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ABSTRACT

We have earlier published an automated statistical
classifier of tRNA function called TFAM. Unlike tRNA
gene-finders, TFAM uses information from the total
sequences of tRNAs and not just their anticodons to
predict their function. Therefore TFAM has an
advantage in predicting initiator tRNAs, the amino
acid charging identity of nonstandard tRNAs such
as suppressors, and the former identity of pseudo-
tRNAs. In addition, TFAM predictions are robust to
sequencing errors and useful for the statistical
analysis of tRNA sequence, function and evolution.
Earlier versions of TFAM required a complicated
installation and running procedure, and only bacter-
ial tRNA identity models were provided. Here we
describe a new version of TFAM with both a Web
Server interface and simplified standalone installa-
tion. New TFAM models are available including a
proteobacterial model for the bacterial lysylated
isoleucine tRNAs, making it now possible for TFAM
to correctly classify all tRNA genes for some
bacterial taxa. First-draft eukaryotic and archaeal
models are also provided making initiator tRNA
prediction easily accessible genes to any researcher
or genome sequencing effort. The TFAM Web Server
is available at http://tfam.lcb.uu.se

INTRODUCTION

The vast majority of new tRNA gene sequence data
accumulates today from analysis of genome sequences.
The major tRNA gene-finders in use today, tRNAscan-SE
(1) and ARAGORN (2), classify the functions of predicted
tRNA genes by structurally locating and decoding their
inferred anticodons according to an assumed genetic code.
As a result, genome projects regularly misclassify initiator
tRNAs in genomes from all three phylogenetic domains
and lysylated isoleucine tRNA (kIle) genes from bacteria
(described further below). These two types of tRNAs carry
the same genetically templated anticodons as methionine
elongators and hence cannot be distinguished from them
by anticodon-based tRNA classifiers. It may also happen

that these genes are entirely missing in the annotation of a
complete genome. Because genome projects regularly
verify the completion of their assemblies by checking for
the presence of a complete set of tRNA gene classes in
their genome data, the ability to identify these two
additional classes of tRNA genes provides additional
power for this important task [although in very rare cases
the lysylated isoacceptor may be missing along with
corresponding metabolic pathways (3)]. Furthermore, a
method that uses entire sequence information to classify
tRNA gene function is more robust to sequencing error,
can correctly predict tRNA charging specificity in organ-
isms with altered genetic codes, can predict the identity of
suppressors, and can predict the potential or former
charging identity of tRNA-like molecules and pseudo-
tRNAs (in this article we loosely use ‘‘tRNA’’ to mean
both tRNA and tRNA gene sequences).

We present here a new version (1.0) of such a method—
an update to the TFAM statistical classifier of tRNA
function published earlier (4). TFAM 1.0 is now available
online as a Web Server requiring no installation. Version
1.0 of TFAM also provides eukaryotic and archaeal
tRNA functional models for the purpose of identifying
initiator tRNAs, and an expanded bacterial model that
can predict some kIle tRNAs. For certain bacterial species
such as proteobacteria and gram-positive bacteria, TFAM
1.0 can be expected to correctly annotate the function of
all tRNAs with good confidence.

In bacteria, the cytidine in the CAU anticodons of
lysylated isoleucine tRNAs are post-transcriptionally
modified to lysidine (5). This modification simultaneously
changes the codon reading specificity of this usually minor
isoacceptor from AUG to AUA and its amino acid
charging specificity from methionine to isoleucine in
keeping with the genetic code. Because the unmodified
(CAU) tRNA is charged with methionine (6) it cannot be
expected that TFAM would recognize this tRNA as an
isoleucine tRNA. However, the determinants that target
this tRNA for post-transcriptional modification are them-
selves genetically templated in the tRNA gene (7,8), and it
is possible for TFAM to distinguish this class of tRNA
with fairly good confidence when suitably trained (3).
Nonetheless, both experimental (8) and bioinformatic (3)
evidence suggest that the determinants for this class have
diverged in bacteria. Rather than iteratively accreting all
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divergent sequences of the same apparent type into
one model class (3), we have taken a different, perhaps
more conservative approach of making smaller, more
phylogenetically restricted models, in the hopes that this
will allow us to study the evolution and diversification of
tRNA identity determinants. Our ultimate aim is to model
and understand the constellation of identity determinants
that actually can or could function together in the same
cellular context. In TFAM 1.0 we release a model of
lysylated isoleucine tRNAs based only on proteobacterial
data.

Earlier versions of TFAM were only available for
standalone compilation and installation on UNIX-like
platforms and required complicated installations of
prerequisites. The new web-based interface, besides
obviating the installation burden, provides additional
functionality over the standalone interface including
color visualization and sorting of TFAM scores.
Installation of the standalone version has also been
simplified by the removal of dependencies.

MODELS

Both the Web Server and standalone interfaces to TFAM
version 1.0 provide new models for tRNA classification.
The bacterial model of earlier versions (earlier called
‘MSDB’ for ‘Modified Sprinzl DataBase’ and provided
with TFAM versions 0.2 and 0.3, henceforth ‘bacterial
TFAM model 0.1’) has been complemented and corrected
by genomic tDNA sequences from 46 proteobacterial
species classified on the basis of clustering to known
methionine elongator, unmodified isoleucine elongator,
initiator and lysylated isoleucine (kIle) elongator tRNAs.
This data, generously provided by Paul Higgs and
available here as Supplementary Data to this article,
is an extension to the dataset analyzed in (9). These
sequences and their classifications are a consistent subset
of those provided in an independently made TFAM
model (3). A full description of how we used these
proteobacterial sequences to modify bacterial TFAM
model 0.1 from (4) is provided as Supplementary Data
here and at the TFAM Web Server. The model presented
here is called ‘bacterial TFAM model 0.2’.

Bacterial TFAM model 0.2 also provides the five
selenocysteine sequences from the year 2000 release of
the Sprinzl Search Server http://www.uni-bayreuth.de/
departments/biochemie/trna/, that were removed in bac-
terial TFAM model 0.1. A leave-one-out cross-validation
of bacterial TFAM model 0.2 without selenocysteine
tRNAs misclassified 16 of 759 sequences (2.1%) of which
2 of 50 kIle tRNAs were misclassified (96% sensitivity)
and 2 of 50 sequences classified as kIle were not
kIle (96% specificity). These results were identical
when the Sel-Cys model sequences were included, but
2 of the 5 selenocysteine tRNAs were misclassified,
underscoring the need to make this model larger and
increase its generality.

In TFAM 1.0 we introduce first-cut versions of
eukaryotic and archaeal TFAM models, each given
version numbers 0.1, with the main purpose of enabling
convenient and automated initiator tRNA identification

in all phylogenetic domains. Initiator tRNA determinants
are highly conserved within phylogenetic domains (10).
Both of these models were created from data downloaded
on February 23, 2006 from the Sprinzl 2000 tRNA
Search Server http://www.uni-bayreuth.de/departments/
biochemie/trna/. For the eukaryotic TFAM model 0.1,
redundant sequences were removed and no corrections
were made to the identity annotations. The sensitivity of
eukaryotic TFAM model 0.1 for detecting known initiator
tRNAs in Drosophila melanogaster was verified to be
perfect. Initiator tRNA predictions with eukaryotic
TFAM model 0.1 in twelve Drosophila genomes have
been released on the web at http://www.bioinf.manchester.
ac.uk/bergman/data/ncRNA/tRNA/. Resubstitution ana-
lysis showed that all training data initiators from the
Sprinzl 2000 dataset were correctly classified, including
those from yeast, worm, flies, vertebrates and plants.
For the archaeal TFAM model 0.1, redundant

sequences were removed and the identity annotations of
three tRNAs were changed as described in Supplementary
Data. The initiator tRNA sequences were verified to be
consistent with other archaeal initiator identity determi-
nants as described (11). We also verified the perfect
performance of this model on two experimentally char-
acterized archaeal initiator tRNA genes not included and
differing in sequence from those in the model: those of
Pyrodictium occultum (12) and Pyrococcus abyssi (13).
The accuracy of the eukaryotic and archaeal TFAM
models 0.1 for other tRNA types has not been verified
or studied in any way.

RESULTS AND DISCUSSION

A user can input tRNA or tDNA sequences in multi-fasta
format to the TFAM Web Server by cut-and-paste or file-
upload, select a model with which to classify the input
sequences, and then push a button to run the server. The
browser window will wait while the computation takes
place, after which the output is loaded in tabular format.
A computation on 514 human tRNA sequences from the
Genomic tRNA Database (GtRDB, http://lowelab.ucsc.
edu/GtRNAdb/) took �50 s. The maximum input size is
currently set to 200 KB, which accommodates more than
1300 tRNA sequences at once.
A sample output on bacterial tRNA sequences is

shown in Figure 1. Scores are visualized with a
color scheme increasing from dark purple for negative
numbers of large magnitude to bright red for large
positive numbers. The table can be sorted by any
column making it easy to find sequences with properties
of interest. In addition, TFAM can indicate when its
prediction conflicts with an annotated function. To get
this functionality, the user may either name sequences
with identifiers from which the annotated sequence can be
parsed by TFAM, or TFAM can auto-detect anticodons
and use these to annotate identity. A table of recognized
sequence identifier formats is shown in Supplementary
Data as well as in the Web-Server documentation. TFAM
recognizes the format of identifiers from the GtRDB
and the Sprinzl database (14) from which sequences may
be pasted directly.
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As described more fully in (4), TFAM works by
structurally aligning the input sequences with the trusted
model sequences using COVE software (15) and tRNA
covariance models from (1). It then makes profiles of each
model class and scores each input sequence according to
the log-odds of belonging to a specific functional class
versus belonging to any of the others. This log-odds
computation is repeated for every functional class
represented in the model. A positive score indicates a
match to a particular functional class. The TFAM
classification of a tRNA sequence is the functional class
against which it has the highest score.
All results of TFAM computations are available for

download from the Web Server including a structural
alignment of their sequences (in alignedmulti-fasta format)
with TFAM classifications in the description line. The user

is also provided a job ID with which she may return to the
server for some unspecified time after visiting the Web
Server and recover the results of their computation. Job
IDs are not in any way public, so only users with a specific
job ID in hand can recover results from that job. Jobs
may be stored on the server for some unspecified time
and then deleted, therefore it is safest to download results
after computation. For more data privacy, the user may
completely delete the data from our server after down-
loading their results. We log user-statistics but do not store
any data input to the server for private use.

The tRNA structural alignment service of the TFAM
Web Server may be useful in its own right. If the TFAM
Web Server is used exclusively for this purpose users
should additionally cite COVE software (15) and the
tRNA covariance models from (1).

Figure 1. Sample output of the TFAM Web Server for tRNA genes from Escherichia coli K12. Colors indicate the magnitude and sign of the scores
of each sequence to different tFAM models. Initiator tRNAs are sorted to the top of the table by clicking on the ‘iMet’ column header.
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Currently the Web Server does not support uploading
of custom tRNA classification models or the exclusion of
certain positions from scoring such as the anticodon.
However, these functionalities are available in the
standalone version which is available free for download
and obtainable through http://tfam.lcb.uu.se

TFAM results should not be used blindly. We
emphasize that TFAM classifications are statistical and
depend on the quality of trusted classifications that are
used to make the models. Different models and even
different ‘tfams’ for different functional classes vary in
their statistical power and generality. We have provided a
guide to the intended use of every component of every
model available at the TFAM Web Server, and we also
refer to earlier provided statistical results (4). To briefly
summarize here, TFAM is not strong at distinguishing
alanine and valine tRNAs in bacteria. The selenocysteine
model is not very general and can fail to recognize true
Sel-Cys tRNAs, nonetheless, the model is useful to
distinguish falsely predicted Sel-Cys tRNAs such as
called by tRNAscan-SE for firmicutes with an altered
genetic code (data not shown). The kIle model is
proteobacterial and does not score well for kIle
tRNAs from Cyanobacteria, Bacteroidetes, Aquificiae,
Actinobacteria, Chlamydia/Verrucomicrobia group,
Planctomycetes or Thermotogae [data not shown, but
see also (3)]. This is probably because the determinants
for this class are divergent in bacteria, the subject of our
current research. Finally, the eukaryotic and archaeal
TFAM 0.1 models are provided only for the purpose of
initiator tRNA identification.

We plan major refinements and expansions of the
TFAM models, including specializing them to more
narrow phyla, towards the goal of general models that
nonetheless accurately represent the actual constellation
of identity determinants and antideterminants that func-
tion together in the context of a specific translational
system. In the meantime, we believe that the model quality
and ease of use of the TFAM 1. 0 Web Server can promote
practical improvements in the annotation of tRNA genes
in genome projects and encourage computational biologi-
cal research in tRNA structure, function and evolution
already today.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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