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Abstract

Motivation

Human voice is generated in the larynx by the two oscillating vocal folds. Owing to the lim-

ited space and accessibility of the larynx, endoscopic investigation of the actual phonatory

process in detail is challenging. Hence the biomechanics of the human phonatory process

are still not yet fully understood. Therefore, we adapt a mathematical model of the vocal

folds towards vocal fold oscillations to quantify gender and age related differences

expressed by computed biomechanical model parameters.

Methods

The vocal fold dynamics are visualized by laryngeal high-speed videoendoscopy (4000 fps).

A total of 33 healthy young subjects (16 females, 17 males) and 11 elderly subjects (5

females, 6 males) were recorded. A numerical two-mass model is adapted to the recorded

vocal fold oscillations by varying model masses, stiffness and subglottal pressure. For

adapting the model towards the recorded vocal fold dynamics, three different optimization

algorithms (Nelder–Mead, Particle Swarm Optimization and Simulated Bee Colony) in com-

bination with three cost functions were considered for applicability. Gender differences and

age-related kinematic differences reflected by the model parameters were analyzed.

Results and conclusion

The biomechanical model in combination with numerical optimization techniques allowed

phonatory behavior to be simulated and laryngeal parameters involved to be quantified. All

three optimization algorithms showed promising results. However, only one cost function

seems to be suitable for this optimization task. The gained model parameters reflect the

phonatory biomechanics for men and women well and show quantitative age- and gender-

specific differences. The model parameters for younger females and males showed lower
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subglottal pressures, lower stiffness and higher masses than the corresponding elderly

groups. Females exhibited higher subglottal pressures, smaller oscillation masses and

larger stiffness than the corresponding similar aged male groups.

Optimizing numerical models towards vocal fold oscillations is useful to identify underly-

ing laryngeal components controlling the phonatory process.

Introduction

The human voice represents an essential aspect of oral communication between human

beings. Voice is formed by the interaction and coordination of applied air flow, vocal fold tis-

sue and vocal fold movements. Accurate and precise physiologic interaction of several laryn-

geal muscle group movements is the basis for normal voice production [1]. The acoustic voice

signal originates in the larynx where the two opposing vocal folds are excited by an airflow

generated by the lungs (Fig 1). When starting the voice production process (i.e., phonation),

the vocal folds are positioned close to each other. Airflow produced from the lungs streams

upwards and increases the subglottal pressure below the vocal folds. After exceeding a certain

subglottal pressure level, the vocal folds first start to produce small oscillatory motions that

then result in a steady-state oscillation (i.e., periodic opening and closing of the vocal folds). A

healthy voice signal is normally produced by periodic and symmetric vocal fold oscillations.

Also, the closure of the glottis, where the vocal folds almost or entirely close, is considered to

be an important part of the normal phonation process [2].

Depending on gender and age, vocal folds oscillate between approximately 100 and 350

times per second during normal phonation [3]: women (~ 200 Hz– 250 Hz), men (~ 100 Hz–

150 Hz), children (~ 200 Hz– 350 Hz). As these movements are so fast, vocal fold dynamics

are best captured and visualized by laryngeal high-speed videoendoscopy (HSV) with record-

ing frame rates between 4000 Hz and 20 000 Hz [4–8] (Fig 1A).

Since HSV was first introduced, image processing methods have been proposed [9–11] to

allow the quantification of vibratory behavior with objectively computed perturbation mea-

sures [12–14]. The signals extracted from HSV and analyzed are either the glottal area wave-

form (i.e., glottis area function over time) or the vocal fold trajectories at a specific vocal fold

location, preferably at mid-membranous position [15–17]. Both signals represent the oscil-

latory behavior of the vocal folds; i.e., the opening and closing process. Quantitative analysis

based on HSV has added substantial knowledge regarding normal and pathological vocal fold

dynamics [4,18,19].

Vocal fold dynamics are highly sensitive towards anatomic tissue changes [2], dysfunctions

of the involved muscles [20] and subglottal air pressure [21]. Alterations of these parameters

may yield disturbed dynamics, resulting in hoarseness. Typically disturbed dynamics are left–

right asymmetries, aperiodicities or glottis closure insufficiency, where the vocal folds do not

entirely close [2]. It is highly desirable to early diagnose and quantify pathologic dynamic

laryngeal alterations to prevent severe laryngeal tissue damage [22,23].

However, because of the limited space in the larynx, it is difficult to measure and quantify

the mechanical laryngeal tissue characteristics directly in-vivo [24]. Additionally, HSV evalua-

tion alone only allows vocal fold dynamics to be described but does not give quantitative infor-

mation on biomechanical parameters such as tissue elasticity and occurring subglottal air

pressure. Hence indirect analysis methods based on the adaptation of numeric biomechanical

larynx models towards in-vivo HSV recorded vocal fold dynamics were suggested [25,26].

Biomechanical simulation of vocal fold dynamics
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Initially, these biomechanical models were used to simulate the underlying processes during

phonation. Models were developed to allow the investigation of parameter effects such as

applied subglottal air pressure, vibrating masses, tissue stiffness and elongation characteristics

with respect to the dynamic vocal fold behavior [27–29]. These so-called lumped mass models

(LMMs) are fairly simple but still enable many dynamic characteristics in the larynx to be

reproduced [30]. In the most basic models, the vocal folds are simulated by a self-vibrating

source consisting of two spring-coupled masses (2MMs) for each vocal fold (Fig 2A) [31].

Since these 2MMs allowed the simulation of only one trajectory at one vocal fold position,

models with more masses (multi-mass models, MMMs) were suggested to permit the simulta-

neous simulation of the vocal fold dynamics at different positions (Fig 2B) [32]. However, the

2MMs and MMMs only focused on the simulation of the lateral (i.e., horizontal) vocal fold

Fig 1. (A) Sketch of the sagittal section of the head and neck, indicating the vocal folds and the rigid endoscope. (B) Glottis (dark) and on the left

and right sides the two vocal folds as seen through the HSV. (C) Larynx with highlighted acoustic sound sources (arrows) resulting from the vocal

fold vibrations.

https://doi.org/10.1371/journal.pone.0187486.g001

Fig 2. (A) Two-mass model as used in this work with indicated subglottal pressure Ps. (B) Six-mass model allowing the simulation of the vocal fold

trajectories along three positions, i.e. at posterior, medial and anterior positions of the vocal folds. (C) Three-dimensional multi-mass model that

additionally allows the simulation of vertical dynamics and the vocal fold medial surface at 25 positions along each vocal fold.

https://doi.org/10.1371/journal.pone.0187486.g002
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displacements and on the phase differences along the inferior-superior plane. To simulate the

often neglected vertical vocal fold movements [33] (i.e., vertical tissue displacement in infe-

rior-superior direction), enhanced and more complex three-dimensional LMMs were intro-

duced [34] (Fig 2C).

After the development of the LMMs to simulate human vocal fold dynamics by manually

adapting the model parameter settings [28,35], the automatic optimization of these numerical

models towards HSV recorded vocal fold oscillations was suggested in order to acquire infor-

mation on parameters responsible for chaotic behavior, certain dynamic conditions and left–

right asymmetric oscillations.

The first fully automatic optimization method was realized by using the Nelder–Mead algo-

rithm to automatically optimize the parameters of a 2MM to reproduce HSV recorded human

vocal fold dynamics during sustained phonation [25,26]. Three parameters (vibrating mass,

stiffness and subglottal pressure) were varied in the so called cost function Γ to minimize the

involved periodic oscillatory components, represented by discrete Fourier transformation

(DFT) coefficients, between the model trajectories and trajectories extracted from HSV

recordings. Based on this work, the 2MM and a genetic algorithm for the optimization were

successfully employed to reproduce the trajectories of patients suffering from unilateral vocal

fold paralysis [36] and for ex-vivo larynx experiments [37]. Combining a genetic algorithm

with a quasi-Newton method a 2MM successfully reproduced vocal fold dynamics in three

subjects [38]. As cost function the Euclidean distance of the glottal area waveform was chosen.

Lately, statistical methods like a non-stationary Bayesian estimation approach were suggested

for optimizing 2MMs but was only tested on theoretical (i.e., simulated) vocal fold oscillations

[39]. Further, a time-dependent 2MM was successfully adapted for 20 healthy and pathological

voices [40]. For the optimization an adaptive Simulated Annealing approach was chosen to

minimize the Euclidean distance between the model and experimental vocal fold trajectories.

Schwarz et al (2008) [41] successfully optimized a MMM with six coupled masses (6-MMM)

towards six disordered voices and two normal voices. They applied a Genetic algorithm and

split the optimization process into several sub-steps. As cost function Γ, they used a combina-

tion of glottal area and vocal fold trajectory consistency measure. Also, MMMs were used to

reproduce vocal fold dynamics within pitch rise paradigms [42]. Wavelet coefficients in the cost

function were chosen to consider the time dependency of the system. Powell’s Direction Set

optimization algorithm was applied to the interval divided (i.e., four oscillation cycles) signal.

Thereby, 30 healthy and pathological adult voices were adapted.

Simulating the phonatory process after total laryngectomy, due to cancer, was achieved

through coupling eight two-mass models arranged in a circle [43]. For the optimization they

selected a combination of Simulated Annealing for a preliminary global search and Powell’s

Direction Set method for the final local approximation. As cost function a combination of area

difference, intersection and distance measures was chosen. The method was tested on 75 syn-

thetic data sets and four human subjects.

Finally, a three-dimensional model (3DM) was developed and applied to ex-vivo human

vocal fold dynamics produced in a hemi-larynx setup [44]. This model allowed the simulation

of the entire vocal fold surface from inferior to superior including the vertical dynamics [44].

Owing to the increased number of masses in the 3DM (i.e., 25 on each side) and the rather

unfortunate topology of the cost function (i.e., many local minima), the optimization was

divided into several coarse steps, followed by fine optimization processes. It started with a

global optimization combining Particle Swarm Optimization and Simulated Annealing algo-

rithms. The local optimization was achieved by Powell’s direction set method [45]. By adapting

this model to ex-vivo human larynx dynamics, information was obtained on the distribution

of vibrating masses and stiffness along the vocal fold surface. The optimization results

Biomechanical simulation of vocal fold dynamics
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accurately matched the actual fundamental frequencies and also the experimental measured

subglottal pressure values [44].

Overviews of current applied LMMs can be found in [46,47]. Owing to the increase in

computational power, more accurate and therefore more computationally intensive so called

Finite Element Methods (FEM) and Finite Volume Methods (FVM) simulating 2D and 3D

laryngeal dynamics and airflow became popular during the last decade [31,48–50]. However,

the complexity of these models and therefore the computational costs do not allow them to be

used for optimization purposes yet.

As described above, numerical optimization of LMMs has so far focused only on healthy

adults and compared model parameters for healthy vs. disordered phonation processes.

To the best of our knowledge no studies have applied LMMs to analyze gender specific dif-

ferences. Previous ex-vivo and in-vivo studies on human larynges showed the following, partly

contradictory, results: Regarding vocal fold stiffness, an ex-vivo study reported, at medial posi-

tion slightly above the vocal fold edge, smaller stiffness for an elderly women compared to an

elderly male [51]. In contrast, it was suggested that vocal folds in men are less stiff than in

women [52]; unfortunately the authors did not report the age of the subjects. Gender related

subglottal pressure differences were reported for young adults [53]; another study, for example

showed no gender specific differences [54, 55]. However, male vocal folds are known to be

larger (i.e., increased mass) than female vocal folds [56].

Further, to the best of our knowledge no studies have compared biomechanical LMM

parameters between younger and elderly subjects. Previous ex-vivo and in-vivo studies on

human larynges reported the following results: Glottal parameters extracted from HSV record-

ings were successfully applied to differentiate age groups; however no details on the parameters

quantities were presented [57]. Age-related morphological changes of the vocal folds influenc-

ing the viscoelasticity have been described [58–61]. Previous studies suggested lower stiffness

for younger males compared to elderly males [51,62]. Histologic analysis reported reduced

lamina propria thickness and reduced epithelial cell density for elderly subjects [63]. However,

an increase in vocal fold volume (i.e., mass) for 28.7% of analyzed elderly women was also

reported [62]. Furthermore, a thickening of mucosa and vocal fold cover in elderly women

was described [64]. Higher subglottal pressure in elderly males compared to younger male sub-

jects was suggested [65]. However, other studies reported no differences [66,67]. It was also

suggested that aging effects on phonatory behaviors differ in degree and kind for men and

women [65]. In summary, a better understanding of the elderly voice and accompanying voice

disorders is desired [66,68].

Since it is also not obvious, which optimization algorithms and cost functions are the most

appropriate ones, we have decided to apply different approaches in our study. Therefore, by

optimizing a LMM towards vocal fold oscillations recorded by endoscopic high-speed imag-

ing, the aims of our study are:

1. to analyze the performance of three different optimization algorithms and three different

cost functions (Γ1, Γ2, Γ3) to automatically adapt a fairly simple LMM (i.e., in our study

2MM) to vocal fold dynamics.

2. to quantify gender related biomechanical differences in the larynx expressed by 2MM

parameters. We hypothesize that healthy young males would have greater masses, lower

stiffness and less subglottal pressure compared to healthy young females.

3. to quantify age related biomechanical differences in the larynx expressed by 2MM parame-

ters. We hypothesize that healthy young adults would have greater vocal fold masses, lower

vocal fold stiffness and lower subglottal pressure compared to elderly atrophic subjects.

Biomechanical simulation of vocal fold dynamics
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Also, it is expected to find higher kinematic asymmetry in the elderly subjects as reported

previously [69,70].

By investigating these objectives, we want to illustrate and emphasize the informative value

of LMMs towards vocal fold physiology by analyzing interrelations between underlying laryn-

geal components such as vibrating mass, stiffness and applied subglottal pressure. Further, we

want to illustrate the potential for the differentiation of vocal fold vibratory characteristics

based on LMMs.

Methods

Subjects

Four groups of subjects were investigated. Two younger age groups were analyzed with 16

healthy females (18–24 years) and 17 healthy males (19–38 years). The subjects were recruited

at the FAU-Erlangen-Nürnberg and University of Kentucky. The subjects had to fulfill the fol-

lowing criteria: negative history of vocal pathology, not a professional vocal user and having a

normal voice, as confirmed by a speech–language pathologist. Adults with history of smoking

were excluded.

Further six older male subjects (62–86 years) and five older female subjects (72–91 years)

were analyzed. These subjects were recruited during regular office hours at the Division of

Phoniatrics and Pediatric Audiology of the department Otolaryngology, Head- and Neck sur-

gery at the University Hospital Erlangen. The subjects were diagnosed with vocal fold atrophy

and had no further vocal fold pathologies.

The participants gave informed, written consent prior to the participation and this consent

procedure was approved by the corresponding local ethics committees (Ethik-Kommission

der Medizinischen Fakultät FAU-Erlangen-Nürnberg and Office of Research Integrity Expe-

dited Review Board at the University of Kentucky). Experiments were performed in accor-

dance with the Declaration of Helsinki (1964).

Data acquisition

To record the vocal fold vibrations, a PENTAX Medical (Montvale, NJ, USA) Model 9710 digi-

tal gray scale high-speed (HS) camera was used at both universities. The applied temporal reso-

lution of 4000 fps enables the vocal fold oscillations to be captured [4]. The HS camera

provides a series of pictures with an image resolution of 512 × 256 pixels with a maximum

duration of 4 seconds to visualize the laryngeal dynamics.

The recordings were performed during sustained phonation of the vowel /i:/ with a PEN-

TAX Medical 70˚ endoscope containing a 300 Watt Xenon light source. For each subject, one

sample of typical phonation was recorded and analyzed. For the optimization, a sequence

length of 100 ms (N = 400 frames) of sustained phonation was chosen. This interval covered

between 10 and 50 oscillation cycles depending on the fundamental frequency. The choice of

this interval length is a compromise between a sufficient observation time and computational

costs and lies in the range of previous reported interval lengths.

Data processing

First, image processing was performed to determine the glottis area and vocal fold edges [11],

Fig 3. The glottis axis was determined using the methods being described in [71,72], Fig 3. The

in-house developed software tool “Glottis Analysis Tool” (GAT) was used. The GAT tool has

already proven its validity and applicability within several studies [8,73] and is also used by

other voice groups [74,75].

Biomechanical simulation of vocal fold dynamics
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For the adaptation of the 2MM, the trajectories from the mid-membranous position, 50%

position between anterior and posterior, of the vocal folds were chosen (Fig 3), since the largest

vocal fold amplitudes are expected in this region [76]. The trajectories at the medial vocal fold

position are also expected to be the most useful [16]. To guarantee the extraction of the vocal

fold trajectories at the 50% glottal mid-line only HSV recordings were used, where no obstruc-

tions of the view by the epiglottis was present and the most anterior and the visible parts of the

posterior glottis were in view.

Two-mass model (2MM)

The human voice is generated by three-dimensional vocal fold oscillations [76]. During pho-

nation, oscillations of the vocal fold mucosa occur in the anterior–posterior, medio-lateral and

vertical directions [20]. Anterior–posterior movements are fairly small and can therefore be

neglected [76]. The vertical displacements (up to 2.4 mm) are approximately two-thirds of the

dominant medio-lateral displacements [33,76]. However, the vertical component cannot be

reconstructed based on the current HSV imaging techniques, owing to the lack of a second

imaging tool (e.g., a second camera or laser projection system [77]). So far, extended studies

on three-dimensional reconstruction of vocal fold surface dynamics have only been possible in

Fig 3. Performed steps for image processing yielding the experimental vocal fold trajectories.

https://doi.org/10.1371/journal.pone.0187486.g003
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ex-vivo or in synthetic experiments [77,78]. For three-dimensional in-vivo reconstruction,

only case studies [79] and proof of concepts [80] were performed lately. Therefore, we focused

on the dominant medio-lateral (i.e., horizontal) displacement characteristics at one vocal fold

position that can be simulated by the 2MM (Fig 4).

Important laryngeal parameters that influence the oscillations are vibrating vocal fold mas-

ses (m), tension, elasticity, damping (r), stiffness (k) and subglottal air pressure (Ps). The 2MM

enables these parameters to be varied and the effects on the medio-lateral oscillatory behavior

at one specific vocal fold location to be observed. Since the here applied 2MM has already been

extensively described [28], we will give only information necessary to understand the function-

ality of the 2MM and the optimization procedure. The 2MM is based on [27,28] and assumes

that each vocal fold is formed by two vertically arranged coupled masses: A larger, lower mass

(m1α) and a smaller, upper mass (m2α). Each part consists of a simple mechanical oscillator

with a mass and two springs at which the two masses of one vocal fold are connected by one

spring. The 2MMs driving force is the subglottal pressure Ps below the masses. The 2MM is

described by a system of eight (α = l,r) ordinary differential equations [25]:

d
dt
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The indices (i, α) represent lower (i = 1) and upper (i = 2) masses; α = l,r represents the left

and right vocal fold. Ishizaka & Flanagan (1972) introduced a standard parameter value set

that represented the standard vocal fold vibration pattern [81]. The parameters from Eq (1)

Fig 4. HSE image with indicated glottal axis (vertical blue line) and medial positions (~50% position between anterior and posterior) on

left (blue dot) and right (red dot) vocal folds where the trajectories were extracted (left figure). The 2MM used (middle figure). Extracted

trajectories for left (blue) and right (red) vocal folds (right figure).

https://doi.org/10.1371/journal.pone.0187486.g004
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and their standard values as originally introduced [28,81] are given in Table 1. The nonlinear

components (I1α, I2α and F1) describe the impact forces (I1α I2α) and the subglottal pressure

function (F1), described also in detail in earlier work [25].

For the optimization, the 2MM trajectories (TMα, α = l,r) from each side are a combination

of the displacements of the lower and upper masses. The mass (m1α, m2α) that is closer to the

glottal midline (i.e., visible from above) contributes to the corresponding vocal fold trajectory

TMα [40].

The HSV recordings do not allow the extraction of the vocal fold oscillations in metric

units but only in pixels. Owing to the known differences in vocal fold length, we chose mean

values for the vibrating vocal fold length to be 10 mm in women and 16 mm in men. These val-

ues are the average membranous vocal fold lengths being reported in previous work [82–86].

Due to the metric mapping of the vocal fold lengths, we can calculate an approximate metric

equivalent of the length of one pixel and convert the extracted trajectories to metric units.

During the optimization, the parameters vocal fold mass (m1α), stiffness (k1α), and subglot-

tal pressure (Ps) are varied. This is based on the study by Steinecke and Herzel (1995) [28],

who also introduced a scaling factor Qα (α = l,r) to vary the standard masses (m1α0) and spring

variables (k1αo). Laryngeal asymmetry is expressed by the scaling factors Qα The scaling factors

Ql (left vocal fold) and Qr (right vocal fold) influence the masses and spring constants in the

following way [27,28]:

kia ¼ Qakia0; kca ¼ Qakca0

cia ¼ Qacia0; mia ¼ mia0=Qa

ð2Þ

This reciprocal relationship between vibrating masses m1α and springs k1α is based on the

assumption that the larger the vibrating mass, the smaller is the stiffness of the vocal folds [28].

The 2MM oscillates symmetrically provided that Ql and Qr are equal or only slightly different.

If the differences between the Qi are too large, the 2MM vibrations become left-right

asymmetric.

Optimization procedure

With the variation of Ql and Qr reflecting mass and stiffness for each vocal fold and the sub-

glottal pressure Ps, it is possible to reproduce physiologic and pathologic vocal fold oscillations

[26,36]. The goal of the optimization is to vary these parameters so that the resulting 2MM tra-

jectories (TM) accurately recreate the HSV recorded and extracted vocal fold trajectories (TE).

This is realized by a combination of several steps within the optimization algorithm (Fig 5).

The cost function judges the quality of the 2MM optimization and compares the model trajec-

tories TMl and TMr with the recorded vocal fold trajectories TEl. and TEr. Three different cost

functions (Γ1, Γ2, Γ3), as described below, are used to match the extracted vocal fold trajecto-

ries as closely as possible.

Table 1. Standard parameters of the 2MM. In this study, the chosen vocal fold lengths l were 10 mm for women and 16 mm for men. The rest positions x01,

x02 for the 2MM optimization were computed based on the mean amplitudes of the HSV trajectories yielding also individual rest areas a0i [26]. During the 2MM

optimization, the mi, ki and Ps values are varied.

m1 [g] m2 [g] k1 k2 kc r1 r2 c1

0.125 0.025 0.08 0.008 0.025 0.02 0.02 3k1

c2 x01 [cm] x02 [cm] a01 a02 d1 [cm] l [cm] Ps [cmH2O]

3k2 0.0179 0.0179 0.05 0.05 0.25 1.4 8.0

https://doi.org/10.1371/journal.pone.0187486.t001
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Fig 5. Flow diagram of the optimization procedure.

https://doi.org/10.1371/journal.pone.0187486.g005
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Frequency domain (Γ1). The absolute and phase values of the dominant harmonics

between TM and TE are considered as suggested previously [25]. First, a preprocessing step

with a Fourier transform for identification of the harmonics involved in the left experimental

vocal fold trajectory (TEl) and right trajectory (TEr) is performed. The experimental trajectory’s

Fourier spectrum is dominated by only a small number of harmonics, represented by their

Fourier coefficients eiα (i = number of harmonic, α = left (l) or right (r)). Only harmonics eiα

that exhibit at least 25% of the absolute value of the largest coefficient e1α = max (eiα) repre-

senting the fundamental frequency are taken into account. For irregular or aperiodic vibra-

tions the coefficient e1α = max (eiα) corresponds to the dominant frequency. Additionally, the

next left and right neighbors of the coefficients are selected to consider slight variations in the

harmonics [25]. For the simulated 2MM trajectories TMl and TMr, the equivalent Fourier coef-

ficients (sjα, i = j) are chosen and considered in the cost function Γ1:

G1ðQl;Qr; PsÞ≔

s� k ðj e1l j; . . . ; j eLl jÞ � ðj s1l j; . . . ; j sLl jÞk2

þ k ðarg e1l; . . . ; argeLlÞ � ðargs1l; . . . ; argsLlÞk2

þ s� k ðj e1r j; . . . ; j eRr jÞ � ðj s1r j; . . . ; j sRr jÞk2

þ k ðarge1r; . . . ; argeRrÞ � ðargs1r; . . . ; argsRrÞk2

ð3Þ

In Γ1, L corresponds to the number of coefficients for the left and R for the right vocal fold.

Also, a scaling factor s is included in Γ1 to balance the influence of phase and absolute values of

the Fourier coefficients as described in [25]. Γ1 was constructed to reduce the number of local

minima and to therefore potentially yield improved optimization results [87].

Time domain (Γ2). The Euclidean distance between the model trajectories (TMl, TMr) and

the recorded trajectories (TEl, TEr) is computed.

Normalized frequency domain (Γ3). This cost function consists of Γ1, except that the

absolute Discrete Fourier Transform (DFT) coefficients are normalized to 1 and that an addi-

tional regularization term is added: the Euclidean distance of the absolute values of the DFT

coefficients representing the fundamental frequency.

Optimization was rated successful when the following three error criteria were

achieved. (1) Frequency deviation� 5%; (2) glottis closure as seen in the HSV recordings

was achieved for the optimized 2MM trajectories; (3) amplitudes of optimized 2MM trajecto-

ries were within the amplitude variations of HSV trajectories; see e.g., Fig 4 where the right tra-

jectory (red) varies between 12.5 and 15 pixel. Optimization would be defined successful for

this trajectory when the corresponding right 2MM amplitude was also between 12.5 and 15

pixel.

For optimization, three algorithms are run separately on all three cost functions Γ1, Γ2, Γ3:

(1) the Nelder–Mead (NM) algorithm [25], (2) the Particle Swarm Optimization (PSO) algo-

rithm [45] and (3) the Simulated Bee Colony (SBC) optimization [88]. This yielded altogether

nine optimized parameter sets (Ql, Qr, Ps) approximating the recorded vocal fold trajectories

TEα. Since, the cost functions Γ1, Γ2, Γ3 are computed in different ways and in different

domains (frequency and time) their absolute values cannot be compared to judge which cost

function is actually better. Hence, the final and best parameter set (Ql, Qr, Ps) was determined

as the parameter set having the smallest normalized Euclidian distance Γ between the
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experimental TEα and simulated model trajectories TMα:

G ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1
ðTEl½i� � TMl½i�Þ

2

PN
i¼1
ðTEl½i�Þ

2

s

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1
ðTEr½i� � TMr½i�Þ

2

PN
i¼1
ðTEr½i�Þ

2

s !

ð4Þ

Prior to the actual optimization, for each subject an initial value search for Ql, Qr, and Ps

was performed for the NM and PSO algorithms to reduce the potential search space and

computational time for the actual optimization process [25]. An initial search was not per-

formed for the stochastic based SBC algorithm.

The entire optimization process was performed on an Intel1 Core™ i5-4590 Processor

(3.30 GHz) using an in-house developed software written in C#. The software contained a

GUI for improved handling and visually reviewing the results.

Parameter analysis

For judging the left-right asymmetry in the 2MM and therefore in the vocal fold oscillations a

factor Qlr (� 1) is used, adapted from [28]. The closer the Qlr quotient is to 1, the higher is the

dynamic left–right symmetry:

Qlr ¼
maxðQl;QrÞ

minðQl;QrÞ
ð5Þ

Pairwise group differences (young females vs. young males) for the computed parameters

(Ql, Qr), Qlr, Ps and Γ were statistically investigated. (Ql, Qr) are merged to one data pool, since

the absolute differences between both the groups are of interest. Initially, to test for normal dis-

tribution, the Shapiro–Wilk test was used. All four parameters were not normally distributed:

(Ql, Qr) (df = 50, p = 0.000), Γ (df = 25, p = 0.005), Qlr (df = 25, p = 0.011) and Ps (df = 25,

p = 0.001). Hence, Mann–Whitney U-tests were applied for the four group comparisons; the

significance level was set to p = 0.05 and no Bonferroni correction was applied.

For comparing the younger vs. elderly subjects and gender specific differences in the elderly

groups, only descriptive statistics were applied, due to the small number of elderly subjects.

Hence, these observations are limited and have no statistical evidence. Statistical analysis was

done using IBM SPSS Statistics 21.

Results and discussion

Applicability of the 2MM optimization

Results of the optimization procedure for the 2MM were only deemed correct, when all three

above introduced error criteria were met. Altogether 12 HSV recordings (27.3%) could not be

correctly optimized by violating one or more of these error criteria: (1) the fundamental fre-

quency could not be matched (two times); (2) the HSV trajectories and the optimized 2MM

amplitudes did not match (nine times); (3) the glottis closure or the glottis closure insuffi-

ciency was not reproduced (five times). In Fig 6, typical examples for failed optimization

results are given: (A) For the young female the Γ value was within the range of the correct

rated optimizations, however glottis closure was not achieved. (B) For the young male the Γ
value is in the upper range of the correctly rated optimizations, however the amplitudes did

not match. (C) For the elderly female the Γ value was higher than for the correctly rated opti-

mizations, glottis closure was not achieved and the amplitudes did not match. (D) For the

elderly male the Γ value was higher than for the correctly rated optimizations, glottis closure

was not achieved and the amplitudes did not match.
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Fig 6. Examples for a young female (unmatched glottis closure and left amplitude), young male

(unmatched amplitude), elderly female (unmatched glottis closure and amplitude) and elderly male

(unmatched amplitudes and glottis closure) that illustrate the extracted trajectories and the

incorrectly optimized trajectories of the 2MM for the left and vocal fold right side.

https://doi.org/10.1371/journal.pone.0187486.g006
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Altogether 72.7% of the HSV trajectories were successfully optimized: 68.8% (11 out of 16)

of the young females, 82.4% (14 out of 17) of the young males, 80.0% (4 out of 5) of the older

females, and 50.0% (3 out of 6) of the older males. In the following, only these 32 successfully

optimized HSV recordings will be considered and discussed.

As can be seen in Table 2, all three applied optimization algorithms yielded optimal results

(i.e., lowest Γ value). However, the NM (38%) and SBC (43%) algorithms yielded more often

the best results than the PSO (19%) algorithm. For the cost function, Γ2 definitely showed the

most promising results. Γ2 yielded the best results most often (94%) followed by Γ3 (6%). Γ1

never yielded the best approximation. With regard to our first aim, the results suggest that all

three optimization algorithms are suitable for the 2MM optimization but as cost function only

Γ2 seems to be promising.

The low values of the objective function Γ confirm the applicability of the 2MM for all four

groups, Table 3. A value of Γ = 0 would correspond to a perfect optimization without any dis-

crepancies between experimental and simulated curves. The highest mean Γ values are for

elderly males (0.63 ± 0.09), followed by elderly women (0.59 ± 0.18). The best and lowest values

are found for young men (0.45 ± 0.06) followed by the young women (0.57 ± 0.20). The differ-

ence in Γ (young women vs. young men) is not statistically different (p = 0.434).

The values suggest that the varied masses and stiffness parameters of the 2MM might adapt

slightly better to the two younger subject groups than they do when elderly subjects are consid-

ered. However, higher values of Γ were expected for the elderly groups in comparison with

young adults, as elderly subjects were reported to have lower laryngeal dynamic periodicity

compared with younger adults [89,90]. This means that the glottis and therefore the extracted

vocal fold trajectories oscillate not as periodically as they do in young adults. The 2MM does

not allow for the simulation of slight changes in oscillation period length and slight amplitude

changes between oscillation cycles (i.e., Jitter and Shimmer) hence yielding consequently

higher Γ values for the elderly subjects.

The accuracy of the optimization regarding the fundamental oscillation frequencies of the

vocal folds is illustrated in Fig 7, where the experimental trajectory frequencies (fEl, fEr) are

plotted against the optimized 2MM frequencies (fMl, fMr). The highest accuracy is given for

young women, where the model and experimental frequencies match for all subjects. For

young males, the frequencies match perfectly for eight subjects. For three subjects the frequen-

cies deviate for one vocal fold side with Δ = {6.7, 3.8, 3.8 Hz} and for three subject the frequen-

cies deviate for both vocal folds with Δ = {3.8, 3.2, 2.6 Hz}. For older women, the frequencies

match for three subjects. For one subject the frequencies deviate for both vocal folds with Δ =

{10.5 Hz}. For older men, the frequencies match for two subjects. For one subject the frequen-

cies deviate for one vocal fold with Δ = {7.2 Hz}.

Table 2. Overview of how often each optimization algorithm (Nelder Mead–NM, Particle Swarm Opti-

mization–PSO, Simulated Bee Colony—SBC) and cost function Γ1, Γ2, and Γ3 yielded the best optimi-

zation result; i.e., smallestΓ value–see Eq (4).

Algorithms yielding best performance Cost functions yielding best

performance

NM PSO SBC Γ1 Γ2 Γ3

Young Males 6 2 6 0 13 1

Young Females 4 2 5 0 10 1

Older Males 1 0 2 0 3 0

Older Females 1 2 1 0 4 0

Sum 12 6 14 0 30 2

https://doi.org/10.1371/journal.pone.0187486.t002
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In summary, 81% of the successful optimized trajectories fMα matched the fundamental fre-

quencies of the experimental trajectories fEα. This value is similar to that reported previously

[26], where 80% of the original fundamental frequencies were correctly reproduced. Fig 8

shows examples for correctly reproduced vocal fold trajectories.

Optimized parameters

The computed values for Ps, Qlr, Ql and Qr and found group differences (gender and age) con-

firm our hypotheses as formulated in aims (2) and (3):

Table 3 gives an overview of the determined Ps, Ql, Qr and Qlr parameter values. The sym-

metry quotient Qlr shows high symmetry for the two young healthy groups, confirming the

previously performed medical diagnosis of normal voice production. In our study, young

women and men showed similar, statistically not significant differences with p = 0.202, and

highest symmetry with Qlr values of 1.07 ± 0.04 for young males. Young (Qlr = 1.12 ± 0.08)

and older females (Qlr = 1.12 ± 0.13) exhibit equal symmetry. Deviations of dynamic left–right

symmetry of up to 20% (i.e., Qlr� 1.20) were reported previously [42] and can still be consid-

ered as entirely physiologic. Further, slight physiologic and anatomic asymmetries were

reported in healthy young and elderly subjects [69,70]. However, the older the subjects, the

more prominent and larger the vocal fold dynamic asymmetries might become [91]. This was

reflected only for the older male group (Qlr = 1.28 ± 0.20) that showed increased asymmetry

values (i.e., higher Qlr values). The older female group was much more symmetric than the

elderly male group. These findings confirm our hypothesis of higher kinematic asymmetries in

elder subjects for women but not for men.

Table 3. Mean values, standard deviations and range (minimum–maximum) of Γ, the optimized parameters Ps [cmH2O], Ql, Qr and the symmetry

quotient Qlr for the four subject groups are given.

Young Males Young Females Elderly Males Elderly Females

Mean ± SD Range Mean ± SD Range Mean ± SD Range Mean ± SD Range

Γ 0.45 ± 0.06 0.37–0.57 0.57 ± 0.20 0.32–0.90 0.63 ± 0.09 0.58–0.74 0.59 ± 0.18 0.40–0.82

Ps [cmH2O] 16.49 ± 7.13 10.10–32.31 21.12 ± 7.16 13.20–36.10 22.61 ± 6.50 15.14–27.00 28.30 ± 12.17 18.70–45.70

Ql 1.12 ± 0.32 0.76–1.99 2.61 ± 0.38 2.03–3.32 1.32 ± 0.15 1.19–1.49 2.81 ± 0.93 1.56–3.70

Qr 1.15 ± 0.28 0.78–1.83 2.46 ± 0.34 1.93–3.05 1.68 ± 0.62 1.15–2.36 3.23 ± 1.35 1.60–4.87

Qlr 1.07 ± 0.04 1.02–1.17 1.12 ± 0.08 1.01–1.24 1.32 ± 0.24 1.10–1.59 1.12 ± 0.13 1.02–1.32

https://doi.org/10.1371/journal.pone.0187486.t003

Fig 7. Fundamental frequencies (fEl, fEr) of the experimental HSE-recorded trajectories versus the

frequencies (fMl, fMr) of the optimized model trajectories shown separately for left and right vocal

folds.

https://doi.org/10.1371/journal.pone.0187486.g007
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Fig 8. Examples for a young female, young male, elderly female and elderly male that illustrate the

extracted trajectories and the correctly optimized trajectories of the 2MM for the left and vocal fold

right side. The values for the cost function Γ are given.

https://doi.org/10.1371/journal.pone.0187486.g008
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Young men showed the lowest subglottal pressure Ps with a mean value of 16.49 ± 7.13

cmH2O, but also had the lowest fundamental frequency (147 ± 38 Hz). In contrast, older males

showed clearly higher subglottal pressure at 22.61 ± 6.50 cmH2O. Also the fundamental fre-

quency for elderly men was increased (182 ± 22 Hz) confirming earlier studies [62]. Also, for

the elderly females the fundamental frequencies (380 ± 117 Hz) were increased compared to

young women (328 ± 40 Hz)—contradicting previous observations [92]. Also the subglottal

pressures (28.30 ± 12.17 cmH2O) were higher for the elderly compared to the younger female

group (21.12 ± 7.16 cmH2O).

The two elderly male and female groups showed both higher subglottal pressure and higher

fundamental frequencies compared to their corresponding younger groups. The subglottal

pressure for the male groups was smaller compared to the corresponding female groups. Com-

paring the young gender groups revealed statistically significant differences (p = 0.021); young

men showed smaller Ps than young women. This is in contrast to previous studies where males

and females showed similar values for both groups (Table 4). Overall, the computed subglottal

pressures (10.10–45.70 cmH2O) were much higher compared to previously reported in-vivo

value ranges (normal phonation: 3.5–12.8 cmH2O, loud phonation: 5.9–27.7 cmH2O), Table 4.

However, the computed Ps values are in the same range as in previous studies (11.6 cmH2O�

Ps� 46.3 cmH2O) that optimized the 2MM towards human in-vivo [26] and a 3DM model

towards human ex-vivo [44] vocal fold dynamics. In [44], the computed Ps values very well

approximated the applied and measured Ps values indicating that the here presented values

may not be entirely off. High Ps values were also reported for human ex-vivo larynx experi-

ments (up to 44.0 cmH2O in [96] and up to 35 cmH20 in [97]). However, the computed Ps val-

ues in our study most likely overestimated the actual applied Ps values but are still in reported

ranges.

Ql and Qr are investigated with regard to their absolute values. Clear differences between

the four groups were apparent. Young men showed the lowest values for Ql and Qr (0.76–

1.99), followed by the older males (1.15–2.36). The computed values are in the same range as

reported previously [26]. Older women had the highest values (1.56–4.87) followed by young

women (1.93–3.32). Transferring this to the vocal fold physiologically means that younger

men and women have higher oscillating masses with smaller stiffness than their older compari-

son groups. Also, this means that men have larger masses and lower stiffness than the corre-

sponding female groups. It has to be mentioned that the relation “increasing mass–decreasing

stiffness” is induced by the modeling parameter Qα as can be seen in Eq (2) [28]. However, it is

generally understood that the vibrating portion of the vocal fold masses usually becomes

smaller when vocal fold tension is increased [81, 98]. For young women vs. young men the dif-

ference for (Ql, Qr) was found statistically significant with p = 0.000.

For stiffness, the found gender differences confirm an earlier study where the amplitude

quotient (AQ) as an indirect measure of the viscoelastic stiffness of vocal folds was used [15].

The amplitude quotient is determined by the shape and amplitude of the glottal area

Table 4. Overview on subglottal pressure vales (cmH20) as reported for healthy subjects during normal and loud phonation in the literature.

Study Females Males

Normal Loud Normal Loud

Holmberg et al [93] 3.6–8.1 6.4–13.7 4.3–9.7 6.2–16.4

Perkell et al [55] 5.5 ± 1.3 7.6 ± 1.8 5.9 ± 1.1 8.7 ± 2.4

Sulter & Wit [54] 11.2 ± 4.1 18.3 ± 6.9 11.8 ± 3.7 20.5 ± 5.9

Baken & Orlikoff [94] 3.5–12.6 6.5–27.7 4.2–12.8 5.9–24.4

Hertegard et al [95] - - 5–24

https://doi.org/10.1371/journal.pone.0187486.t004
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waveform. A smaller absolute value of amplitude quotient in young women in comparison

with young males was reported, indicative of increased stiffness for the young females. How-

ever, it should be noted that the amplitude quotient is not an explicit measure of elasticity. Fur-

ther, larger absolute values of maximum area declination rate in young women compared to

young men were reported [15]. This is indicative of larger absolute peak velocity during the

closing phase in young women, hinting to increased stiffness in young women and being again

confirmed by the computed larger Ql, Qr values, Fig 9A.

Relationships between parameters

It is notable that the computed lower Ps values (10–20 cmH2O, being 28% of the entire Ps

range) account for 97% of all occurring fundamental frequencies (100 Hz– 500 Hz), Fig 9B.

This suggests that the subglottal pressure might play a minor role in frequency changes, as

observed before [99]. Hsiao et al (2001) showed that the relationship between fundamental fre-

quency and subglottal pressure depends on the tension of the larynx [99]. This means for our

results that a lower tension or stiffness (small Qα), as computed for young and elderly males,

also means lower fundamental frequencies compared to young and elderly females, as con-

firmed in Fig 9C, whereas in contrast the Ps values were only slightly reduced (see means in

Table 3) and almost in the same range (Fig 9B). In contrast, higher tension, as computed for

both female groups, presents higher fundamental frequencies (Fig 9C) at only slightly

increased Ps values. The high dependency between f0 and stiffness is also expressed by a high

Pearson correlation coefficient of 0.986 (p = 0.000). This relationship was also seen before

Fig 9. Scatterplots for the distribution of the four groups relating (A) Ql vs. Qr (B) the fundamental frequencies

f0 vs. Ps, (C) f0 vs. (Ql, Qr) and (D) (Ql, Qr) vs. Ps.

https://doi.org/10.1371/journal.pone.0187486.g009
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when for a male and female group different loudness levels (soft–normal–loud: i.e., increasing

stiffness) were analyzed [93]. However, this study reported slightly lower Ps values for women

compared to men. In summary, the computed Ps values in our study (Table 3) and also the val-

ues presented by [93] do overlap for different analyzed subject groups and tasks showing a

high inter-individual variability for Ps.

Fig 9D shows the relationship of absolute stiffness and vibrating masses (Ql, Qr) to the sub-

glottal pressure Ps. Young males are clearly separated from young and old females. Older

males slightly overlap with both female groups. Further, the Fig 9D shows that the values for

both young groups are more centered whereas the values for both elderly groups are more

spread out and seem not to be as consistent.

Study limitations and outlook

This study has clear limitations due to the sample size. When comparing the optimized 2MM

parameters statistical tests were only performed when comparing young men vs. young women.

When comparing age related differences and elderly men vs. elderly women no statistical tests

were performed and only non-statistical tested trends were described. This lack of statistical sig-

nificance is clearly a major limitation. Also only healthy young and atrophic elderly subjects

were considered. However, the study yielded clear trends and initial group data for younger

healthy and elderly atrophic subjects. Future studies should also investigate how the study

parameters vary in elderly and young adults during modified phonation (e.g., pitch raise [40]).

Model and optimization limitations. The applied 2MM allows simulation of vocal fold

oscillations only in the medio-lateral and not in the vertical direction, as reported before for a

three-dimensional model [44]. Also, vibrational characteristics and changes along the vocal

fold length (anterior-posterior) cannot be captured by the 2MM since only the trajectories at

mid-membranous position (50% of the vocal fold length) are simulated. Hence, anterior-pos-

terior phase differences [100] and typical posterior gaps for female phonation [69] are not cap-

tured. For analyzing these characteristics the 6-Mass-Model should be applied and optimized

[41]. However, investigating such phenomena was not the focus of this study and will be taken

into account in our future work. Also the considered trajectories were always extracted at the

standardized 50% vocal fold length position with the assumed largest amplitudes. However,

the largest amplitudes vary around this position (from posterior to anterior: females (41.1% ±
10.8%) and males (46.5% ± 18.0%)) as reported in [16]. Hence in further studies the influence

of this assumption and the potential discrepancy towards the exact individual largest ampli-

tude should be investigated for the optimization results.

The computed and optimized Ps values seem to be overestimated by the 2MM since the

found values are much higher than assumed and reported for in-vivo measurements (see

Table 4), although such high Ps values were reported for ex-vivo studies. However, this issue

has to be clarified in future work. In this context, it has to be noted that the goal of investigat-

ing and optimizing LMMs towards vocal fold dynamics is not to directly transfer the quantities

of computed masses, stiffness and subglottal pressure but to uncover underlying biomechani-

cal differences between vocal fold dynamics [26,28,81,101].

No subgradient-based algorithms were applied for the optimization [102]. Applying such

algorithms may enhance the number of correct optimization results.

The success of the optimization procedure was assessed by three objective criteria. How-

ever, an explicit objective measure of how the shape of the trajectories was reproduced is a

question for future studies.

A dependent variation of masses and stiffness parameters as initially suggested was per-

formed [28]. However, the independent variation and optimization of masses and stiffness
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within the 2MM should be considered, since otherwise an increase of mass always goes along

with a reduction of stiffness. This dependency might reduce the applicability to certain vocal

fold oscillations and also might not reflect certain biomechanical constellations within the

vocal folds. Time-dependent parameters should be taken into account, since the 2MM with

time-independent parameters does not allow for entirely correct simulation of inter-cycle

changes as seen in Fig 8D; i.e., vocal folds show closure during a few cycles and then they do

not.

For future classification purposes (i.e., normal vs. pathologies), it might be interesting to

vary additional biomechanical parameters like collision and contact forces [103], frequency

dependent stiffness [104] and glottal flow [105].

Finally, to enable the clinical application of LMMs in the daily clinical routine in the future,

the computational time has to be reduced. Currently, the optimization including the initial

value search for one HSV recording takes approximately 60 minutes on a desktop computer.

HSV imaging limitations. HSV imaging projects the three-dimensional vocal fold vibra-

tions and surfaces onto two-dimensional pictures and movies. The image processing detects

the dark region between the two vocal folds as glottis. The positions of the most medial edges

of the vocal fold tissue from image processing are taken as experimental trajectories (TEα). The

trajectories (TMα) of the 2MM are built from the positions of the upper and lower mass (mα)

depending on which mass is more medial; i.e., visible from above. Since the exact vertical posi-

tions of the trajectories within the HSV images cannot be determined, it is unclear if the verti-

cal position (upper or lower mass) of the model trajectories actually corresponds to the same

vertical region (superior or inferior vocal fold edge) of the extracted trajectories. Applying

HSV in combination with a laser projection unit that allows the reconstruction of the three-

dimensional positions of the entire visible vocal fold surfaces would solve this shortcoming

[80,106]. The use of a laser projection unit with HSV would further allow for the extraction of

the vertical trajectory components of the vocal folds (96); however then a more complex three-

dimensional LMM will have to be applied for optimization; e.g. [34].

Owing to the lack of metric specifications in the HSV recordings, average vocal fold lengths

were used for males and females, whereas the individual length of the vocal folds was not taken

into consideration. Because of the absence of metric units, the recorded vocal fold trajectories

are initially scaled in pixels and then transferred to metric units using the averaged vocal fold

length. Hence, the amplitudes may not match the actual oscillation quantities accurately. This

shortcoming will also be solved in future studies when using HSV in combination with a laser

projection unit [106] allowing for the extraction of metric units for vocal fold trajectories and

using individual vocal fold lengths in the optimization procedure.

Conclusion

This study is the first approach to use a LMM for comparing age and gender related differences

based on vocal fold dynamics recorded with endoscopic high-speed imaging. The parameter

optimization objectively quantified biomechanical differences in terms of dynamic symmetry,

subglottal pressure, vocal fold masses and stiffness, across gender and age. The results show

promising findings for quantifying vocal fold dynamics and for differentiating normal from

disordered voice as well as in differentiating between vocal fold pathologies. However, the

2MM does not have one-to-one correspondence to the actual values of the vocal fold masses,

stiffness, and subglottal pressure, but allows for objectively evaluating the biomechanical inter-

relationships between these variables.

Three different optimization algorithms were tested including three different cost func-

tions. For future studies, the results do not favor a specific optimization algorithm but clearly
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show that the Euclidian Distance of the trajectories (Γ2) should be chosen as cost function to

achieve best results.
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human vocal fold. Acta Acust United Acust 93(5):815–823.
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84. Hertegard S, Hakansson A, Thorstensen Ö (1993) Vocal fold measurements with computer tomogra-

phy. Logoped Phoniatr Vocol 18(2–3): 57–63. https://doi.org/10.3109/14015439309101350

85. Patel RR, Donohue KD, Johnson WC, Archer SM (2011) Laser projection imaging for measurement of

pediatric voice. Laryngoscope 121(11):2411–2417. https://doi.org/10.1002/lary.22325 PMID:

21993904

86. Patel RR, Donohue KD, Lau D, Unnikrishnan H (2013) In vivo measurement of pediatric vocal fold

motion using structured light laser projection. J Voice 27(4):463–472. https://doi.org/10.1016/j.jvoice.

2013.03.004 PMID: 23809569
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