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Abstract 

 Somatoform traits, which manifest as persistent physical symptoms without a 

clear medical cause, are prevalent and pose challenges to clinical practice. 

Understanding the genetic basis of these disorders could improve diagnostic and 

therapeutic approaches. With publicly available summary statistics, we conducted a 

multivariate genome-wide association study (GWAS) and multi-omic analysis of four 

somatoform traits—fatigue, irritable bowel syndrome, pain intensity, and health 

satisfaction—in 799,429 individuals genetically similar to Europeans. Using genomic 

structural equation modeling, GWAS identified 134 loci significantly associated with a 

somatoform common factor, including 44 loci not significant in the input GWAS and 8 

novel loci for somatoform traits. Gene-property analyses highlighted an enrichment of 

genes involved in synaptic transmission and enriched gene expression in 12 brain 

tissues. Six genes, including members of the CD300 family, had putatively causal 

effects mediated by protein abundance. There was substantial polygenic overlap (76-

83%) between the somatoform and externalizing, internalizing, and general 

psychopathology factors. Somatoform polygenic scores were associated most strongly 

with obesity, Type 2 diabetes, tobacco use disorder, and mood/anxiety disorders in 

independent biobanks. Drug repurposing analyses suggested potential therapeutic 

targets, including MEK inhibitors. Mendelian randomization indicated potentially 

protective effects of gut microbiota, including Ruminococcus bromii. These biological 

insights provide promising avenues for treatment development. 
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Introduction 

 Persistent physical symptoms (PPS) adversely impact the quality of life of 

affected individuals, increase their healthcare utilization, and contribute to disability as 

much as or more than etiologically well-defined medical diseases.1 PPS have 

historically been referred to as medically unexplained symptoms, but this terminology 

fails to reflect the dynamic nature of medical knowledge and contributes to a false 

contrast between these symptoms and “real” medical diseases.2 PPS may occur alone 

or as part of a functional somatic syndrome (FSS), such as irritable bowel syndrome 

(IBS), fibromyalgia, or myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). It 

is estimated that up to 10% of the general population is affected by at least one FSS,3 

with much higher rates likely at the symptom level. In a meta-analysis of over 70,000 

primary care patients from 24 countries, ~45% reported at least one somatic symptom 

with no identified organic cause.4 Symptoms that general practitioners deem medically 

unexplained occur at higher rates among women and non-native speakers,5 potentially 

reflecting biases in diagnostic practices and healthcare delivery. Despite their 

prevalence and impact, the underlying mechanisms of PPS remain poorly understood. 

 The various presentations of PPS have complex genetic and environmental 

etiologies, further complicated by frequently co-occurring psychiatric disorders.1,6 

Genome-wide association studies (GWAS), which aim to identify genetic risk variants 

for complex traits and diseases, have revealed loci associated with IBS,7 chronic pain,8 

subjective perceptions of pain intensity,9 and headaches/migraine.10 These GWAS 

implicate gene expression and biological processes in the immune and central nervous 

systems as having key roles in the etiology of PPS. Furthermore, significant genetic 
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correlations exist between different PPS and between PPS and autoimmune, 

psychiatric, and anthropometric traits.9,11,12 The substantial phenotypic and genetic 

correlations between different PPS and between PPS and psychiatric conditions 

suggest a shared etiology.13,14 Aligned with this perspective, the Hierarchical Taxonomy 

of Psychopathology (HiTOP)—an empirical nosology model—proposes that a 

somatoform spectrum reflects the common liability to PPS.15,16 Furthermore, reflecting 

the commonality of somatoform traits with psychiatric conditions, the HiTOP somatoform 

spectrum is subsumed under a broader emotional dysfunction superspectrum.16  

Previous work using genomic structural equation modeling (gSEM) provided 

evidence that chronic pain conditions have a shared genetic basis.12 Other studies 

demonstrated shared genetic variation among six nociplastic pain conditions (i.e., those 

in which there is persistent pain without tissue damage): chronic widespread pain 

(CWP), endometriosis, low back pain, broadly defined headache, irritable bowel 

syndrome (IBS), and temporomandibular joint disorder (TMJD).11 However, this past 

work focused largely on pain rather than the broader somatoform spectrum, and some 

of the included GWAS had modest sample sizes (e.g., TMJD: Ncases = 217, CWP: Ncases 

= 6,914), which may have limited the strength and precision of the identified common 

factor. A deeper understanding of the shared genetic basis across a broader spectrum 

of PPS could identify contributory factors and biological pathways that underpin these 

syndromes. Genetic research on somatoform traits and their potential polygenic overlap 

with psychiatric conditions could also help to refine the current diagnostic system, 

improving the assessment and treatment of PPS. 
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 Because our understanding of the genetic basis of the broader PPS spectrum 

remains limited, we leveraged gSEM to examine the shared genetic architecture of 

fatigue, health satisfaction, IBS, and pain intensity. Although we initially included 

headache/migraine as well, it was not retained due to poorer fit on the latent factor. 

These traits index a possible somatoform spectrum, as they encompass both PPS and 

symptom perceptions.16 Next, we performed a comprehensive set of bioinformatic 

analyses using the GWAS summary statistics (Figure 1). Our gene prioritization efforts 

included gene mapping, functional annotation, transcriptome-wide association studies 

(TWAS) in enriched tissues, and the integration of brain eQTL and blood plasma pQTL 

data using summary-data-based Mendelian randomization (SMR) to identify putative 

causal genes. To characterize the genetic architecture of the somatoform factor more 

broadly, we performed MAGMA gene-property analyses, univariate and bivariate causal 

mixture models (MiXeR), batch genetic correlations with 1,426 publicly available GWAS, 

and phenome-wide association studies (PheWAS) in three cohorts (i.e., BioVU, Penn 

Medicine BioBank, and Yale-Penn). Finally, we conducted two sets of analyses aimed at 

potential translational applications of GWAS—drug repurposing and Mendelian 

randomization to identify causal effects of the gut microbiome on the somatoform factor 

given emerging evidence of the role of the gut-brain-axis in regulating pain.17 With this 

approach, we aimed to deepen our understanding of the genetic basis of somatoform 

traits, contribute to the refinement of existing diagnostic models, and identify potential 

treatments. 

Methods 

Summary Statistics 
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Summary statistics were chosen to correspond to the HiTOP somatoform 

factor,15  which consists of conversion (i.e., neurological symptoms that lack an 

identified medical cause), somatization (i.e., the tendency to express psychological 

distress in the form of physical symptoms), malaise (i.e., a general sense of poor 

wellbeing), head pain, gastrointestinal, and cognitive (e.g., illness anxiety) symptoms. 

We acknowledge the historical stigma associated with terms like “conversion” and 

“somatization”18 and use them here solely to establish consistency with the HiTOP 

model. In line with patient advocacy groups, we encourage the use of alternate terms 

like FSS and PPS.  

 We selected five sets of publicly available GWAS summary statistics from well-

powered studies of individuals genetically similar to Europeans (EUR):19 fatigue (N = 

350,580; http://www.nealelab.is/uk-biobank/), headache and migraine10 (N = 360,391; 

ultimately not retained due to poorer common factor fit), health satisfaction (N = 

119,567; http://www.nealelab.is/uk-biobank/), IBS7 (N = 486,601), and pain intensity9 (N 

= 436,683). The input summary statistics included between 6,788,440 (pain intensity) 

and 13,586,245 (fatigue) SNPs. Health satisfaction was reverse coded so that higher 

scores indicated lower satisfaction to maintain consistency of risk direction with the 

other traits.  

Genomic Structural Equation Modeling 

 Using the GenomicSEM R package,20 standard quality controls were applied to 

the input summary statistics, including filtering to EUR HapMap3 SNPs,21 and when the 

information was available, retaining only SNPs with MAF > 0.01 and INFO > 0.6. 

Linkage disequilibrium score regression (LDSC) was implemented within GenomicSEM 
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to estimate genetic covariance matrices for the input traits. The resulting LDSC matrices 

were then used to perform confirmatory factor analysis (CFA) to determine whether the 

hypothesized common factor model fit the data well. Model fit was evaluated based on 

chi-square (non-significance indicates better fit), Akaike information criterion (AIC; lower 

values indicate better relative fit), comparative fit index (CFI; > 0.9 indicates good fit), 

and standardized root mean square residual (SRMR; < 0.08 indicates good fit) values. 

We also examined the proportion of variance in each input trait that was explained by 

the common factor to ensure that each trait was sufficiently represented by the factor, 

aiming for standardized loadings of at least 0.30.  

To perform common factor GWAS, we regressed each SNP on the somatoform 

latent variable. QSNP was used to identify any SNPs that had heterogeneous effects 

across the input traits. SNPs with a significant QSNP value (p < 5e-8) were removed from 

the summary statistics and not included in any subsequent analyses, as these SNPs’ 

effects were not well represented by a common factor. The effective sample size of the 

resulting GWAS was calculated using the formula described by Mallard et al. (2022).22 

Clumping of the GWAS results was performed using PLINK 1.923 with an r2 threshold of 

0.1 and a physical distance threshold of 3000 kb. The novelty of loci was based on the 

lead SNP’s positional overlap (within � 1000 kb) with genome-wide significant (GWS) 

variants from previous GWAS of the included traits. For all novel SNPs, we performed 

SNP-level PheWAS using both GWAS Atlas24 and the ieugwasr R package from the 

OpenGWAS database.25 

Gene Mapping and Functional Annotation 
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 Using the SNP2GENE function in FUMA v1.5.226, SNPs were mapped to protein-

coding genes using three approaches: (1) position (� 10kb), (2) eQTL (BrainSeq,27 

PsychENCODE,28 BRAINEAC,29 and GTEx v830 brain tissue data), and (3) chromatin 

interaction mapping (Hi-C brain tissues).31,32 SNPs were functionally annotated using 

ANNOVAR,33 Combined Annotation Dependent Depletion (CADD),34 RegulomeDB,35 

and PsychENCODE28 databases. ANNOVAR identifies the functional consequences of 

SNPs, such as whether they fall within exons, introns, or regulatory regions. Functional 

predictions also included protein-coding changes (synonymous, nonsynonymous, stop-

gain/loss) and splicing effects. CADD scores were used to assess the deleteriousness 

of SNPs, with higher scores indicating a greater likelihood of pathogenicity. We 

considered SNPs with CADD scores above 20 to be potentially deleterious and those 

above 12.37 (top 7.5%) to be likely pathogenic.36 RegulomeDB v2.2 was used to predict 

the regulatory potential of SNPs using functional data from eQTL, chromatin states, 

transcription factor binding sites, and other regulatory elements.37 Lower RegulomeDB 

scores indicate higher confidence in regulatory function. PsychENCODE data provided 

additional context on the regulatory role of SNPs in brain tissues.  

MAGMA Gene-Based Analyses 

 We performed gene-set and gene-property analyses using MAGMA v1.08.38 

First, SNPs were positionally mapped (0 kb window) to protein-coding genes. Using the 

resulting gene-level p-values, gene-set analyses were performed for MsigDB v7.039 

curated gene sets and gene ontology (GO) terms. Gene-property analyses were 

performed for 54 tissue types (GTEx v8)30 and 11 developmental stages in brain 

samples (BrainSpan).32 These analyses test whether genes having certain properties 
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(i.e., expression in a particular tissue or developmental period) are more likely to be 

associated with the somatoform factor, adjusting for the average expression of all 

tissues/developmental stages in the dataset. Additionally, cell-type-specificity analyses 

were conducted across 16 human brain cell datasets to investigate whether specific cell 

types were implicated in somatoform traits. 

eQTL and pQTL Association Analyses  

 To identify SNPs with associations to somatoform traits mediated by effects on 

gene and protein expression, we performed summary-data-based Mendelian 

randomization (SMR) analyses.40 The heterogeneity in dependent instruments (HEIDI) 

test was used to distinguish pleiotropic effects from linkage between somatoform traits 

and eQTL/pQTLs. We identified significant associations as those that had a PSMR < 0.05 

after Bonferroni correction for the number of genes tested and a PHEIDI > 0.05. We used 

the MetaBrain41 cis-eQTL database from 7 brain regions due to its large sample size (n 

= 8,613) and comprehensive integration of data across 14 cohorts. For the blood pQTL 

analyses, we used two cis- and trans-pQTL databases. The first was the UK Biobank 

Pharma Proteomics Project (UK-PPP) that included samples from 54,219 individuals 

and measured 2,923 unique proteins.42 The second database was from the deCODE 

Consortium, including samples from 35,559 individuals and 4,719 unique proteins.43 

Use of the two databases allowed for validation and replication of findings and 

leveraged varied proteomic approaches for more comprehensive protein coverage. 

Transcriptome-Wide Association Studies 

 We conducted two transcriptome-wide association studies (TWAS) using 

MetaXcan software.44,45 In the first, we used S-MultiXcan to simultaneously examine 
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associations across all GTEx v8 tissues for which gene expression was enriched based 

on MAGMA results. S-MultiXcan accounts for the correlation between gene expression 

profiles across different tissues, increasing statistical power to detect biologically 

meaningful associations.45 We complemented this approach with S-PrediXcan analyses 

using data from PsychENCODE (i.e., 2,188 postmortem frontal and temporal cerebral 

cortex samples from 1,695 adults),46 which is enriched for individuals diagnosed with 

psychiatric conditions that are often comorbid with functional somatic conditions.6 This 

provides a more clinically relevant cohort for studying transcriptomic associations. 

Polygenic Overlap with Psychopathology 

MiXeR software53,54 was used to conduct univariate and bivariate causal mixture 

models. Univariate causal mixture models estimate the polygenicity (i.e., the number of 

causal variants needed to explain 90% SNP-heritability) and discoverability (i.e., the 

average effect size of causal variants) of traits. Bivariate causal mixture models can 

estimate genetic overlap between traits, even when the causal variants have opposite 

directions of effect on the traits. The Dice coefficient estimates the proportion of 

polygenic SNPs out of the total number of estimated causal SNPs for both traits. We 

performed bivariate MiXeR analyses to estimate the degree of polygenic overlap 

between the somatoform factor, externalizing, internalizing, and general 

psychopathology factors.55 We selected these factors because of their inclusion in the 

HiTOP model56 and the high rates of comorbidity between somatoform traits and 

psychopathology.3 

Genetic Correlations with Publicly Available GWAS 
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 We performed batch genetic correlations with 1,426 phenotypes from publicly 

available GWAS using the Complex-Trait Genetics Virtual Lab (CTG-VL).47 The included 

phenotypes spanned a variety of domains, including biological variables, physical 

diseases, and psychiatric disorders. CTG-VL uses LDSC software48,49 with 1000 

Genomes Project phase 350 EUR data as LD references. We applied a Bonferroni 

correction (p = 0.05/1426 = 3.51e-5) to account for multiple testing and identify 

significant correlations.  

Lab- and Phenome-Wide Association Studies  

We conducted phenome-wide association studies (PheWAS) using somatoform 

polygenic scores (PGS) in three cohorts: BioVU, Penn Medicine BioBank (PMBB), and 

Yale-Penn. ICD-9 and ICD-10 codes from electronic health records (EHRs) or 

diagnostic interviews were mapped to phecodes. Lab-wide association studies 

(LabWAS) were also performed in BioVU to examine associations with lab test results 

and biomarkers.51 We calculated PGS using PRS-CS software,52 applying the default 

settings to estimate shrinkage parameters. PheWAS analyses were conducted in the 

PheWAS v0.12 R package using logistic or linear regression models, depending on the 

phenotype. Analyses were restricted to phenotypes that had at least 100 cases (for 

binary traits) or individuals assessed (for continuous traits). All models included age, 

sex, and the first ten genetic ancestry principal components (PCs) as covariates, with a 

Bonferroni correction applied to identify significant associations. Given that both BioVU 

and PMBB are EHR datasets, we meta-analyzed the PheWAS results from the two 

cohorts. For each unique phenotype (1,442 total), we pooled the effect sizes by 
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calculating a weighted average using the beta estimates and standard errors from each 

cohort.  

 BioVU. The BioVU cohort comprises Vanderbilt University Medical Center 

patients with EHR and genotype data.53 As described elsewhere,51 genotyping was 

performed using the Illumina Multi-Ethnic Genotype Array (MEGAEX). Genotypes were 

filtered for SNP (< 0.95) and individual (< 0.98) call rates, sex discrepancies, and 

excessive heterozygosity (|Fhet| > 0.2).54 PCA was performed using FlashPCA2 1000 

Genomes phase 3 reference datasets50 to identify European-like individuals. Genotypes 

were imputed using the Michigan Imputation Server 

(https://imputationserver.sph.umich.edu) with the Haplotype Reference Consortium 

panel.55 SNPs with imputation quality R2 > 0.3 or INFO > 0.95 and MAF > 0.01 were 

retained. PheWAS analyses were performed in the EUR cohort (up to 66,214 

individuals) on 1,338 case/control phecodes. To identify associations with biomarkers, 

we performed LabWAS for 315 biomarkers using a pipeline developed by Dennis et al.51  

 Penn Medicine BioBank. The Penn Medicine BioBank (PMBB) comprises a 

cohort recruited through the University of Pennsylvania Health System.56 Genotyping 

was performed using the GSA array, phasing was performed using EAGLE,57 and 

imputation was performed using Minimac458 on the TOPMed Imputation server.58 

Variants with imputation quality�<�0.7, missingness�>�5%, MAF�<�1%, and sample 

call rate�<�0.99 were excluded. PCs for genetic ancestry were calculated in 

EIGENSOFT v7.2.0 (https://github.com/DReichLab/EIG). Genetically inferred ancestry 

was assigned based on the distance of ten PCs from the 1000 Genomes50 reference 
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populations. We performed PheWAS using 920 phenotypes in up to 29,090 EUR 

individuals.  

 Yale-Penn. The Yale-Penn sample, enriched for individuals with substance use 

disorders (SUDs), includes 5,424 EUR individuals with genotype data.59 As described 

previously,59 genotyping was performed using the Illumina HumanOmni1-Quad 

microarray, the Illumina HumanCoreExome array, or the Illumina Multi-Ethnic Global 

array. Imputation was performed using Minimac358 and the 1000 Genomes Project 

phase 350 reference panel on the Michigan Imputation Server 

(https://imputationserver.sph.umich.edu). SNPs with imputation quality < 0.7, MAF < 

0.01, missingness > 0.01, or a batch allele frequency difference > 0.04 were excluded, 

as were individuals with genotype call rate < 0.95.59 PCs were used to determine 

genetic similarity to 1000 Genomes Project phase 350 reference genomes. Yale-Penn 

participants were interviewed with the Semi-Structured Assessment for Drug 

Dependence and Alcoholism (SSADDA).60 PheWAS analyses were performed for 622 

traits.  

Drug Repurposing  

 To perform drug repurposing, we used the Library of Integrated Network-Based 

Cellular Signatures (LINCS) L1000 database, which catalogs in vitro gene expression 

profiles from thousands of chemical compounds across more than 80 human cell lines. 

We focused on compounds that are either approved by the Food and Drug 

Administration (FDA) or currently undergoing clinical trials 

(https://clue.io/repurposing#download-data),61 yielding a total of 829 compounds (590 of 

which are FDA-approved) and expression profiles from five neuronal cell lines. This 
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resulted in 3,897 unique signatures. We then matched medication signatures to gene 

expression signatures obtained from a somatoform TWAS performed on 12 enriched 

brain tissues. Weighted Pearson correlations were calculated between each brain 

transcriptome association and the compound signatures,62 with genes weighted by the 

proportion of heritability explained using the metafor R package (v.3.8-1). Each 

compound was included as a fixed effect, incorporating the weighted effect size 

(r_weighted) and sampling variability (se2_r_weighted) from all its signatures across 

different times, cell lines, and doses. To account for potential heterogeneity across 

tissues, brain region was included as a random effect. Significance was evaluated using 

a Bonferroni correction (p = 0.05/829 = 6.03e-5). 

 We also used a second genetically informed drug repurposing method, drug-

gene set analysis (DRUGSETS),63 with data sourced from the Drug Repurposing Hub61 

and the Drug Gene Interaction Database.64 For this method, drug–gene sets were 

created for 1,201 drugs, consisting of genes whose protein products are targeted by or 

interact with each drug. Competitive gene-set analysis was conducted using MAGMA 

v.1.08,38 conditioning on a comprehensive set of all drug targeted genes in the data (n = 

2,116 across 735 gene sets). To determine significant drug-gene sets, we applied a 

Bonferroni correction (p = 0.05/735 = 6.80e-5). 

Mendelian Randomization with Gut Microbiome Taxa 

 To identify potential causal effects of the gut microbiome on somatoform traits, 

we conducted Mendelian randomization (MR) analyses using TwoSampleMR version 

0.5.10 in R.65 We selected two GWAS of gut microbiota abundance to examine in 

relation to somatoform traits based on their complementary strengths. The first included 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 29, 2024. ; https://doi.org/10.1101/2024.07.29.24310991doi: medRxiv preprint 

https://doi.org/10.1101/2024.07.29.24310991
http://creativecommons.org/licenses/by-nd/4.0/


 15

211 taxa (with genus being the most granular level) measured in 14,306 EUR 

individuals.66 The second included 207 taxa, including species level information, 

measured in a smaller sample of 7,738 Dutch individuals.67 Through the IEU GWAS 

database, we extracted instruments for each of the taxa at a p-value threshold of 1e-5. 

Instruments were clumped using EUR 1000 Genomes Project data to ensure 

independence. Matching SNPs were then extracted from the somatoform GWAS for use 

as outcomes. If an instrument SNP was not available in the somatoform GWAS, we 

selected proxy SNPs using the default settings in TwoSampleMR. The inverse variance 

weighted estimate was the primary MR method used for inferring causal effects. As 

sensitivity analyses, we performed tests of heterogeneity and horizontal pleiotropy, 

which assess whether the causal effects are consistent across all instruments and 

whether the instruments affect the outcome through pathways other than the exposure. 

We also performed the Steiger test, which can be used to evaluate whether the 

specified causal direction (i.e., microbiome → somatoform) is likely to be correct or if 

effects may operate in the opposite direction.68  

Results 

 Fatigue, headache/migraine, health satisfaction, IBS, and pain intensity all had 

significant SNP-heritability, ranging from 0.059 (SE = 0.003) for fatigue to 0.086 (SE = 

0.004) for pain. LDSC identified significant genetic correlations between all the included 

traits (Supplementary Figure 1). However, genetic correlations with headache/migraine 

were lower than the other traits (rgaverage = 0.27 vs. 0.58). A common factor CFA fit the 

data well (�2(5) = 21.61, p = 0.001, AIC = 41.61, CFI = 0.99, SRMR = 0.03; Figure 2b). 

Standardized loadings ranged from 0.35 (for headache/migraine) to 0.89 (for fatigue). 
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Although the loading of headache/migraine onto the common factor met our pre-

specified minimum of 0.30, it was substantially lower than the other traits (all >0.65), 

suggesting that headache/migraine was not adequately represented by the common 

factor. To maintain a higher standard of representation and consistency across the 

included traits, we excluded headache/migraine from the final common factor model. 

After its exclusion, model fit improved significantly (∆�2(3) = 12.31, p = 0.006; fit 

statistics: �2(2) = 9.30, p = 0.01, AIC = 25.30, CFI = 1, SRMR = 0.03). 

 GWAS of the somatoform factor identified 134 significantly associated loci (Neff = 

799,429; Supplementary Table 1), of which 44 were not GWS in any of the input GWAS, 

and 8 had not been previously associated with somatoform traits (Figure 2a). The most 

strongly associated locus (p = 6.80e-16) was just outside the MHC region of 

chromosome 6, with the nearest gene being UHRF1BP1. UHRF1BP1 is involved in 

assisting or regulating epigenetic modifications, particularly DNA methylation and 

chromatin remodeling.69 The lead SNP in this locus (rs9469907) functions as an eQTL 

for several genes, including C6orf106, SNRPC, and CLPS, in PsychENCODE and 

GTEx brain tissues. 

 In SNP-level PheWAS (Supplementary Table 2 and Supplementary Figure 2), the 

lead SNPs from the 8 novel loci were associated primarily with physical health, 

immunological, and mental health measures (e.g., insomnia, C-reactive protein levels, 

body mass index, wellbeing, depression, and Type 2 diabetes). Based on the QSNP test, 

8 loci exhibited heterogeneous effects across the four somatoform traits 

(Supplementary Table 3). Of the lead SNPs from these loci, all but one showed the 
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strongest association with pain intensity. The exception, rs10795616, was most strongly 

associated with health satisfaction (p = 2.21e-08).  

Gene Mapping and Functional Annotation 

MAGMA identified 874 genes based on position, eQTL, and chromatin 

interactions. One-third (33.98%; n = 297) of genes were mapped by more than one 

approach, and 11.21% (n = 98) were mapped by all three. eQTL and chromatin 

interaction plots are shown in Supplementary Figure 3. Candidate SNPs showed an 

enrichment of intronic (p = 7.95e-317), intergenic (p = 7.43e-297), non-coding RNA 

intronic (p = 1.08e-8), 3' UTR (p = 7.87e-7), and 5' UTR (p = 2.62e-4) functional 

categories using ANNOVAR annotations (Figure 2c). Of candidate SNPs (n = 5,555), 30 

had a CADD score > 20, and 255 (4.59%) had scores ≥12.37, which is suggestive of 

deleteriousness to gene function (Supplementary Table 4). Of the candidate SNPs, 

59.17% (n = 3287) had RegulomeDB scores indicative of regulatory functions related to 

transcription factor binding and gene expression (i.e., 1a-1f; Supplementary Table 5). 

Gene-Based Enrichment  

 MAGMA gene-set analyses showed enrichment for genes involved in the 

biological process of negative regulation of synaptic transmission (b = 0.71, SE = 0.14, 

p = 3.24e-07). Gene-property analyses identified significant gene enrichment in 11 of 13 

GTEx v8 brain tissues (Figure 3a). The strongest associations were for the cerebellar 

hemisphere (b = 0.05, SE = 0.01, p = 1.43e-12), cerebellum (b = 0.05, SE = 0.01, p = 

2.63e-12), and frontal cortex (b = 0.05, SE = 0.01, p = 1.97e-9). In addition, there was 

significant enrichment for gene expression in the pituitary gland (b = 0.05, SE = 0.01, p 

= 5.64e-6). Gene-property analyses using BrainSpan brain samples from 11 
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developmental stages showed enrichment for gene expression in the early mid-prenatal 

(b = 0.04, SE = 0.01, p = 0.001) and the late mid-prenatal (b = 0.05, SE = 0.02, p = 

0.002) stages (Supplementary Figure 4).  

 To investigate cell-specific enrichment, we performed cell-type specificity 

analyses using 16 human brain scRNA-seq datasets and identified 7 cell-specific gene 

expression profiles in association with the somatoform factor after multiple testing 

correction (Figure 3b). Of the 7 cell types, 3 (GABAergic neurons in the prefrontal cortex 

at gestational week 26, GABAergic neurons in the human midbrain, and inhibitory 

neurons from PsychENCODE adult brain samples) were independently associated with 

the somatoform factor, with the others jointly explained by their association with the 

independent cell types. In cross-dataset conditional analyses, GABAergic neurons at 

gestational week 26 and inhibitory adult neurons were significantly collinear, suggesting 

that the associations of these two cell types are driven by similar genetic signals.  

SMR with Brain eQTLs and Blood Plasma pQTLs 

 We conducted summary-data-based Mendelian randomization (SMR) analyses 

to examine whether the associations of SNPs with somatoform traits were mediated by 

effects on gene expression in the brain and protein expression in blood plasma. We 

identified 28 genes whose expression levels in the brain exerted putatively causal 

effects on somatoform traits (Bonferroni-adjusted p < 0.05 and pSMR > 0.05; Figure 4a). 

Among these were UHRF1BP1, which is known to interact with a key regulator of DNA 

methylation and is involved in cell apoptosis, and HLA-DRB1, part of the human 

leukocyte antigen (HLA) family of genes that is critical in initiating immune responses 

and implicated in many autoimmune conditions.  
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Using data from the UKB Pharma Proteomics Project (UKB-PPP), we identified 

117 genes whose protein levels were significantly associated with somatoform traits, 

including several members of the CD300 family of genes that are involved in modulating 

inflammatory responses (Figure 4b). Additionally, genes involved in neural development 

and synaptic processes were significant, such as the HS6ST1 and LRRN1 genes. Using 

plasma proteomic data from deCODE, we identified 57 genes whose effects on protein 

abundance were putatively causally associated with somatoform traits (Figure 4c). 

Across the UKB-PPP and deCODE analyses, 6 genes were consistently identified: two 

members of the CD300 family of genes (i.e., CD300A and CD300C), CLEC4G, 

HS6ST1, LRRN1, and RNASET2. 

Transcriptome-Wide Association Analyses  

 To examine genes whose expression in enriched tissues was related to 

somatoform traits, we performed two TWAS using MetaXcan.44,45 In the first, we used S-

MultiXcan to simultaneously examine gene expression profiles across the 12 tissues 

that showed significant enrichment in MAGMA analyses. After Bonferroni correction (p = 

0.05/14,368 = 3.48e-6), we identified 158 genes with significantly altered expression 

levels associated with somatoform traits (Figure 5a). In a second TWAS of brain tissues 

in psychiatric cases and controls (n = 1,695),70 we identified 131 genes that showed 

significantly different (p � 4.16e-6) expression levels (Figure 5b). Across the two TWAS, 

34 genes were consistently identified, including genes related to immune function (e.g., 

MST1R), oxidative stress response (e.g., GPX1), neural development (e.g., DPYSL5 

and SORCS3), and neurotransmitter signaling (e.g., GRK4). Several of these genes 

showed enriched expression across brain tissues (e.g., DPYSL5 and GPX1; 
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Supplementary Figure 5). Across the two TWAS and the SMR analysis, five genes 

(CCDC144CP, PPP6C, SCAI, UHRF1BP1, USP32P3) were consistently implicated. 

Polygenicity, Discoverability, and Polygenic Overlap with Psychopathology 

 We used MiXeR software to conduct univariate and bivariate causal mixture 

models to assess the polygenicity (i.e., the number of variants estimated to be needed 

to explain 90% SNP-heritability) and discoverability (i.e., the causal effect size variance) 

of somatoform traits, as well as their polygenic overlap with psychopathology spectra 

(Supplementary Figure 6). MiXeR models estimated 11,321 causal SNPs for the 

somatoform factor (SD = 562.64), with an average discoverability of 7.50e-6 (SD = 

3.55e-7). The somatoform factor and externalizing psychopathology were moderately 

genetically correlated (rg = 0.46, SD = 0.02), and shared an estimated 76% of their 

causal variants (SD = 0.18). Similarly, the somatoform factor and internalizing 

psychopathology were significantly genetically correlated (rg =0.63, SD = 0.01) and 

shared 79% of their causal variants (SD = 0.12). Estimates were also similar for the 

polygenic overlap between general psychopathology and the somatoform factor (rg = 

0.69, SD = 0.01, Dice = 0.83, SD = 0.07). 

Genetic Correlations  

 Genetic correlations were performed between the somatoform factor and 1,426 

publicly available GWAS. After Bonferroni correction (p = 0.05/1,426 = 3.51e-5), the 

somatoform factor was significantly genetically correlated with 646 phenotypes 

(Supplementary Table 6 and Supplementary Figure 7). Consistent with the somatoform 

factor representing persistent physical symptoms for which there is no identifiable 

medical cause, one of the top genetic correlations was with “Symptoms, signs and 
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abnormal clinical and laboratory findings, not elsewhere classified” (rg = 0.80, SE = 

0.02, p = 1.69e-242). Of the significant associations, at least 70 (10.84%) were with 

pain-related conditions and medications. Many psychiatric traits were also significantly 

genetically correlated with the somatoform factor, including major depressive disorder 

(rg = 0.60, SE = 0.02, p = 3.29e-212), mood swings (rg = 0.60, SE = 0.02, p = 1.73e-

166), and loneliness/isolation (rg = 0.62, SE = 0.02, p = 6.02e-136). Results identified 

significant genetic correlations with obesity-related phenotypes (e.g., waist 

circumference, body mass index, and whole-body fat mass), socioeconomic status 

(e.g., receiving disability, educational attainment, unemployment, and financial 

difficulties), and general health (e.g., having a longstanding illness, taking prescription 

medications, lacking physical activity, and receiving a diagnosis of a serious medical 

condition/disability).  

Lab- and Phenome-Wide Association Scans  

 BioVU and PMBB Meta-Analysis. After meta-analyzing effects across BioVU and 

PMBB, there were 229 significant associations with the somatoform PGS (Figure 6). 

The top associations included obesity (beta = 0.18, SE = 0.01, p = 2.76e-76), tobacco 

use disorder (TUD; beta = 0.18, SE = 0.01, p = 9.69e-72), type 2 diabetes (beta = 0.17, 

SE = 0.01, p = 3.67e-69), and mood disorders (beta = 0.14, SE = 0.01, p = 3.00e-52). 

There were many significant associations with pain-related conditions, including 

nonspecific chest pain (beta = 0.12, SE = 0.01, p = 2.36e-38), unspecified muscle pain 

(beta = 0.18, SE = 0.02 p = 3.64e-29), abdominal pain (beta = 0.09, SE = 0.01, p = 

2.18e-27), and chronic pain (beta = 0.12, SE = 0.01, p = 2.83e-22). Study-specific 

results from the BioVU and PMBB PheWAS are in Supplementary Tables 7 and 8.  
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 BioVU LabWAS. After Bonferroni correction, LabWAS analyses identified 40 

significant associations of the somatoform factor with biomarkers (Supplementary 

Figure 8), including elevated C reactive protein levels (CRP; beta = 0.03, SE = 0.005, p 

= 4.43e-15) and erythrocyte sedimentation rates (beta = 0.06, SE = 0.01, p = 1.92e-06). 

Other notable associations were with higher erythrocyte distribution widths (beta = 0.06, 

SE = 0.004, p = 6.66e-52) and white blood cell counts (beta = 0.05, SE = 0.004, p = 

1.58e-37), and with lower levels of iron (beta = -0.04, SE = 0.01, p = 1.75e-6) and 

Vitamin D (beta = -0.06, SE = 0.01, p = 5e-19). Consistent with the link with diabetes in 

the PheWAS, the somatoform PGS was also related to higher hemoglobin A1c levels 

(beta = 0.03, SE = 0.005, p = 4.43e-15).  

 Yale-Penn. In the Yale-Penn sample, there were 229 significant PheWAS 

associations after Bonferroni correction (Figure 6 and Supplementary Table 9). The 

sample is enriched for substance use disorders, and these were the most prevalent 

associations identified. However, other phenotypes like lower educational levels (beta = 

-0.17, SE = 0.01, p = 1.15e-38), poor self-reported health rating (beta = -0.18, SE = 

0.02, p = 1.29e-25), lower household income (beta = -0.32, SE = 0.04, p = 2.19e-17), 

more emergency room visits (beta = 1.18, SE = 0.15, p = 5.13e-15), and greater 

childhood adversity (beta = 0.28, SE = 0.04, p = 1.16e-12) were also significant in the 

deeply phenotyped sample.  

Drug Repurposing  

 We used LINCS to match medication signatures to somatoform gene expression 

signatures. After Bonferroni correction, we identified 324 perturbagens (Supplementary 

Table 10) comprising a wide array of mechanisms and classes across both emerging 
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(i.e., undergoing clinical trials; n = 113) and FDA-approved (n = 211) therapeutics. 

Several perturbagens were of relevance to PPS, including analgesics (e.g., diclofenac, 

ibuprofen, and venlafaxine), antidiarrheals (e.g., loperamide), and antidepressants (e.g., 

bupropion). Of note, two of the identified drugs targeted the MAP2K1 gene and 

reversed the gene expression signature found in the PsychENCODE TWAS. Both drugs 

(pd-0325901 and selumetinib) are kinase inhibitors, with selumetinib having been 

approved to treat symptomatic plexiform neurofibromas in children with 

neurofibromatosis type 1, a genetic disorder that causes tumors to grow along nerves.71 

Additionally, of the identified drugs, ten had gene targets that mapped to GWS SNPs 

(Supplementary Figure 9). These ten drugs included four dopamine receptor 

antagonists (i.e., nemonapride, melperone, benperidol, and carmoxirole) four kinase 

inhibitors (i.e., vemurafenib, dabrafenib, pf-562271, and sorafenib), an HDM2 antagonist 

(i.e., serdemetan), and a calcium channel blocker (i.e., nimodipine). After Bonferroni 

correction, the DRUGSETS analysis identified one significant association with 

Anatomical Therapeutic Chemical (ATC) code G04B (t = 3.89, p = 5.44e-5), which 

comprises urological drugs. 

Potentially Causal Effects of the Gut Microbiome 

 Of the 418 taxa in the MiBioGen and Dutch Microbiome Projects, 326 (130 from 

MiBioGen and 196 from the Dutch Microbiome Project) had genetic variants associated 

with their abundance at p < 1e-5 and were included in MR analyses. Of these, 23 (10 

from MiBioGen and 13 from the Dutch Microbiome Project) exhibited putatively causal 

effects on the somatoform factor prior to multiple testing correction, but only four 

remained significant after Benjamini-Hochberg false discovery rate (FDR) correction (all 
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from the Dutch Microbiome Project; Supplementary Figure 10). One of the significant 

results was based on a single SNP so was not interpreted. At the species level, 

Adlercreutzia equolifaciens (beta = -0.04, SE = 0.01, p = 5.13e-5) and Ruminococcus 

bromii (beta = -0.05, SE = 0.01, p = 6.65e-4) exhibited putatively causal protective 

effects on the somatoform factor. Similarly, the genus Adlercreutzia (beta = -0.04, SE = 

0.01, p = 5.14e-5) was also significant and potentially protective. In the MiBioGen 

cohort, the genus Adlercreutzia was not putatively causally associated with the 

somatoform factor. However, analyses in that cohort showed a consistent direction of 

effect as that seen in the Dutch Microbiome Project. In the MiBioGen cohort, the 

putative effects of Ruminococcus on the somatoform factor were in a matching direction 

as well, and the association with the genus was significant prior to FDR correction (beta 

= -0.01, SE = 0.006, p = 0.04). Therefore, findings in MiBioGen provide relatively 

modest replication of our results. 

Steiger directionality tests for all significant findings supported the proposed 

causal direction of microbiota on the somatoform factor (all ps < 2.05e-5). We used the 

Egger intercept to evaluate confounding by pleiotropy, but due insufficient instruments, 

we were only able to evaluate this for Ruminococcus bromii (Egger intercept = -0.02, SE 

= 0.05, p = 0.76). There was no evidence for heterogeneity in the effects of instruments 

for Adlercreutzia equolifaciens (Q(1) = 0.02, p = 0.88), Ruminococcus bromii (Q(2) = 

3.65, p = 0.16), or Adlercreutzia (Q(1) = 0.03, p = 0.86).  

Discussion 

 Although often considered distinct in clinical practice, our findings support a 

common latent genetic factor that contributes to vulnerability to multiple PPS, including 
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fatigue, IBS, and pain intensity, as well as symptom perceptions, including health 

satisfaction and pain intensity. This aligns with the emerging view of PPS as part of a 

broader spectrum linked by shared etiological pathways.72 Amid calls for improved 

classification and treatment of PPS and growing recognition of the complex interactions 

between mind and body,72,73 our findings provide unique insights into the shared genetic 

architecture underlying these traits, opening new avenues for improved clinical care. 

By incorporating various somatoform traits in an effective sample size of 799,429 

EUR individuals, we identified 134 loci associated with the common genetic liability to 

somatoform traits, including 8 lead SNPs in novel loci not previously GWS in relation to 

any individual PPS. The power of the multivariate approach also allowed us to replicate 

findings for 44 loci that were not GWS in the input GWAS but had previously been 

associated with PPS. Functional annotation indicated enrichment of candidate SNPs in 

several regulatory regions, with the majority (59.17%) having functions related to 

binding and gene expression. This suggests a significant role for gene regulatory 

mechanisms in the etiology of PPS.  

The expression of genes related to somatoform traits was enriched across 12 

brain tissues, particularly the cerebellar hemisphere and cerebellum. Recently, the 

cerebellum has drawn attention for its potential role in modulating the emotional and 

cognitive elements of pain through its communication with subcortical and cortical 

regions.74 Individuals with chronic pain show altered activation patterns in the 

cerebellum during pain,75 and differences in functional connectivity between the 

cerebellum and other brain regions are correlated with ratings of pain intensity.76 

Furthermore, the cerebellum may be associated with salience processing,74,77 which 
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involves the integration of internal and external sensory information and has been 

implicated in both chronic pain77-79 and IBS.80  Cell-type specific analyses implicated the 

role of inhibitory GABAergic neurons in the human midbrain and prefrontal cortex. 

Mouse models have underscored the crucial role of GABAergic interneurons in 

regulating sensory sensitivity,81 and a GWAS of pain intensity also implicated 

GABAergic neurons.9,81 Dysregulation of inhibitory control via GABAergic neurons 

during development may similarly contribute to heightened sensitivity to PPS. 

Performing TWAS and SMR analyses, we sought to identify potential causal 

genes in enriched tissues using brain transcriptomic data from PsychENCODE, GTEx, 

and MetaBrain. Across the two TWAS and the SMR analysis, five genes (CCDC144CP, 

PPP6C, SCAI, UHRF1BP1, USP32P3) were consistently implicated, providing strong 

evidence for their role in somatoform traits. Two of the identified genes (CCDC144CP 

and USP32P3) are pseudogenes, which have traditionally been considered non-

functional but have recently been found to have important functional and regulatory 

roles that warrant further investigation.82 The remaining three genes are involved in cell 

signaling (PPP6C), cell migration and tumor suppression (SCAI), and regulation of DNA 

methylation (UHRF1BP1). We also identified six genes whose effects on protein levels 

mediated their association with somatoform traits, including four involved in immune 

regulation (CD300A, CD300C, CLEC4G, and RNASET2) and two in neuronal 

development (HS6ST1 and LRRN1). Preclinical research is needed to examine the 

mechanisms by which these prioritized genes influence PPS. 

We found substantial polygenic associations between the somatoform and 

internalizing, externalizing, and general psychopathology factors. Genetic correlations 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 29, 2024. ; https://doi.org/10.1101/2024.07.29.24310991doi: medRxiv preprint 

https://doi.org/10.1101/2024.07.29.24310991
http://creativecommons.org/licenses/by-nd/4.0/


 27

with 1,426 publicly available GWAS further highlighted the shared etiology of 

somatoform traits and psychopathology, with the genetic correlation with depression 

being among the strongest. This shared genetic architecture may help to explain the 

high comorbidity between PPS and psychopathology, particularly depression and 

anxiety, although our analyses do not provide information on causality or the direction of 

effect.3 In three biobanks, we found that somatoform PGS were associated with the 

presence of numerous physical and mental health conditions, including diabetes, TUD, 

mood disorders, obesity, post-traumatic stress disorder, and sleep disorders. 

Collectively, these findings underscore the need for treatment approaches that 

recognize the interconnectedness of physical and mental health. 

Addressing the shared risk factors for various PPS could potentially improve 

outcomes across health domains. Thus, we examined potential causal effects of gut 

microbiota on the somatoform factor and performed drug repurposing to identify 

treatments relevant to a broad range of PPS. Across two independent datasets of host-

gut microbiome associations, Ruminococcus bromii had the strongest support for 

potential protective effects on somatoform traits. R. bromii are a keystone bacterial 

species for their ability to metabolize resistant starch.83 They also contribute to butyrate 

production in the colon, which is used by beneficial gut microbes.83 A reduced 

abundance of R. bromii has been associated with chronic pancreatitis84 and Crohn’s 

disease.85 Importantly, even short-term dietary changes substantially alter R. bromii 

abundance in the gut,86 suggesting that it is a readily modifiable target. We also 

identified drugs that may have promise for treating multiple PPS, including 10 

compounds targeting genes mapped by GWS variants. Notably, four of these 
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compounds were dopamine receptor antagonists, including atypical antipsychotics 

(nemonapride, melperone, and benperidol) and a peripherally active D2 receptor 

antagonist with antihypertensive properties (carmoxirole).87 Two compounds (PD-

0325901 and selumetinib) were found to reverse the brain transcriptomic expression 

signature of the somatoform factor by targeting the MAP2K1 gene. One of these, PD-

0325901, has potent anti-inflammatory activity.88 Whereas mitogen-activated protein 

kinase (MAPK) signaling pathways are involved in pain sensitization and their inhibition 

reduces pain in animal models,89 our findings suggest that there may be broader 

applications of these inhibitors in treating other PPS as well.  

Limitations 

 This study has several limitations. First, the summary statistics included were 

exclusively from EUR individuals, potentially limiting the generalizability to individuals 

genetically similar to non-EUR populations. Future research should aim to replicate 

findings in other groups as biobanks continue to grow and become more diverse. For 

example, a study applying gSEM in AFR individuals has shown that when GWAS are 

available and appropriate steps are taken to model the complex LD patterns, these 

models yield accurate and meaningful results.90 Additionally, although genetic 

correlation and PheWAS analyses underscored the complexity of interactions between 

physical symptoms and mental health conditions, they do not provide information on the 

mechanisms underlying these associations, which could include shared environmental 

risk factors, indirect or direct genetic effects, or other possibilities. Third, the 

associations between gut microbiota and somatoform traits, while promising, require 

replication and experimental research to uncover their potential mechanisms. Finally, 
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further research is necessary to validate the efficacy and safety of the therapeutic 

targets identified through drug repurposing analyses, emphasizing the ongoing 

challenge of translating genetic discoveries into effective treatments. 

Conclusions 

 By identifying a common genetic factor that contributes to vulnerability to multiple 

PPS, our findings highlight shared biological pathways that link conditions often 

considered distinct in clinical practice. Enrichment analyses point to the cerebellum and 

GABAergic neurons as key players in the neurobiology of various PPS. The significant 

genetic correlations and high polygenic overlap with psychopathology align with 

dimensional taxonomic approaches, such as HiTOP. These findings enhance our 

understanding of PPS, open new avenues for research and therapeutic development, 

and underscore the need for approaches that address the complex interplay between 

genetic, neurological, and psychological factors in health and disease.  
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Figure 1. Overview of analyses. 

 

Note: IBS = irritable bowel syndrome. The somatoform factor N reflects the effective 

sample size. 
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Figure 2. GWAS results for the somatoform factor.  

 

Note: a) Manhattan plot of the somatoform GWAS. Lead SNPs for loci not identified in 
the input GWAS are annotated. Gold diamonds indicate that the SNP was not in a 
genome-wide significant (GWS) locus in any of the input GWAS, and yellow diamonds 
indicate that the SNP was not in a GWS locus in previous GWAS of somatoform traits 
based on a GWAS Catalog search, b) confirmatory factor analysis, and c) functional 
consequences of SNPs on genes.  
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Figure 3. MAGMA gene-property analyses. 

 

 
Note: a) Gene expression in 54 GTEx tissues and b) cell-type specificity results. 

0

3

6

9

12

in
 C

er
eb

el
la

r H
em

is
ph

er
e

B
ra

in
 C

er
eb

el
lu

m

Br
ai

n 
Fr

on
ta

l C
or

te
x 

BA
9

B
ra

in
 C

or
te

x

B
ra

in
 A

nt
er

io
r c

in
gu

la
te

 c
or

te
x 

B
A2

4

Br
ai

n 
H

yp
ot

ha
la

m
us

P
itu

ita
ry

B
ra

in
 N

uc
le

us
 a

cc
um

be
ns

 b
as

al
 g

an
gl

ia

Br
ai

n 
A

m
yg

da
la

Br
ai

n 
H

ip
po

ca
m

pu
s

Br
ai

n 
C

au
da

te
 b

as
al

 g
an

gl
ia

B
ra

in
 P

ut
am

en
 b

as
al

 g
an

gl
ia

Te
st

is

B
ra

in
 S

ub
st

an
tia

 n
ig

ra

B
ra

in
 S

pi
na

l c
or

d 
ce

rv
ic

al
 c

−1
O

va
ry

M
us

cl
e 

Sk
el

et
al

N
er

ve
 T

ib
ia

l
U

te
ru

s

C
el

ls
 C

ul
tu

re
d 

fib
ro

bl
as

ts
A

dr
en

al
 G

la
nd

C
er

vi
x 

E
nd

oc
er

vi
x

C
er

vi
x 

E
ct

oc
er

vi
x

C
el

ls
 E

BV
−t

ra
ns

fo
rm

ed
 ly

m
ph

oc
yt

es
W

ho
le

 B
lo

od
A

rte
ry

 T
ib

ia
l

H
ea

rt 
A

tri
al

 A
pp

en
da

ge

Es
op

ha
gu

s 
G

as
tro

es
op

ha
ge

al
 J

un
ct

io
n

A
rte

ry
 A

or
ta

C
ol

on
 S

ig
m

oi
d

Es
op

ha
gu

s 
M

us
cu

la
ris

Fa
llo

pi
an

 T
ub

e

H
ea

rt 
Le

ft 
Ve

nt
ric

le
Pa

nc
re

as
S

pl
ee

n

A
rte

ry
 C

or
on

ar
y

Th
yr

oi
d

Li
ve

r

A
di

po
se

 S
ub

cu
ta

ne
ou

s
Va

gi
na

S
ki

n 
N

ot
 S

un
 E

xp
os

ed
 S

up
ra

pu
bi

c
S

to
m

ac
h

Ki
dn

ey
 C

or
te

x

Sk
in

 S
un

 E
xp

os
ed

 L
ow

er
 le

g
P

ro
st

at
e

B
la

dd
er

Ad
ip

os
e 

V
is

ce
ra

l O
m

en
tu

m

Ki
dn

ey
 M

ed
ul

la
Lu

ng

Sm
al

l I
nt

es
tin

e 
Te

rm
in

al
 Il

eu
m

Br
ea

st
 M

am
m

ar
y 

Ti
ss

ue

C
ol

on
 T

ra
ns

ve
rs

e

Es
op

ha
gu

s 
M

uc
os

a

M
in

or
 S

al
iv

ar
y 

G
la

nd

Tissue

−
lo

g1
0(

p−
va

lu
e)

*

*

* *

*

* *

0

2

4

6

8

G
ABA

G
W

26
 G

ABA
er

gi
c 

ne
ur

on
s

NbG
ABA

G
W

26
 A

st
ro

cy
te

s

G
W

23
 G

ABAe
rg

ic 
ne

ur
on

s

In
3

DA
1

G
AB

A2
ne

ur
on

s
G

W
26

 O
PC

hy
br

id In
2

G
ABAe

rg
ic

 n
eu

ro
ns

DA0
Ast

ro
cy

te
s

G
W

10
 N

eu
ro

ns
NbM

L5 Ex5 In
4

In
1

Ex
2

Ex8
G

ABA
er

gi
c

Cell Type

−
lo

g1
0(

P
−

va
lu

e
)

Dataset

Allen Human LGN level1

DroNc Human Hippocampus

GSE104276 Human Prefrontal cor tex all ages

GSE104276 Human Prefrontal cor tex per ages

GSE67835 Human Cortex

Linnarsson GSE76381 Human Midbr ain

PsychENCODE Adult

PsychENCODE Developmental

a) 

b) 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 29, 2024. ; https://doi.org/10.1101/2024.07.29.24310991doi: medRxiv preprint 

https://doi.org/10.1101/2024.07.29.24310991
http://creativecommons.org/licenses/by-nd/4.0/


 40

Figure 4. Brain eQTL and blood pQTL associations using summary-data-based 
Mendelian randomization. 

 

 

 
Note: a) MetaBrain eQTLs, b) UKB blood pQTLs, and c) deCODE blood pQTLs. 
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Figure 5. Transcriptome-wide association studies. 

Note: a) results from S-MultiXcan using GTEx data from 12 brain tissues, b) results 
from S-PrediXcan using PsychENCODE data from brain tissues. The top associations 
are annotated. Dashed lines indicate the significance threshold. 
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Figure 6. Phenome-wide association studies in BioVU, Penn Medicine BioBank, 
and Yale-Penn cohorts. 
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