that do not bind to each other and are correctly predicted by 
the classifier as non-binding pairs. Several evaluation metrics—accuracy (Acc), sensitivity (Sn), specificity (Sp), 
precision, the F1 score, and Matthews correlation coefficient (MCC)—can be obtained from TP, FN, FP, and TN. 
These metrics are shown in Formulas 1–6.

Acc, an indicator of overall prediction accuracy, is calculated as shown in Formula 1.

Acc TP TN
TP TN FP FN (1)

=
+

+ + +

Sn (also called recall) is an indicator of the power for detecting positives and is shown in Formula 2.

=
+

Sn TP
TP FN (2)

Sp is an indicator of the power for detecting negatives and is shown in Formula 3.

Sp TN
TN FP (3)

=
+

Precision is an indicator of the accuracy of predicting positives, as shown in Formula 4.

Precision TP
TP FP (4)

=
+

The F1 score, or the F-measure, is a weighted arithmetic mean of precision and Sn. The range of this score is 
from 0 to 1. It indicates the prediction accuracy for positive data. The F1 score is shown in Formula 5.

F score Precision Sn
Precision Sn

2
(5)1 = ×

×
+

The MCC is an objective indicator that is used to evaluate prediction power on positives or negatives. By 
balancing the effect of positive and negative prediction accuracy, it is generally more reliable than Sn, Sp, or pre-
cision. The range of MCC is from −1 to 1. If MCC is equal to 1, the prediction is totally correct, and if MCC is 
equal to −1, the prediction is totally incorrect. All-positive or all-negative prediction will yield a MCC of 0. MCC 
is shown in Formula 6.

Feature category Featurea

Energy binding energy, minimum free energy, folding energy

Scoring function mirSVR score, context score, RNA22 p-value, RNAhybrid p-value, logistic probability of 
the site, miTG score, PACCMIT-CDS p-value, binding probability, m/e motif

Evolution evidence conservation, Pct

Binding type gene start and end sites, microRNA start and end sites, seed type, binding position, 
binding site, seed match

Sequence property alignment score, nucleotide composition, AU content

Structure ΔGhybrid, ΔGnucl, ΔGtotal, ΔGduplex, ΔGopen, ΔΔG, accessibility

Table 2.  The features utilized in miRgo. aThe description for each feature is listed in Supplementary Table S1.
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=
× − ×

+ + + +
MCC TP TN FP FN

TP FP TP FN TN FP TN FN
( ) ( )

( )( )( )( ) (6)

Among the prediction metrics described above, Acc is seemingly a useful indicator for accuracy, but its use-
fulness is actually limited because of the accuracy paradox, which also affects the F1 score42. Using MCC avoids 
the accuracy paradox, but because the tools that are focused solely on negative data prediction may still achieve 
a high MCC score, it is unreliable when positive data prediction is important. During construction of miRgo, we 
found that Acc, F1-score, and MCC were inconsistent when various models were compared. To avoid the pitfalls 
of these three metrics and to resolve these inconsistencies, we developed a metric, the CHL index, that represents 
the harmonic mean of the Acc, the F1 score, and MCC′ (a normalized MCC that has a value range of 0–1). The 
effect of positive and negative prediction data on the CHL index is between that of the F1 score and MCC, so 
positive prediction data will have more weight on the CHL index than in the MCC, and negative prediction data 
will have more weight on the CHL index than in the F1 score. The calculations for MCC′ and the CHL index are 
shown in Formulas 7 and 8.

′ =
+MCC MCC 1

2 (7)

The CHL index Acc MCC F
Acc MCC MCC F F Acc

3
( ) ( ) ( ) (8)

1

1 1
= ×

× ′ ×
× ′ + ′ × + ×

Results
The positive-negative ratio optimization for training data.  An imbalance between positive and neg-
ative data may cause bias in machine learning. To search for an optimal P/N ratio for the training set, we designed 
models trained with four different P/N ratios. Figure 3 shows that when evaluated by the CHL index, a P/N ratio 
of 1:1 achieved the best result. The positive data were based on the 2,588 miRNA–target pairs. The negative data 
were generated by permutation and combination. The models were trained by 10 consecutive runs of SVM with 
randomly selected data sets.

Classifier selection.  After selecting the best training sets with a P/N ratio of 1:1, various classifiers were 
tested with the selected sets for accuracy. Five classifiers from the Weka toolkit, including baye, function, 
lazy, meta, and tree, and seven algorithms were tested and compared with LIBSVM. The results are shown in 
Supplementary Table S3.

Training data for cross-validation.  To select the best data set for model construction, data sets trA, trB, 
trC, and trR were tested with 10-fold cross-validation with a selected subset as the training set and other subsets 
as the validation or testing set. The results of trA, the best-performing data set, are shown in Table 3. The results 
of the other data sets are shown in Supplementary Tables S4–S6.

When tested with trA, the prediction model miRgo–trA achieved the best results for all metrics among 18 
tools (Table 3). Of the metrics tested, Sn showed the most variation among tools, and Sp showed the least vari-
ation. MCC also showed marked variation. The variation in the CHL index among the tools was less than that 

Figure 2.  Flowchart of the miRgo prediction system.
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for MCC but was greater than that for Sp. When tested with trB, the prediction model miRgo–trB achieved the 
best results for all metrics among 18 tools, but it was less accurate than miRgo–trA (Supplementary Table S4). 
Its worse performance might be because some miRNAs have just one target (i.e. these miRNAs don’t have the 
second-most stable pair), so other miRNAs’ the third-most stable binding pair, which may have weaker bind-
ing energy, will be used instead, or because some second-most stable pairs had weaker binding energy. When 
tested with trC, the prediction model miRgo–trC performed better than most tools but showed a worse Acc, 
F1-score, and MCC than did TargetScan and TarPmiR, the two tools that may be more focused on mid-range data 
(Supplementary Table S5). When tested with trR, the prediction model miRgo–trR achieved the best results for all 
metrics among 18 tools but was still worse than miRgo–trA (Supplementary Table S6).

The best data set, trA, was used for final model training. To assess the characteristics of accuracy metrics, cor-
relation between Acc, the F1 score, MCC′, and the CHL index was measured by testing with trA and various tools 
(Supplementary Fig. S1). Acc was closely correlated with MCC′ and was markedly different than the F1 score; 
the CHL index was closely correlated with the F1 score but was markedly different than Acc and MCC′. Thus, the 
CHL index may give more weight to negative data prediction power.

Feature selection.  To select a suitable feature selection method, we first compared the performance 
of six feature selection methods from the Weka41 toolkit—CVAttributeEval, GainRatioAttributeEval, 
InfoGainAttributeEval, OneRAttributeEval, CorrelationAttributeEval, and SymmetricalUncertAttributeEval—
on model construction by trA. Because there was no meaningful performance difference, CVAttributeEval was 
arbitrarily selected to represent the Weka method. CVAttributeEval was then compared with the mRMR feature 

Figure 3.  Model performance for various training sets based on different P/N ratios. For each P/N ratio, ten 
randomly sampled training sets were generated for performance evaluation using six indicators, Sn, Sp, Acc, 
MCC, the F1-score and the CHL-index.

Prediction method Sn Sp Acc F1-score MCC MCC′ CHL-index

miRgo_trAa 0.9992 0.9981 0.9986 0.9986 0.9973 0.9986 0.9986

RNA22 0.7608 0.8798 0.8203 0.8090 0.6452 0.8226 0.8172

miRanda_0_0 0.1967 0.9691 0.5828 0.3204 0.2610 0.6305 0.4671

miRanda_0_C 0.0568 0.9903 0.5235 0.1065 0.1315 0.5657 0.2296

miRanda_S_0 0.1298 0.9896 0.5596 0.2277 0.2337 0.6169 0.3846

miRanda_S_C 0.0479 0.9934 0.5206 0.0909 0.1270 0.5635 0.2041

STMDB_3US 0.2434 1.0000 0.6216 0.3915 0.3722 0.6861 0.5338

STMDB_3ULS 0.4552 0.7248 0.5900 0.5261 0.1869 0.5934 0.5681

STMDB_CS 0.0000 1.0000 0.4999 nullb 0.0000 0.5000 nullb

STMDB_CLS 0.4892 0.5226 0.5059 0.4975 0.0118 0.5059 0.5031

STMDB_5US 0.0228 1.0000 0.5113 0.0446 0.1074 0.5537 0.1145

STMDB_5ULS 0.4451 0.4863 0.4657 0.4545 −0.0686 0.4657 0.4619

TargetScan 0.9668 0.9084 0.9376 0.9394 0.8767 0.9383 0.9384

DIANA_microT 0.2832 0.9988 0.6410 0.4410 0.4038 0.7019 0.5712

PITA 0.0978 0.9888 0.5432 0.1763 0.1906 0.5953 0.3263

TarPmiR 0.9610 0.9157 0.9384 0.9397 0.8776 0.9388 0.9390

MBSTAR 0.2902 0.7101 0.5001 0.3673 0.0003 0.5002 0.4463

PACCMIT-CDS 0.0761 0.9992 0.5376 0.1414 0.1959 0.5980 0.2829

Table 3.  Performance comparison of different miRNA–target interaction prediction methods for the trA set. 
aThe miRgo_TrA model was trained on the trA training data with 10-fold cross validation. bnull: The F1-score 
and the CHL-index cannot be calculated because both TP and FP are zeros in this case.
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selection method for performance based on the incremental feature selection (IFS) procedure40. The perfor-
mance of the method without feature selection, miRgo_trA, and the two feature selection methods, miRgo_trA_
FS-mRMR and miRgo_trA_FS-CVAE, is shown in Table 4.

The model trained by the trA set without feature selection scored 0.9990, 0.9973, and 0.9986 on Sn, MCC, and 
the CHL index, respectively. After the CVAttributeEval feature selection was conducted, Sn, MCC, and the CHL 
index increased to 1.0000, 0.9977, and 0.9988, respectively. After the mRMR feature selection was conducted, Sn, 
MCC, and the CHL index increased to 1.0000, 0.9981, and 0.9990, respectively. Because of better performance, 
the MIQ scheme of the mRMR method was chosen for model construction. Based on the ranked features eval-
uated by the mRMR method, the IFS procedure was then used to determine the optimal number of features. 
During the IFS procedure, features in the ranked feature list are added one by one from higher to lower rank, and 
then 184 different feature subsets are obtained. An IFS curve, revealing the relation between the CHL index and 
the feature subset, is plotted in Fig. 4, which shows that several subsets with no more than eleven most important 
features would make the CHL index to reach maximum. We then chose the eleven features from six tools, includ-
ing minimal free energy, predicted binding position, and p-value from RNAhybrid; context score and seed type 
from TargetScan; nucleotide proportion from miRanda(A,C) and RNAduplex; endpoints of the predicted binding 
site from StarMirDB, p-value from RNA22, and miTG score from DIANA-microT for model construction. These 
features cover energy, scoring function, binding type, and sequence property.

To examine whether overfitting occurred, independent testing was conducted on models built before and after 
feature selection. The test showed that miRgo_trA_FS-CVAE scored better than miRgo_trA_FS-mRMR for Sn, A, 
and the F1 score but scored worse than miRgo_trA_FS-mRMR for MCC and the CHL index, the two metrics that 
consider both Sn and Sp. miRgo_trA_FS-mRMR was superior if positive and negative data were concerned, and 
the CHL index enhanced the importance of positive data while retaining the accuracy paradox−solving ability 
of MCC (Table 5).

Model evaluation by independent testing dataset.  To compare the performance of miRgo_trA_
FS-mRMR with other prediction tools, testing was conducted with an independent dataset. miRgo_trA_
FS-mRMR performed better than all other tools when measured by Acc, the F1 score, and the CHL index. The 
only metric for which miRgo_trA_FS-mRMR performed worse than any tool was MCC, where MBSTAR yielded 
a score of 0.2807 and miRgo_trA_FS-mRMR yielded a score of 0.1810. The reason for the high MCC score of 
MBSTAR may be caused by low sensitivity, with only 451 records generated when tested with 1,525 records of 
independent data. By missing 833 records of positive data and 241 records of negative data, measuring MCC 
with MBSTAR may have falsely overestimated the accuracy based on negative data. Because most predictions of 
miRNA–target interactions focus on positive data, the better measure would be the CHL index, which avoids the 
accuracy paradox while still focusing on positive data; miRgo_trA_FS-mRMR and MBSTAR scored 0.7316 and 
0.5273, respectively. The independent testing results are shown in Table 6.

Model Sn Sp Acc F1-score MCC MCC′ CHL-index

miRgo_trAa 0.9992 0.9981 0.9986 0.9986 0.9973 0.9986 0.9986

miRgo_trA_FS-mRMRb 1.0000 0.9981 0.9990 0.9990 0.9981 0.9990 0.9990

miRgo_trA_FS-CVAEb 1.0000 0.9977 0.9988 0.9988 0.9977 0.9988 0.9988

Table 4.  Performance comparison of the miRgo models with and without the feature selection (FS) procedure 
for the trA set. amiRgo_TrA doesn’t include the feature selection (FS) procedure. bmiRgo_trA_FS-mRMR and 
miRgo_trA_FS-CVAEis are with the mRMR and CVAttributeEval feature selection method, respectively.

Figure 4.  The incremental feature selection (IFS) curve of the combination of features. Features ranked by 
the mRMR method were added one by one from higher to lower rank into models, and 184 models with 
different combination of features were constructed and evaluated by the CHL index. It can be observed that the 
combination of 11 most important features makes the CHL index to reach a maximum value of 0.99903.
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Performance evaluation with functionally important genes.  The Gene Ontology resource (GO; 
http://geneontology.org) collects current scientific knowledge concerning the functions of genes and provides 
functional annotation of gene products39. All the knowledge regarding the functions of genes is supported by the 
scientific literature43. Therefore, genes with the GO annotation indicates that the functions of these genes have 
been investigated to some extent and imply that these genes might be interesting or functionally important. We 
are interested in the performance of miRgo in predicting the miRNA-target relationships of these genes with the 
GO annotation. The analysis was done by testing according to three types of functional data in the Gene Ontology 
database: biological process, molecular function, and cellular component. Independent testing data were catego-
rized into three types, and all tools were tested based each category. miRgo performed better than all other tools 
in all three types of functional data, scoring 0.6841, 0.6899, and 0.6945 in biological process, molecular function, 
and cellular component, respectively, when evaluated by the CHL index. The results are shown in Fig. 5.

Discussion
Prediction of miRNA–target relationships is important in biology because prediction of binding pairs may save 
time and material for experimental biologists. Here we described the integrated tool miRgo, which combines 11 
features covering binding energy, scoring function, binding type, and sequence characteristics from six differ-
ent prediction tools. The training set used for development, trA, was obtained by selecting the most-stable and 
least-stable binding pairs via an energy filter distribution function. The resulting classifiers showed high accuracy 
in prediction of both positive and negative data without overfitting. Compared with the integration of 11 tools, 
the integration of six tools and 11 features was superior in speed and accuracy.

Regarding miRNA–target interactions, the prediction of positive data is more important than that of nega-
tive data. To address this specific need, we developed a novel metric, the CHL index, which focuses more on Sp 
than the F1 score and focuses more on Sn than MCC. For example, STMDB_3US and MBSTAR have similar Sn 
values but very different Sp values (0.7303 and 1.0000) (Table 6). These two tools show a difference of 0.3 in the 
F1 score, but 0.6 in the CHL index, demonstrating that the CHL index is more Sp focused than is the F1 score. 
miRNADA_S_0 and MBSTAR have similar Sp values but very different Sn values (0.0093 and 0.3512). These two 
tools show a difference of 0.2421 for MCC but 0.4789 for the CHL index, demonstrating that the CHL index is 
more Sn focused than is MCC. Therefore the CHL index may have more discrimination power for examination 
of miRNA–target prediction models.

Model Sn Sp Acc F1-score MCC MCC′ CHL-index

miRgo_trA 0.7765 0.4066 0.7180 0.8226 0.1538 0.5769 0.6910

miRgo_trA_FS-mRMR 0.8840 0.2900 0.7900 0.8760 0.1810 0.5905 0.7316

miRgo_trA_FS-CVAE 0.9354 0.1411 0.8098 0.8923 0.1480 0.5524 0.7201

Table 5.  Performance comparison of the miRgo models with and without the feature selection (FS) procedure 
for the independent test set.

Prediction method Sn Sp Acc F1-score MCC MCC′ CHL-index

miRgoa 0.8840 0.2900 0.7900 0.8760 0.1810 0.5905 0.7316

RNA22 0.3917 0.7593 0.4498 0.5453 0.1143 0.5571 0.5127

miRanda_0_0 0.0109 0.9959 0.1666 0.0216 0.0250 0.5125 0.0552

miRanda_0_C 0.4517 0.6141 0.4774 0.5927 0.0484 0.5242 0.5273

miRanda_S_0 0.0093 1.0000 0.1659 0.0185 0.0386 0.5193 0.0484

miRanda_S_C 0.4540 0.6058 0.4780 0.5943 0.0439 0.5220 0.5272

STMDB_3US 0.3419 0.7303 0.4033 0.4911 0.0560 0.5280 0.4680

STMDB_3ULS 0.6168 0.5394 0.6046 0.7243 0.1160 0.5580 0.6215

STMDB_CS 0.3084 0.7925 0.3849 0.4578 0.0809 0.5405 0.4523

STMDB_CLS 0.6589 0.5104 0.6354 0.7527 0.1280 0.5640 0.6417

STMDB_5US 0.0312 0.9834 0.1816 0.0602 0.0317 0.5159 0.1248

STMDB_5ULS 0.6098 0.4938 0.5915 0.7154 0.0769 0.5385 0.6066

TargetScan 0.5397 0.6307 0.5541 0.6709 0.1244 0.5622 0.5912

DIANA_microT 0.3076 0.7054 0.3705 0.4514 0.0103 0.5052 0.4352

PITA 0.0522 0.9876 0.2000 0.0990 0.0693 0.5346 0.1767

TarPmiR 0.7048 0.4896 0.6708 0.7829 0.1513 0.5757 0.6659

MBSTAR 0.3512 1.0000 0.4538 0.5199 0.2807 0.6404 0.5273

PACCMIT-CDS 0.0639 0.9461 0.2033 0.1189 0.0150 0.5075 0.1961

Table 6.  Performance comparison of different miRNA–target interaction prediction methods for the 
independent test set. amiRgo, a abbreviation of miRgo_trA_FS-mRMR, was constructed by SVM with the 
mRMR feature selection method and trained on the trA training dataset.
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Compared with the previous prediction tools, miRgo was trained using the newest data from miRBase, con-
taining 2,588 miRNAs. When tested with functional data from the Gene Ontology database and evaluated by the 
CHL index, it performed better than all other tools. A website (http://predictor.nchu.edu.tw/miRgo) has been 
built for users to assess miRgo. This tool takes gene name, gene ensemble ID, Refseq ID, gene sequence, and 
miRNA sequence as input and generates a prediction of binding status in addition to possible binding miRNAs.
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