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Abstract: Plastoquinone is a key electron carrier in photosynthesis and an essential cofactor for the
biosynthesis of carotenoids. p-Hydroxyphenylpyruvate dioxygenase (HPPD) is a vital enzymatic step
in plastoquinone biosynthesis that is the target of triketone herbicides, such as those derived from the
pharmacophore backbone of the natural product leptospermone. In this work, the inhibitory activity
of a series of 2-acyl-cyclohexane-1,3-diones congeners derived from Peperomia natural products was
tested on plant HPPD. The most active compound was a 2-acyl-cyclohexane-1,3-dione with a C11

alkyl side chain (5d; I50app: 0.18 ± 0.02 µM) that was slightly more potent than the commercial
triketone herbicide sulcotrione (I50app: 0.25 ± 0.02 µM). QSAR analysis and docking studies were
performed to further characterize the key structural features imparting activity. A 1,3-dione feature
was required for inhibition of HPPD. Molecules with a side chain of 11 carbons were found to be
optimal for inhibition, while the presence of a double bond, hydroxy, or methyl beyond the required
structural features on the cyclohexane ring generally decreased HPPD inhibiting activity.

Keywords: natural products; triketones; p-hydroxyphenylpyruvate dioxygenase; herbicide mode of
action; phytotoxins; quantitative structure-activity relationships; synthesis; essential

1. Introduction

The mechanism of action of triketone herbicides is through inhibition of the enzyme,
p-hydroxyphenylpyruvate dioxygenase (HPPD) (Group 27) [1–7]. HPPD catalyzes the
oxidation of 4-hydroxyphenylpyruvate (HPP) to homogentisic acid (HGA) which is a
key precursor for the production of tocochromanols and prenyl quinones (e.g., plasto-
quinone). The herbicidal activity of HPPD inhibitors is directly correlated with reductions
in the cellular pool of plastoquinone. Plastoquinone is a central intermediate in photosyn-
thetic electron transport and an essential cofactor for phytoene desaturase (PDS) activity.
PDS is a well-known critical enzymatic step in the biosynthesis of the photoprotecting
carotenoids [8]. Inhibition of PDS leads to the bleaching of newly expanding foliage, which
is a characteristic phenotype that has long been associated with plants treated with HPPD
inhibitors [3].

Commercial triketone herbicides, such as sulcotrione, were originally discovered by
derivatization using the natural product, leptospermone (Figure 1) as a base structure [9].
Essential oils from manuka (Leptopermum scoparium) are a rich source of natural triketones,
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including leptospermone and grandiflorone, which have been investigated as sources
for the development of natural herbicides [10]. Manuka oil exhibits good pre-emergence
control against a variety of weeds by inhibition of HPPD predominantly via the activity of
leptospermone, which is the natural triketone found at the highest concentration within
the oil [11]. This is unique, as the majority of natural-product herbicides tend to be of
the postemergence, contact, burndown type. Leptospermone has several physicochemical
features (e.g., logP and pKa values, molecular mass, number of hydrogen donors and
acceptors and number of rotatable bonds) that enable ready absorption by the roots and
translocation to the foliage, its predominant in planta site of action [12].
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sources of natural products [14]. Peperomia species produce a wide range of secondary 
metabolites [15–28]. In particular, they are important natural sources of 2-acylcyclohex-
ane-1,3-diones such as alatanone A (1a) and alatanone B (2a) from P. alata and trineurone 
A (1b), trineurone B (2b), trineurone C (2c), trineurone D (3a) and trineurone E (3b) from 
P. alata and P. trineura [29]. These polyketides have a number of beneficial roles such as 

Figure 1. Comparison of the 2-acyl-cyclohexane-1,3-dione backbone to natural product and commer-
cial compounds of known HPPD inhibitory activity. The region within the dashed line represents the
triketone moiety containing the 1,3 dione feature required for HPPD inhibitory activity. The ketone
group at position 3 undergoes keto-enol isomerization to the form shown at physiological pH. The
name of each compound is followed by the I50app as tested against recombinant A. thaliana HPPD.

Peperomia is composed of approximately 1700 species [13] making it the second-largest
of the four genera that form the Piperaceae family, all of which are known to be rich
sources of natural products [14]. Peperomia species produce a wide range of secondary
metabolites [15–28]. In particular, they are important natural sources of 2-acylcyclohexane-
1,3-diones such as alatanone A (1a) and alatanone B (2a) from P. alata and trineurone A (1b),
trineurone B (2b), trineurone C (2c), trineurone D (3a) and trineurone E (3b) from P. alata
and P. trineura [29]. These polyketides have a number of beneficial roles such as acting
as important chemical messengers in insects [30–32], pharmacological properties against
several cancer cell lines [23,33,34], as well as antifungal and antimicrobial activities [29].
Structurally, 2-acyl-cyclohexane-1,3-diones have features reminiscent of leptospermone
and commercial triketone herbicides such as sulcotrione (Figure 1) [2,35].

Structure–activity relationships (SAR) have been previously investigated by agrochem-
ical companies utilizing the backbone of leptospermone, which has led to the development
and marketing of a number of commercial weed management tools [1–5,36]. Using a similar
strategy, we have conducted an extensive structure activity analysis program generating
76 2-acylcyclohexane-1,3-diones and related analogues from Peperomia natural product
2-acyl-cyclohexane-1,3-dione base structures which were all tested as inhibitors of HPPD en-
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zymatic activity. The resulting data set was subsequently analyzed using three-dimensional
quantitative structure–activity relationship (3D-QSAR) analysis to characterize the key
structural features that contribute to inhibition of HPPD activity.

2. Results and Discussion
2.1. Synthesis of 2-Acyl-cyclohexane-1,3-diones and Analogs

In this study, 76 compounds were synthesized and verified using spectrometric and
spectroscopic means (Figures S8–S159, supplemental spectroscopic data). All compounds
were synthesized according to literature procedures without major modification (Supple-
mental Schemes S1–S5). Yields were not optimized, as the primary goal of the work was to
obtain pure products in sufficient quantities for HPPD inhibition assays.

2.2. Inhibition of HPPD

Inhibitors of HPPD can interact with the target site in different manners, depending
upon their structure. Most triketone-type inhibitors exhibit time-dependent (tight-binding)
inhibition [37,38], resulting in the formation of highly stable enzyme-inhibitor complexes
with no loss of ferrous iron in the catalytic domain [35]. The tight-binding nature of the
interaction causes extremely slow release of the herbicide from the target site (in the range of
hours to days), resulting in triketone herbicides mimicking the characteristics of irreversible
inhibitors [39,40]. A previous comparison between the binding of natural triketones and
quinones to HPPD showed that the triketones interacted as slow tight-binding inhibitors,
whereas naphthoquinones and benzoquinones behaved as equilibrium-based reversible
inhibitors [41]. Enzyme titration studies with compound 4b resulted in linear data across
the 0 and 3.75 µM inhibitor treatments that were parallel throughout the tested enzyme
concentration ranges (Figure 2). This is consistent with the effective concentration of
the enzyme having been reduced by the same amount in the presence of 3.75 µM of the
inhibitor across the entire experiment, as would be predicted for an irreversible-like model
of enzyme inhibition, as has been observed with other triketone compounds. Since the
degree of inhibition of HPPD increases over time, the data shown in Tables 1–5 are recorded
as relative I50app values obtained after 15 min of incubation, as has been performed in
previous studies [33]. Due to the irreversible-like nature of inhibitor binding, longer
incubation periods would be predicted to shift dose–response curves (Figures S1–S4) to the
left, resulting in lower predicted I50app values.
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Figure 2. Titration of HPPD activity in TSP extract as measured by oxygen consumption in the
presence of 0 (•) and 3.75 µM of 4b (•). The reaction mixture contained 0.2 M sodium phosphate
buffer (pH 7.2), 1.8 mM ascorbate, 0.2 mM HPP, total soluble protein (0.3–0.5 mg) in a total volume of
3 mL and was incubated at 37 ◦C. Enzyme and inhibitor were incubated together for 3 min prior to
the initiation of the enzymatic reaction by the addition of substrate.
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Table 1. Structures and activities of 19 2-acyl-cyclohexane-1,3-diones with simple aliphatic side chains
tested in this study.
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Cpd # R1 R2 R3 mw I50 (µM) ab

1b c methyl H H 154 23.09 ± 4.34

1d methyl H OH 170 >1000

1f methyl methyl H 182 53.12 ± 17.09

1h methyl methyl OH 198 166.03 ± 19.66

2a propyl H H 182 35.12 ± 6.24

2b propyl methyl H 210 16.59 ± 4.36

3b pentyl H H 210 2.93 ± 0.47

3d pentyl H OH 226 15.84 ± 4.9

3e pentyl methyl H 238 4.17 ± 0.45

4b nonyl H H 266 0.46 ± 0.06

4d nonyl H OH 282 1.25 ± 0.40

4e nonyl methyl H 294 2.66 ± 0.95

5b undecyl H H 294 0.30 ± 0.03

5d undecyl H OH 310 0.18 ± 0.02

5f undecyl methyl H 322 0.77 ± 0.11

6a hexadecyl H H 364 1.58 ± 0.20

6b hexadecyl methyl H 392 1.70 ± 0.31

7a 4-oxopentyl H H 224 9.6 ± 1.4

7b 4-oxopentyl methyl H 252 17.2 ± 2.6
a The data represent means followed by standard error, n = 3. b The commercial product sulcotrione has an I50app:
0.25 ± 0.02 µM. c The rows are color-coded to match Figure 3.

Table 2. Structures and activities of 17 cyclohexane-1,3-diones with phenyl side chains tested in this study.
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Cpd # R1 R2 R3 mw I50 (µM) ab

8b c H H H 244 1.27 ± 0.09

8e H methyl H 272 2.17 ± 0.37

9b 2-methyl H H 258 0.97 ± 0.09

9d 2-methyl methyl H 286 nd d

10b 3-methoxy H H 274 0.31 ± 0.04

10d 3-methoxy methyl H 302 1.50 ± 0.17

11b 4-methoxy H H 274 2.36 ± 0.30

11c 4-methoxy H OH 290 59.5 ± 11.8

11e 4-methoxy methyl H 302 12.9 ± 2.18

12b 3,4-dimethoxy H H 304 1.35 ± 0.18

12d 3,4-dimethoxy methyl H 332 8.69 ± 1.32

14b 3,4,5-trimethoxy H H 334 nd

14d 3,4,5-trimethoxy methyl H 362 2.29 ± 0.25
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Table 3. Structures and activities of 24 cyclohexane-1,3-diones with phenylene side chains tested in
this study.
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Cpd # R1 mw I50 (μM) a,b 
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13c methyl 314 28.7 ± 3.72 

 

Cpd # R1 R2 R3 mw I50 (µM) ab

8a c H H H 242 5.43 ± 0.58

8c H H OH 258 59.0 ± 3.16

8d H methyl H 270 58.6 ± 8.67

9a 2-methyl H H 256 1.20 ± 0.14

9c 2-methyl methyl H 284 28.7 ± 8.7

10a 3-methoxy H H 272 0.89 ± 0.10

10c 3-methoxy methyl H 300 6.4 ± 1.2

11a 4-methoxy H H 272 12.3 ± 1.6

11d 4-methoxy methyl H 300 141.4 ± 27

12a 3,4-dimethoxy H H 302 9.16 ± 1.21

12c 3,4-dimethoxy methyl H 330 14.1 ± 2.21

14a 3,4,5-trimethoxy H H 332 2.06 ± 0.13

14c 3,4,5-trimethoxy methyl H 360 2.22 ± 0.50

15a 4-dimethylamino H H 285 nd d

15c 4-dimethylamino methyl H 313 nd

16a 4-chloro H H 276 nd

16c 4-chloro methyl H 305 nd

17a 4-bromo H H 320 7.55 ± 0.93

17b 4-bromo H OH 336 28.7 ± 4.82

17c 4-bromo methyl H 349 8.34 ± 1.57

18a 3-bromo H H 321 0.82 ± 0.08

18b 3-bromo methyl H 349 2.42 ± 0.25

19a 4-nitro H H 287 7.61 ± 0.89

19b 4-nitro methyl H 315 27.5 ± 2.39
a The data represent means followed by standard error, n = 3. b The commercial product sulcotrione has an I50app:
0.25 ± 0.02 µM. c The rows are color-coded to match Figure 3. d nd = data could not be obtained because the
retention time of the inhibitor overlapped with that of HGA.
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Figure 3. Structural features contributing positively to the activity of 2-acyl-cyclohexane-1,3-diones
on HPPD. (A) Blue fields highlight hydrogen donor regions that promote activity. (B) Red fields
highlight hydrogen acceptor regions that enhance activity. (C) Cyan fields identify the regions where
increase in steric bulk increases activity. (D) Yellow fields delineate regions where hydrophobic
interaction contributes to activity.
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Table 4. Structures and activities of 4 cyclohexane-1,3-diones with other side chains tested in this study.
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2.3. Herbicidal Activity of Tested Compounds

Overall, there was a wide range of activity among the 76 synthesized compounds in
this study, including structures with apparent I50app in the nanomolar range (e.g., 5d, 16b,
18a, etc.), many structures with activity in the mid-to-low micromolar range (e.g., 1b, 8a, 8b
and many others) and others with little to no activity (e.g., 1a, 1d, etc.) (Tables 1–5). Most of
the inactive compounds did not possess a 1,3-dione pharmacophore capable of interacting
with Fe 2+ at the HPPD active site, which is a minimal structural requirement for HPPD
inhibitors (Table 5) [2,35,42]. The important contribution of the 1,3-dione toward activity
was further suggested by 3D-QSAR analysis, as indicated by the blue, red and yellow fields
that show interactions with the hydrogen-bonding acceptor, hydrogen-bonding donor and
lipophilic fragments of the ligand, respectively, in Figure 3.
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on HPPD. (A1,A2) Blue fields highlight regions where the presence of hydrogen donors reduce
activity. (B1,B2) Red fields highlight hydrogen acceptor regions that negatively affect activity.
(C1,C2) Yellow fields identify hydrophobic regions near to the triketone ring that negatively af-
fect activity. (D1,D2) Cyan fields delineate regions where steric interactions reduce activity.

Of the 76 compounds screened, 25 (33%) had I50app values suggesting activity greater
than that of leptospermone, the natural product that is typically identified at the highest
concentrations in allelopathic plant tissues (Tables 1–5). The compound 5d had greater
inhibitory activity, while 16b had a similar high activity level to the commercially produced
sulcotrione and the most active identified natural product to date, grandiflorone. The most
active compounds were either 2-acyl-cyclohexane-1,3-diones with simple aliphatic side
chains of 9 or 11 carbons (4b, 4d, 4e and 5b, 5d, 5f in Table 1) or were analogues of the
grandiflorone backbone possessing a phenyl side chain (16b). The benefit of aliphatic side
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chains is consistent with previous reports [10,43] and was highlighted by positive steric
(cyan) and hydrophobic (yellow) contributions in Figure 3. However, excessively large
aliphatic chains, compounds possessing more than 11 carbons (6a and 6b in Table 1) hinder
activity, being much less active than those with 9 and 11 carbons, potentially due to steric
hindrances [43].

In compounds with aromatic side chains, there was a trend for molecules with phenyl
groups (Table 2) to be consistently more active than those with phenylene rings (Table 3). A
comparison of the function of 14 compounds (8b, 8e, 9b, 10b, 10d, 11b, 11e, 12b, 12d, 14d,
15b, 15d, 16b and 16d) in Table 2 with matching analogues (8a, 8d, 9a, 10a, 10c, 11a, 11d, 12a,
12c, 14c, 17a, 17c, 19a and 19b) in Table 3 showed that on average, structures with a phenyl
side chains were 8 times more active than those with the phenylene (Figure 3C,D). The same
trend was observed with compounds in Table 4. The negative contribution of the double
bond may be due to restriction of its rotation, which prevents a better fit in the binding
pocket, although this was not discernable from the 3D-QSAR maps (Figures 3 and 4).

The addition of dimethyl groups in the cyclohexane-1,3-dione ring adversely affected
activity. Pairwise comparison of the methylated structures to their unmethylated coun-
terparts in Tables 1–4 revealed that methyl groups reduced activity 4.5 times (with the
exception of 15b and 15d). We have previously reported that the volume of the binding
domain surrounding the ring is restricted [43], which may account for the negative contri-
bution of a methyl group in that position (Figure 4). Similarly, molecules with a hydroxy
group on the cyclohexane ring (1h, 3d and 4d in Table 1) were on average 3.7 times less
active than those without hydroxy groups (1f, 3b and 4b in Table 1) (Figure 4).

Within each series of 2-acylcyclohexane-1,3-diones tested in this study, general
structure–activity relationships emerged. The generated model was robust, with
R2 = 0.96 and Q2 = 0.69 (Figure S5–S7). Electronic and steric features that can increase or
decrease the activities of 2-acyl-cyclohexane-1,3-diones derivatives that were identified
by the model. Figure 5 shows the validation of the test set in which a reasonable linear
adjustment and the 3D-QSAR model were able to predict and differentiate the most active
compounds among the derivatives. Therefore, in addition to synthesizing and characteriz-
ing a broad range of novel triketone compounds, we further identified characteristics of
the ligands that contribute to inhibitory function against HPPD, which were incorporated
into a model that can be used to predict activity and target the future synthesis of new
triketone-based herbicides.
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Figure 5. Model predicting activity of the compounds not included in the training set by plotting
the relationship between observed and predicted values from the cross-validated leave-one-out
partial-least-squares (PLS) analysis. Colors correspond to those used in Tables 1–4. R 2 = 0.96.
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2.4. In Silico Analysis of Compound Interactions with HPPD

In silico docking of structures in the binding pocket of Arabidopsis HPPD led to
the identification of key structural features that contribute to inhibition of the enzyme.
Structures 1b, 3b, 4b, 5b and 6a vary only in the length of hydrophobic tails at the position
indicated by R1 (Figure 6). There is a positive correlation between logI50 and respective
average binding energies up to an R1 length of 11 carbons (5b), with a noted decrease in
activity at an R1 of 16 carbons (6a). The longer than optimal carbon tail of 6a likely results
in it not being able to fit sterically sound into the hydrophobic pocket at the binding site.
However, having a tail length of fewer than optimal carbons results in not fully utilizing
the space and the stabilizing effect of the same binding domain. A similar trend has
been observed in a related series of triketone HPPD inhibitors containing quinazoline-2,4
dione derivatives [44]. Both cases indicate that flexible, nonpolar alkyl tail groups increase
HPPD inhibition up to an optimal length resulting from the size of the hydrophobic HPPD
binding pocket.

Plants 2022, 11, x FOR PEER REVIEW 12 of 20 
 

 

 
Figure 6. The relationship of binding energy and the logI50 of a selection of 2-acyl-cyclohexane-1,3-
diones with simple aliphatic side chains (R1 subgroup; indicated by a red square). 

Another trend indicated by docking studies is that the addition of methyl moieties to 
the base ring structure at the positions indicated by R2 negatively impacts I50app values. 
This is apparent in comparisons of 1f, 3e, 4e, 5f and 6b to their related carbon length coun-
terparts 1b, 3b, 4b, 5b and 6a (Figure 7). This trend is further observed when comparing 
cyclohexane-1,3-diones with phenylene side chains (8a vs. 8d, 10a vs. 10c), cyclohexane-
1,3-diones with phenyl side chains (8b vs. 8e, 10b vs. 10d) and in cyclohexane-1,3-diones 
with other side chains (13a vs. 13c) (Figure 8). However, an interesting comparison comes 
into play when factoring in a polar tail group (3-methoxy addition to R1) in the phenylene 
side chains (8A vs. 10A), the phenyl side chains (8B vs. 10B) and the other side chain (ben-
zodioxole group) (13A vs. 13C). The 3-methoxy group is an electron-donating group via 
resonance, known as the mesomeric effect, with the excess electron lone pairs donated to 
the ring, increasing reactivity [45]. This can then allow electrons to be shared in conjunc-
tion with the tautomerization of the triketone structure [9], as we see a greater decrease in 
I50app in the phenylene sidechain as compared to the phenyl sidechain. Both the 3-meth-
oxy group and the benzodioxole group have oxygens attached to a benzene ring that 
would allow them to assist in forming pie bonds, with benzodioxole having an anomeric 
effect due to its carbon and oxygen confirmation causing ring pucker [46]. This would 
potentially allow for the large bulky groups to be stabilized with conserved amino acid 
residues Phe360 and Phe403 via 𝜋-𝜋 stacking [44]. This addition of a charged functionality 
increased the polarity of the dione group through the mesomeric effect and tautomeriza-
tion of the triketone and led to the larger I50app value difference observed between the 
phenylene side chain, which has an extra moveable double bond, and the phenyl side 
chain, which does not have electron flexibility. The addition of a methyl group to the 
triketone head group (R2) with the methoxy group on R1 resulted in the I50app returning 
close to original values (without the methyl head on R2 or the methoxy on R1), following 
the trend established previously that adding a methyl group to the base ring structure 
results in a decreased binding energy and I50app. 

Methyl

Pentyl

Nonyl
Undecyl

Hexadecyl

0.1

1

10

100

-4.6 -4.4 -4.2 -4 -3.8 -3.6

Lo
g 

IC
50

 (u
M

)

Average Binding Energy (kcal/mol)

Binding energy vs Log (IC50)

1B_triketone

3B_triketone

4B_triketone

5B_triketone

6A_triketone

Figure 6. The relationship of binding energy and the logI50 of a selection of 2-acyl-cyclohexane-1,3-
diones with simple aliphatic side chains (R1 subgroup; indicated by a red square).

Another trend indicated by docking studies is that the addition of methyl moieties to
the base ring structure at the positions indicated by R2 negatively impacts I50app values.
This is apparent in comparisons of 1f, 3e, 4e, 5f and 6b to their related carbon length coun-
terparts 1b, 3b, 4b, 5b and 6a (Figure 7). This trend is further observed when comparing
cyclohexane-1,3-diones with phenylene side chains (8a vs. 8d, 10a vs. 10c), cyclohexane-
1,3-diones with phenyl side chains (8b vs. 8e, 10b vs. 10d) and in cyclohexane-1,3-diones
with other side chains (13a vs. 13c) (Figure 8). However, an interesting comparison comes
into play when factoring in a polar tail group (3-methoxy addition to R1) in the phenylene
side chains (8A vs. 10A), the phenyl side chains (8B vs. 10B) and the other side chain
(benzodioxole group) (13A vs. 13C). The 3-methoxy group is an electron-donating group
via resonance, known as the mesomeric effect, with the excess electron lone pairs donated to
the ring, increasing reactivity [45]. This can then allow electrons to be shared in conjunction
with the tautomerization of the triketone structure [9], as we see a greater decrease in I50app
in the phenylene sidechain as compared to the phenyl sidechain. Both the 3-methoxy group
and the benzodioxole group have oxygens attached to a benzene ring that would allow
them to assist in forming pie bonds, with benzodioxole having an anomeric effect due to its
carbon and oxygen confirmation causing ring pucker [46]. This would potentially allow for
the large bulky groups to be stabilized with conserved amino acid residues Phe360 and
Phe403 via π-π stacking [44]. This addition of a charged functionality increased the polarity
of the dione group through the mesomeric effect and tautomerization of the triketone and
led to the larger I50app value difference observed between the phenylene side chain, which
has an extra moveable double bond, and the phenyl side chain, which does not have
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electron flexibility. The addition of a methyl group to the triketone head group (R2) with
the methoxy group on R1 resulted in the I50app returning close to original values (without
the methyl head on R2 or the methoxy on R1), following the trend established previously
that adding a methyl group to the base ring structure results in a decreased binding energy
and I50app.
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Figure 7. The relationship of binding energy and the logI50 of a selection of 2-acyl-cyclohexane-1,3-
diones with simple aliphatic side chains. Molecules are organized according to class of base structure
(Grouping), seen on the bottom right. Each data label follows the pattern of “Name, Grouping, R1,
R2, R3”, where “R1, R2 and R3” refer to the functional group. Each grouping of similar tail length is
shown by a colored box, with the only difference within the color selection being an addition of a
head group at the R2 location (as indicated by the red square).
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Figure 8. The relationship of binding energy and the logI50 of a selection of cyclohexane-1,3-diones
with phenyl side chains. Molecules are organized according to class of base structure (Grouping),
seen on the bottom right. Each data label follows the pattern of “Name, Grouping, R1, R2, R3”, where
“R1, R2 and R3” refer to the functional group.
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3. Conclusions

The most effective inhibitor of HPPD has an R1 with an undecyl 11-C chain, which is
the optimal number of carbons to fully utilize the binding pocket. This was indicated by
binding energy, IC50 values and QSAR analysis. This class, along with cyclohexane-1,3-
diones with phenyl side chains, phenylene side chains, or other side chains additionally
showed a trend in which the addition of a R2 methyl group had a more positive binding
energy and a less-efficient IC50 value, possibly due to stearic hindrance. As such, this study
has synthesized and characterized a broad range of novel triketone compounds, where the
identified characteristics of the ligands that contribute to inhibitory function against HPPD
were incorporated into a protein–ligand docking model that can be used to predict HPPD
inhibitory activity and allow the targeted synthesis of new triketone-based herbicides.

4. Materials and Methods
4.1. General Experimental Conditions

Reactions were carried out under an atmosphere of nitrogen in oven-dried glassware
with magnetic stirring and dry solvents under anhydrous conditions unless otherwise
indicated. Dichloromethane was purified by passage through a bed of activated alumina.
All other reagents and solvents were purchased from Sigma-Aldrich and used without
further purification. Reactions were controlled by analytical thin-layer chromatography
using Merck precoated silica gel plates with F254 indicator and visualization by UV light
(254 nm). Yields refer to chromatographically and spectroscopically pure compounds,
unless otherwise indicated. Purification by column chromatography was carried out using
Merck silica gel Si 60 (0.040–0.063). 1H NMR and 13C NMR were recorded on a Bruker
DPX 300 (300 MHz 1H NMR, 75 MHz 13C NMR), or a Bruker DPX 500 (500 MHz 1H NMR,
125 MHz 13C NMR) instrument (Figures S8–S159). Chemical shift values (δ) are reported in
ppm (residual chloroform δ = 7.26 ppm for 1H, residual chloroform δ = 77.16 ppm for 13C).
Proton spectra are reported according to δ (multiplicity, coupling constant J, number of
protons, assignment). Multiplicities are indicated by s (singlet), d (doublet), dd (double dou-
blets), ddd (double double doublets), t (triplet), q (quartet), quint (quintet), sext (sextuplet),
m (multiplet) (Supplemental NMR data). The carbon spectra are reported according to δ

(assignment). Infrared spectra were recorded with a Perkin Elmer-Frontier FT-IR apparatus.
High-resolution mass spectra were recorded with a MicroTOFQ-II (Bruker, Billerica, MA,
USA) apparatus equipped with a positive ESI source (Supplemental Spectroscopic Data).

4.2. Synthesis of Saturated 2-Acyl-cyclohexane-1,3-diones

The acid derivative (2.00 mmol), dicyclohexylcarbodiimide (2.40 mmol), triethylamine
(2.40 mmol) and 4-dimethylaminopyridine (0.20 mmol) were added successively to a solu-
tion of 1,3-cyclohexanedione or 5,5-dimethyl-1,3-cyclohexanedione derivatives (2.00 mmol)
in dichloromethane (40 mL) and the reaction mixture was stirred 24 h [47]. After 24 h, the
mixture was diluted with dichloromethane and paper-filtered, and 20 mL of 1 M HCl was
added to the filtrate. The aqueous phase was extracted by ether (3 × 20 mL). The organic
extract was washed with brine, dried over sodium sulfate and concentrated. The residue
was purified by flash chromatography (7:3 hexanes/ethyl acetate) or by recrystallization
with methanol.

4.3. Synthesis of Unsaturated 2-Acyl-cyclohexane-1,3-diones (Supplemental Schemes S2 and S3)

2-Acyl-cyclohexane-1,3-dione (1a, 1d or 1e), 2.0 mmol, was dissolved in 25 mL of
toluene, 2.2 mmol of the corresponding aromatic aldehyde and 0.6 mol of secondary amine
were added and the mixture was heated for 12 h under reflux in a flask equipped with a
Dean–Stark trap [48]. After 12 h, the mixture was cooled, diluted with 30 mL of toluene,
transferred into a separatory funnel and extracted with 20 mL of 20% HCl (in one portion).
The organic solution was dried over anhydrous sodium sulfate, filtered through a 1 cm
layer of silica gel and concentrated. The residues were purified by flash chromatography
(6:2:2 hexanes/ethyl acetate/dichloromethane).
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4.4. Hydrogenation of Unsaturated 2-Acyl-cyclohexane-1,3-diones (Supplemental Scheme S4)

Compounds 15a, 15c, 16a and 16c (0.5 mmol) were dissolved in MeOH (8 mL) and
the solutions were shaken in a Parr apparatus under a hydrogen atmosphere (4 atm)
for 4 h. The reaction mixtures were filtered with a 0.45 µm PTFE membrane filter and
the filtrates were concentrated to give the products (15b, 15d, 16b and 16d) without
further purification.

4.5. Synthesis of Hydroxylated 2-Acyl-Cyclohexane-1,3-diones (Supplemental Scheme S5)
4.5.1. Protection Step

Hydroxylamine hydrochloride (8 mmol) and sodium acetate (4.1 mmol) were added
to a solution of 2-acyl-1,3-cyclohexane-1,3-diones (4 mmol) in H2O (30 mL) and ethanol
(60 mL) [43]. The reaction mixture was heated on reflux for 18 h, cooled and the solvent
evaporated. The residue was purified by flash chromatography (6:2:2 hexanes/ethyl
acetate/dichloromethane) to afford pure isoxazoline derivatives.

4.5.2. Oxidation Step

KOH (35 mmol) in dry MeOH (20 mL) was stirred until dissolved, cooled to −15 ◦C
and a solution of the isoxazoline derivative (2 mmol) in MeOH (2 mL) was added [49].
After 15 min, PhI(OAc)2 (3.5 mmol) was added in one portion. The reaction mixture was
stirred at −15 ◦C for 1 h and at room temperature for 2 h, then concentrated under reduced
pressure to give the crude hydroxy-dimethylacetals. Crude products were dissolved in
dichloromethane and treated with 10% sulfuric acid (98%) for 10 min. After neutralization
with saturated aq. NaHCO3 and extraction with ether, the combined organic layers were
dried and the solvent was removed under vacuum. Final purification was carried out
by circular chromatography using a chromatotron (4:1 hexanes/ethyl acetate) to afford
hydroxylated isoxazolines.

4.5.3. Hydrogenation Step

After three vacuum/H2 cycles to remove air from the reaction flask, the stirred mix-
ture of hydroxylated isoxazoline derivative (1 mmol), 10% Pd/C in MeOH (10 mL) was
hydrogenated at ambient pressure and room temperature for 4 h. The reaction mixture was
filtered using a 0.45 µm membrane.

4.5.4. Imine Hydrolysis Step

The crude product from the preview step, after filtration, was treated with 5 mL
of NaOH 1 M [50]. After 4 h at room temperature, the solution was treated with a
few drops of concentrated HOAc, extracted with dichloromethane and the combined
organic layers were dried via anhydrous sodium sulfate, paper-filtered and evaporated
under vacuum. The residue was purified by flash chromatography (6:2:2 hexane/ethyl
acetate/dichloromethane).

4.6. Recombinant Expression of HPPD and Enzyme Assays

HPPD from Arabidopsis thaliana was recombinantly overexpressed in E. coli and tested
in total soluble protein (TSP) extracts. Enzyme activity was measured as described pre-
viously [10,51]. The HPLC system used to quantify enzyme activity was composed
of a Waters Corporation system (Milford, MA) including a Model 600E pump, Model
717 autosampler, Millenium 2010 controller and Model 996 photodiode detector equipped
with a 7.8 mm × 100 mm X-Terra C18 (5 µm) reversed-phase column. Solvent A was 0.1%
(v/v) trifluoroacetic acid in ddH2O and solvent B was 0.08% (v/v) trifluoroacetic acid in
80% (v/v) HPLC-grade acetonitrile. The solvent system consisted of a linear gradient at 0%
(100% A) to 70% B from 0 to 2 min, 70% to 100% B from 2 to 4 min, 100% B from 4 to 6 min,
100% to 0% B from 6 to 7 min and 0% B from 7 to 8 min. The flow rate was 3 mL m −1 and
the injection volume was 100 µL. HGA was detected by UV absorbance at 288 nm [52]. A
calibration curve was established by injecting various known concentrations of HGA.
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4.7. Dose–Response Curve Analysis

Data from dose–response experiments were analyzed using the dose–response curve
module [53] of R version 2.2.1, R Core Team, Cambridge, MA, USA). [54] I50app means and
standard deviations, obtained using the untransformed data, are given in Tables 1–4. The
synthetic HPPD inhibitor sulcotrione was included as a positive control [10].

4.8. Characterization of the Mechanism of HPPD Binding

HPPD activity was monitored via oxygen consumption during the course of the
reaction by an adapted version of a procedure described previously [55]. In short, a 3 mL
reaction contained 0.2 M sodium phosphate buffer (pH 7.2) equilibrated at 37 ◦C, 1.8 mM
ascorbic acid, 250 µM HPP, 3.75 µM inhibitor and varying amounts of recombinant enzyme.
For control reactions, an equivalent volume of methanol was substituted in place of the
inhibitor. The recombinant enzyme was diluted with extraction buffer (20 mM potassium
phosphate (pH 6.8), 1 mM EDTA, 1 mM DTT, 1 mM 6-aminohexanoic (aminocaproic) acid,
1 mM benzamidine) to maintain the overall volume at 70 µL in all assays. Components
were combined in the reaction vessel of an Oxygraph Plus (Hansatech, Norfolk, UK) oxygen
monitoring system, which was maintained at 37 ◦C by a circulating water bath and allowed
to equilibrate for 1 min. Reactions were initiated by the addition of HPP and allowed to
settle for 0.5 min, and dissolved oxygen levels were continuously monitored for a further
1.5 min. Oxygen consumption rates were then determined from the slope of the line
between 30 s and 60 s of the resulting graphs using O2 View software (version 2.05). All
reactions were performed in triplicate.

4.9. Molecular Modeling

The physicochemical contribution of a series of cyclohexane-1,3-diones on the ac-
tivity of HPPD was investigated using a structure–activity approach. The structures of
59 cyclohexane-1,3-dione analogs were drawn using Marvin 14.9.8.0, 2014, ChemAxon
(http://www.chemaxon.com (accessed on 14 March 2022). Standardizer, JChem 14.9.8.0,
2014, ChemAxon (http://www.chemaxon.com (accessed on 14 March 2022)), was used to
canonize the structures by converting an arbitrarily chosen chemical structure to a unique
notation, adding hydrogen atoms and cleaning the molecular graph in three dimensions.
The process uses a divide-and-conquer approach, whereby the structure is split into small
fragments that are organized into a tree from connectivity information using a proprietary
extended version of the Dreiding force field [37]. Conformers generated for the initial
structure (represented by the root node in the tree) are subsequently optimized.

Geometry optimizations and conformational searches were performed using Spar-
tan [56]. The geometry of the chemical structure of the compound was initially optimized
with a Merck Molecular Force Field (MMFF) [57] and a new geometric optimization was
then performed based on the semi-empirical method, Austin Model 1 (AM1) [58]. A sys-
tematic search method was used in which the 10 conformers with the lowest minimum
energy were selected from an analyzed 10,000 conformers using AM1 and a Monte Carlo
algorithm [59]. Dihedrals were evaluated by rotation in accordance with the default con-
ditions of the program, and again the conformers with the lowest minimum energy were
selected and optimized based on a vibrational mode calculation using AM1 [58].

4.10. Molecular Docking

Autodock version 4.2.6 was employed for all molecular docking experiments. An
Arabidopsis HPPD protein crystal structure (PDB: 1SP9) was converted into a .pdbqt file
based upon the crystal structure of the protein, with a 0.9 charge on the FE atom ligand in
the active site. Ligands were uploaded into Autodock from Avogadro as mol2 files. Torsion
of the ligand and conversion into a .pdbqt file were performed within Autodock. The grid
utilized for docking used the covalent map around the coordinates x = 24.063, y = 9.506,
z = −19.126 of the HPPD protein with an energy barrier of 1000, half-width to 5 and
a gridbox of dimensions x = 75, y = 75, z = 75, spacing = 0.2, centered over the binding

http://www.chemaxon.com
http://www.chemaxon.com
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domain/active site at coordinates x = 25, y = 5, z = −19. Docking parameters with the HPPD
protein and the ligand were the “created ligands” from Avogadro, with default search
parameters except for genetic algorithm changed to 25 runs. These docking parameters
were utilized to simulate interactions and the resultant binding energies.

4.11. 3D-QSAR

FLAP 2.1.0 software [60] was used to perform all the analyses described hereafter. The
structures of cyclohexane-1,3-dione analogues and the respective values of pI50 (−logI50)
were used as input data. Structures were aligned using the option “bondType_atomNum”
in order that the maximal subgraph required equivalent bond types and atom numbers
to match and that the number of conformers was 50 using the MM3 forcefield [61]. Using
descriptors generated by the Molecular Interaction Fields (MIF) with a GRID resolution of
0.75 Å, 3D-QSAR was performed. Probe H (shape probe) and probe N1 (amide nitrogen),
which represent hydrogen-bonding donor groups and interact with the hydrogen-bonding
acceptors fragments of the ligand, and probe O (carbonyl oxygen), which represents
hydrogen-bonding acceptor groups and interact with the hydrogen-bonding donor frag-
ments of the ligand, were used. The data were split into a training set with 57 compounds
(82.6% of dataset) and a test set with 12 triketone analogues, which represented 17.4% of the
entire dataset. The last set was built by randomly selecting compounds, taking into account
the structural diversity and range of p I50 values of the training set. Finally, the model’s
PLS (partial least squares) was generated to 8 latent variables (LV) [62]. The final model
and the number of LVs were selected by the highest value of cross-validated (leave-one-out)
coefficient of determination.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/plants11172269/s1, Supplemental Scheme S1: Saturated 2-acyl-cyclohexane-1,3-diones; Sup-
plemental Scheme S2 and S3: Unsaturated 2-acyl-cyclohexane-1,3-diones; Supplemental Scheme S4:
Hydrogenation of unsaturated 2-acyl-cyclohexane-1,3-diones; Supplemental Scheme S5: Synthesis
of hydroxylated 2-acyl-cyclohexane-1,3-diones; Supplemental Figures S8–S159: Spectrometric and
Spectropic Data.
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