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Zika virus (ZIKV) received worldwide attention over the past decade when outbreaks of the
disease were found to be associated with severe neurological syndromes and congenital
abnormalities. Unlike most other flaviviruses, ZIKV can spread through sexual and
transplacental transmission, adding to the complexity of Zika pathogenesis and clinical
outcomes. In addition, the spread of ZIKV in flavivirus-endemic regions, and the high
degree of structural and sequence homology between Zika and its close cousin Dengue
have raised questions on the interplay between ZIKV and the pre-existing immunity to
other flaviviruses and the potential immunopathogenesis. The Zika epidemic peaked in
2016 and has affected over 80 countries worldwide. The re-emergence of large-scale
outbreaks in the future is certainly a possibility. To date, there has been no approved
antiviral or vaccine against the ZIKV. Therefore, continuing Zika research and developing
an effective antiviral and vaccine is essential to prepare the world for a future Zika
epidemic. For this purpose, an in-depth understanding of ZIKV interaction with many
different pathways in the human host and how it exploits the host immune response is
required. For successful infection, the virus has developed elaborate mechanisms to
escape the host response, including blocking host interferon response and shutdown of
certain host cell translation. This review provides a summary on the key host factors that
facilitate ZIKV entry and replication and the mechanisms by which ZIKV antagonizes
antiviral innate immune response and involvement of adaptive immune response leading
to immunopathology. We also discuss how ZIKV modulates the host immune response
during sexual transmission and pregnancy to induce infection, how the cross-reactive
immunity from other flaviviruses impacts ZIKV infection, and provide an update on the
current status of ZIKV vaccine development.
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INTRODUCTION

Zika virus (ZIKV) is a mosquito-borne arbovirus that was
brought to attention in the past decade due to its link to
serious neuropathogenesis in new-borns and adults. ZIKV is
an enveloped, positive sense single-stranded RNA virus of the
flavivirus genus in the Flaviviridae family, with a 50 nm diameter
and a genome of about 10.8 kilobases in length (1). It was
incidentally discovered in 1947 in the Zika Forest of Uganda,
during a study on the vectors of sylvatic yellow fever. Until recent
years, ZIKV never garnered much attention as there were only
sporadic infections occurring in Africa and Asia (2), and the
disease was thought to be either asymptomatic or mild and self-
limiting. Symptoms and signs of ZIKV infection typically include
low-grade fever, arthalgia, pruritic rash, conjunctivitis, myalgia,
retro-orbital pain, headache, dysesthesia, and asthenia.
Abdominal pain, diarrhea, nausea and mucous membrane
ulcerations are some of the less common symptoms and signs
(3–5). Thrombocytopenia has been reported, which could be due
to an immune-mediated mechanism (6).

A string of outbreaks occurred since 2007 which eventually
led to the observation of an increased incidence of new-borns
with microcephaly and adults with Guillain-Barre syndrome in
ZIKV-endemic populations. This prompted the World Health
Organization (WHO) to declare ZIKV as a Public Health
Emergency of International Concern (PHEIC) on 1 February
2016 to investigate the associations (7). These unique
characteristics were not seen in infections by other similar
viruses and has thus prompted researchers to investigate the
mechanisms of ZIKV infection and develop preventative and
treatment strategies against ZIKV infection.

Extensive research on ZIKV found that the effects on a new-
born is not just limited to microcephaly, but also include various
other adverse pregnancy outcomes such as miscarriage, fetal
growth restriction, a range of fetal brain anomalies
(ventriculomegaly, intracranial calcification), ocular
abnormalities and hearing loss (8–11). In the developing
mammalian brain, ZIKV efficiently targets the neural
progenitor cel ls (NPCs) , astrocytes , microglia and
oligodendrocyte precursor cells (12). Studies on tissue tropism
identified ZIKV from various tissues such as the placenta, fetal
brain, male and female reproductive tract and body fluids,
consistent with cases reporting vertical and sexual
transmission. ZIKV RNA can persist for weeks in body fluids,
and up to 6 months post-infection in seminal fluid (13). In
adults, other than Guillain-Barré syndrome (GBS), very few cases
of CNS involvement have been reported. Some of the
complications include encephalitis, meningitis, myelitis,
meningoencephalitis, transverse myelitis and neuropsychiatric
symptoms (14–18). To characterize the cellular responses and
molecular mechanisms involved in Zika pathogenesis, extensive
virus-host interactome analyses have been conducted. These
studies identified key cellular proteins that are associated with
neuronal development and neurological diseases (19–21).

ZIKV infection is diagnosed by molecular and serological
testing. For symptomatic individuals (≤7 days after onset of
symptoms), ZIKV infections is established by real-time reverse
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transcription polymerase chain reaction (rRT-PCR) for ZIKV
RNA in serum, urine or whole blood. If the rt-PCR results are
negative, serologic testing: IgM ELISA and plaque reduction
neutralization test (PRNT) are prompted. As for symptomatic
individuals (>7 days after onset of symptoms), the diagnostics
testing for ZIKV includes IgM and PRNT (22). However, cross-
reactivity with other flavivirus antibodies complicates
interpretation of serologic results. Although PRNT is
generally the most specific, it may not be sufficient to
distinguish between ZIKV and DENV infection (23). ZIKV
NS1-sepcific IgM antibody approach was found to be more
specific and was not detected in patients with previous
Dengue (24).

As of today, there are no approved vaccines or antivirals for
ZIKV infection (25). With the low number of active cases,
clinical trials on potential vaccines and antivirals were halted
until they can be tested on more patients in a future outbreak
(26). This review article aims to summarize the current
knowledge on immune evasion strategies used by ZIKV
leading to its pathogenesis to aid in the development of
vaccine and therapeutics. There are various host defence
mechanisms involved in the detection and elimination of
ZIKV. These defences can be broadly categorized three
categories, namely intrinsic, innate and adaptive immunity.
ZIKV REPLICATION CYCLE AND
TARGETED HOST FACTORS

ZIKV like other viruses’ hijacks host cell machineries for its
replication. Moreover, being an RNA virus with a small genome
size, successful replication of ZIKV requires utilization of many
host factors. In addition, small RNA viruses are highly adaptive,
with a high degree of genetic variation in every cycle of
replication. This presents a challenge for the development of
an effective anti-ZIKV antiviral that target epitopes of ZIKV.
Instead, perhaps host factors can be a better target for ZIKV
therapeutics and vaccine, as they mutate at a much slower rate.

Entry of ZIKV into host cells is facilitated by the binding of
ZIKV surface glycoproteins with host cell surface receptors.
Expression of some host receptors have been found to increase
ZIKV infectivity. These include TIM, TAM (Tyro3, Axl, Mertk)
and DC-SIGN receptors (27). TIM and TAM are families of
transmembrane receptors that recognizes and binds to
phosphatidylserine (PS), which is a molecule which signals for
phagocytosis of cells expressing it. PS signalling is a characteristic
feature of apoptotic cells, but viruses such as ZIKV and DENV
also express PS on its envelope as a disguise to gain access to host
cells. TIM directly binds to PS, whereas TAM receptors require a
bridging ligand Gas6 to bind PS (28). DC-SIGN is a receptor
present on innate immune cells such as dendritic cells and
macrophages. It binds to glycans and facilitates uptake of
antigens expressing these glycans (29). Binding of ZIKV
envelope glycoprotein to these receptors initiate clathrin-
mediated endocytosis, which brings in the virus in a clathrin-
coated endosome. Other cofactors on host cell membranes such
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as heat shock protein 70 (Hsp70) may also play a role in
mediating ZIKV entry (30).

As the endosome matures, hydrogen ions are pumped in
resulting in an acidic internal environment. The low pH triggers
a structural change in the envelope of ZIKV, causing it to fuse
with the endosomal membrane, releasing the viral genome into
the cytoplasm (31). The ZIKV genome comprises a 5’ and a 3’
non-coding region, with a single open reading frame which
encodes for three structural proteins – envelope (E) proteins,
capsid (C) proteins, premembrane/membrane (prM/M) proteins
and seven non-structural proteins – NS1, NS2A, NS2B, NS3,
NS4A, NS4B, NS5. The structural proteins form structural
components of virions and assemble new virus particles, and
mediate virus entry and encapsidation. The E protein contains a
transmembrane domain, and three ectodomains (EDI, EDII and
EDIII) located outside the membrane. The protein is involved
viral attachment, membrane fusion and cellular receptor
binding. It also represents the main target for neutralising
antibodies (1, 32). The non-structural proteins have a variety
of functions which includes evasion of host immune response,
alteration of host cell signalling pathways, and replication of
ZIKV RNA, all of which contributes to effective viral replication
and pathogenesis (1). The NS1 protein is essential for viral RNA
replication, and the immune evasion and pathogenesis by
interacting with host immune factors such as RIG-I-like
receptors (33–35). It is involved in virus maturation through
interaction with viral prM and E protein (20). NS1 also elicits
production of protective antibodies (36). The NS3 and NS5
proteins, possess all enzymatic functions required for RNA
replication. The NS3 protein consists of an N-terminal
containing a serine protease domain (NS3pro), which is
essential for proteolytic processing of the viral polyprotein, and
a C-terminal bearing RNA helicase, RNA triphosphatase and
RNA-stimulated NTPase domain that are critical for RNA
replication (37, 38). ZIKV NS5 consists of an RNA dependent
RNA polymerase (RdRp) domain, which is responsible for viral
RNA synthesis, and a methyltransferase (MTase) domain, that is
involved in translation and evasion of host immune
response (34).

The released positive-sense single-stranded RNA virus
(+ssRNA) is then translated by the host cell’s translational
machinery. Translation begins in the cytosol and is directed to
the endoplasmic reticulum (ER) via ER-localizing signals on the
nascent polypeptide chain. The polypeptide chain embeds and
translocates into the ER with the help of Sec61 translocon, ER
membrane complexes (EMCs), signal peptidases and
oligotransferases (39). The completed polyprotein is
subsequently cleaved by host signal peptidase and viral NS2B-
NS3 protease complex into individual viral proteins, which then
localizes to different components of the cell to carry out their
respective functions (1).

At the ER, ZIKV enhances genome replication, virion assembly
and transportation by remodelling the ER architecture, forming an
assortment of virus-induced membrane structures, which includes
vesicle packets, convoluted membranes, zippered ER and
pancrystalline arrays (39). NS4A interacts with reticulon 3.1A, a
Frontiers in Immunology | www.frontiersin.org 3
host factor responsible for regulation of membrane structures, to
induce curvature of the ER membrane, forming vesicles where
ZIKV genome replication occurs. Knockdown of this host factor
have been shown to reduce virus-induced structures and ZIKV
replication (40).

For the maturation and eventual release of ZIKV virion,
utilization of the host cell secretory machinery is required.
Newly assembled virions go through a series of maturation
processes in the golgi network. The acidic environment of the
trans-golgi network once again induces a conformational change
in the ZIKV E proteins from a spiky trimeric heterodimer to a flat
homodimer. This exposes the furin cleavage site, enabling the
cleavage of prM proteins into mature M proteins by furin (1),
which is a host protease abundant in golgi bodies. Vesicles
containing mature ZIKV then fuses with the plasma membrane
to release the mature virions into the extracellular space.
HOST INTRINSIC DEFENSES
AGAINST ZIKV

Intrinsic immunity are host defences that are constantly present
in host cells. These defences detect and restrict viral replication
via host cellular mechanisms such as autophagy, apoptosis, RNA
interference/decay and formation of stress granules (41). Several
studies have identified intrinsic defences that restrict ZIKV
replication. Stress granules (SG) are collect ions of
ribonucleoproteins made up of mRNA complexes stalled in the
initiation phase of translation. This can be due to the
phosphorylation of eukaryotic initiation factor eIF2a by
kinases such as protein kinase R (PKR), PKR-like endoplasmic
reticulum kinase (PERK) and general control nonderepressible
(GCN) that are activated at times of cellular stress (42). Stress
granule proteins G3BP, TIA-1 and TIAR are often targeted by
viruses to inhibit SG formation. Flaviviruses such as DENV and
WNV have been known to sequester TIAR and TIA-1 to be used
for their RNA replication (43). Studies by Hou et al. and Amorim
et al. highlighted ZIKV’s ability to inhibit phosphorylation of
eIF2a, thereby preventing formation of stress granules and
ensuring the continuity of viral replication (44, 45). However,
Hou et al. also demonstrated inhibition of SGs formed via eIF2a-
independent mechanisms by ZIKV in HFA and A549 cells (45),
while Amorim et al. demonstrated ZIKV’s inability to inhibit SGs
formed via eIF2a-independent mechanisms in Vero cells (44).
Although ZIKV has the ability to prevent SG formation, both
studies found that ZIKV infection did not significantly induce
formation of SGs.

Reticulophagy on the other hand is another intrinsic defence
mechanism that is likely to be more important in restricting
ZIKV replication. As ZIKV modulates the ER to aid in its
replication and assembly, ER degradation by reticulophagy can
be an important step for host cells to inhibit ZIKV replication.
Lennemann and Coyne demonstrated that inhibition of the
reticulophagy receptor FAM134B resulted in a significant
increase in ZIKV and DENV RNA levels. They also identified
October 2021 | Volume 12 | Article 750365
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the ability of flavivirus NS2B3 to cleave FAM134B, disrupting the
reticulophagy process (46).
HOST INNATE IMMUNE RESPONSE
AGAINST ZIKV

The innate immune system is activated by detection and
subsequent phagocytosis of foreign antigens by innate immune
cells such as dendritic cells and macrophages. Innate immunity
plays an important role in restricting ZIKV pathogenesis, mainly
through production of interferons (IFN) and interferon-
stimulated genes (ISGs) which encodes various proteins that
antagonize processes of ZIKV replication (47). For ISGs to be
produced, a long, multistep immune signalling pathway is
required. This process generally begins when ZIKV enters a
host innate immune cell. Here, different types of pattern
recognition receptors (PRRs) detect specific pathogen
associated molecular patterns (PAMP). The RIG-I-like
receptors (RLR) are PRRs present in the cytoplasm of these
immune cells. RIG-I and MDA5 are RLRs that detect viral RNA
molecules. Upon detection of RNA, the RLRs translocate to the
mitochondria to activate the mitochondrial antiviral signalling
protein (MAVS), which then sends a downstream signal to
activate TANK-binding kinase 1 (TBK1), an enzyme required
for the phosphorylation of transcription factors IRF3, IRF5, IRF7
and NF-kB. These activated transcription factors then
translocate into the nucleus to aid in the production of
interferons (48). Apart from the RLRs, toll-like receptors
(TLR) are another type of PRR. The endosomal TLR3 and
TLR7/8 function to detect viral dsRNA and ssRNA
respectively. Once activated, TLR3 signals TRIF, which then
activates TRAF6 and transcription factors IRF3, IRF 7 and NFkB.
On the other hand, TLR7/8 signals MyD88, an adapter protein to
activate transcription factors such as NF-kB and IRF7 (49).
The third type of PRRs are NOD-like receptors (NLRs).
Frontiers in Immunology | www.frontiersin.org 4
Detection of PAMPs triggers oligomerization of NLRs and
subsequent inflammasome formation. NLRP3 inflammasomes
activate caspase 1, resulting in the activation of proinflammatory
cytokines such as IL-1b and IL-18 (50). Another type of PRR
involves the cGAS-STING pathway. This is a cytosolic DNA-
sensing mechanism that detects damaged DNA and signals for
downstream processes to mount a type I IFN response (51).

Type I interferons (IFN a and b) play an important role in the
immune response towards flaviviruses. After the production of
type I IFN via the multistep process initiated by detection of viral
RNA by PRRs, the IFNs bind to IFN receptors consisting of two
dimerized subunits - IFNAR1 and IFNAR2. Binding by type 1
IFN induces activation of Janus kinase (JAK), which
phosphorylates signal transducers and activators of
transcription 1 (STAT1) and 2 (STAT2). Phosphorylated
STAT1 and STAT2 forms a heterodimer which associates with
Interferon Regulatory Factor 9 (IRF9), forming the IFN-
stimulated gene factor 3 (ISGF-3), which results in the
increased expression of ISGs (47).
EVASION OF THE INNATE IMMUNE
RESPONSE BY ZIKV

To ensure successful replication, ZIKV employs several strategies
to evade the host innate immune system. These evasion processes
are carried out by ZIKV non-structural proteins, and they target
various points of the IFN signalling pathway. At the RIG-I-like
receptors, ZIKV NS3 binds to the 14-3-3 protein, preventing
translocation of RIG-I and MDA5 to the mitochondria for the
activation of MAVS (52). In addition, ZIKV NS4A was found to
interact with MAVS, preventing its activation by RIG-I and
MDA5 (53) (Figure 1). Co-immunoprecipitation studies by Wu
et al. identified interactions between TBK1 and ZIKV NS1 and
NS4B, which prevents TBK1 from phosphorylating transcription
factors of IFN genes (54) (Figure 1). Another group reported
FIGURE 1 | Zika virus (ZIKV)-mediated inhibition of host innate immunity. The viral proteins indicated in red color interfere with signalling pathways at multiple steps
leading to suppression of type I interferon (IFN) induction as well as IFN-mediated expression of IFN-stimulated genes (ISGs).
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suppression of TBK1 by NS1, NS2A, NS2B and NS4B (55)
(Figure 1). As we move downstream, ZIKV NS5 has been
shown to interact with IRF3, reducing the induction of IFN-b
genes (55). Another mechanism is the ability of ZIKV NS1 to
activate inflammasomes by preventing proteosomal degradation
of caspase-1 (Figure 1). This seems contradictory to the function
of inflammasomes but caspase-1 levels were found to be
negatively correlated with type I IFN response, making high
caspase-1 levels beneficial for ZIKV replication. The stabilization
of caspase-1 as a result of inflammasome activation by NS1 was
also found to facilitate cleavage of cGAS by caspase-1. This
disrupts the cGAS-STING pathway, reducing the induction of
type I IFN signalling downstream (56) (Figure 1).

At the JAK-STAT signalling pathway, ZIKV NS5 can bind
to STAT2, facilitating its degradation by proteasomes
(Figure 1). This is a species-specific process that occurs in
human and nonhuman primate models but not in murine
models (57), which is one of the reasons immunocompetent
mice are resistant to ZIKV infection. Besides STAT2
degradation, NS5 was also found to inhibit phosphorylation
of STAT1 and STAT2. Another mechanism is the ability of
ZIKV NS2B3 to interact with and degrade JAK1, inhibiting
phosphorylation of STAT and subsequent downstream
processes (54) (Figure 1). Although ZIKV downregulates
type I and type III IFN, it was found to upregulate type II
IFN. Chaudhary et al. found that suppression of type II IFN
signalling pathway led to decreased viral replication, and
increased replication was observed in cells that were treated
with IFN-g before subjected to ZIKV (58). Selective
degradation of STAT2 and sparing of STAT1 leads to the
formation of STAT1 homodimers, which results in the
activation of IFN-g-stimulated genes, such as CXCL10.
CXCL10 has shown to play an essential role in CD8 T cell
recruitment during West Nile virus (WNV) infection in the
central nervous system (59). Importantly it also has been
associated to neuronal damage by causing apoptosis in fetal
neurons (60). Therefore, the activation of type II IFN seems to
play an active role in aiding ZIKV replication and may have
implication on Zika neuropathogenesis.
ROLE OF THE ADAPTIVE IMMUNE
RESPONSE IN ZIKV INFECTION

Several studies have identified the role of host adaptive immunity
in response to ZIKV infection. ZIKV infection has shown to
induce T cell activation in both humans and mouse models.
Winkler and colleagues identified proliferation of CD4+ and
CD8+ T cells peaking at 7 days post-infection in adult wild-type
mice despite undetectable ZIKV levels. In the same study,
depletion of CD4+ and CD8+ T cells only resulted in transient
weight loss in immunocompetent mice but causes significant
disease in mice with anti-IFNAR antibodies. Also, mice treated
with anti-IFNAR antibodies without T cell depletion did not
suffer from disease or experience weight loss despite increased
viral replication, suggesting that these T cells play an important
Frontiers in Immunology | www.frontiersin.org 5
role in the restriction of ZIKV infection only when type I IFN
response is compromised (61).

CD4+ T cells were found to differentiate into Th1 cells during
ZIKV infection as evidenced by the increased production of IFN-g,
IL-2 and TNF-a cytokines and transcription factor T-bet. Effector
CD8+ T-cells are also found to produce IFN-g and TNF-a, and
CD8+ levels are increased in ZIKV infection, accompanied with
increased expression of granzyme B on them (62). A study using
IFNAR KO mice demonstrated the role of T Cells in ZIKV
Pathogenesis. Depletion of CD8+ T cells resulted in an increase
in viral load in the brain but exhibited improved survival and
reduced paralysis. On the other hand, depletion of CD4+ T cells
alone caused paralysis in all mice, while depletion of both CD4+
and CD8+ T cells resulted in an intermediate phenotype with an
increase in survival and reduction in paralysis (63). Another study
showed that depletion of CD4+ T cells caused high viral load in
the CNS and decreased survival (64). These findings suggest the
role of CD8 T cells in causing neuropathology and potential
regulatory role of CD4 T cells through reduction of
immunopathology caused by CD8 T cells (Figure 2). In
addition, it was also found that depletion of CD8+ T cells led to
an increase in ZIKV-positive neurons and it was shown that CD8
T cells mediate lysis of ZIKV-infected neurons. These observations
suggest that CD8 T cells limit ZIKV replication within the
neurons , but cause neuropathogenes i s l ead ing to
paralysis (Figure 2).

In terms of humoral immunity, B cell response to ZIKV have
been elicited by the detection of neutralizing antibodies in mice
models (62). CD4 T cells have shown to be essential for
production of ZIKV-specific humoral response by driving
antibody production (65). In humans, Lai et al. detected anti-
ZIKV IgM, ZIKV-specific plasmablasts and neutralizing
antibodies in ZIKV-infected patients’ sera (66). The majority
of the neutralizing mAbs derived from memory B cells of ZIKV-
infected patients were found to primarily target EDIII or
quaternary epitopes of whole ZIKV. In different mouse models,
the neutralizing EDIII-specific antibodies have shown to provide
protection against lethal infection of ZIKV (67, 68). Researchers
have also explored the effects of cross-reactivity between ZIKV
and DENV. Monoclonal antibodies isolated from plasmablasts of
patients with past DENV infection were also found to cross-react
with ZIKV, binding to components of ZIKV but are mostly
ineffective in neutralizing it. Potent neutralizing ability was
mostly limited to type-specific antibodies (69). This brings
about the possibility of antibody-dependent enhancement,
which was elicited in a few studies (67, 70), where poorly
neutralizing antibodies bind to and bring viruses to infect
immune cells expressing Fc receptors, increasing virion
production and worsening disease outcomes.
ZIKA AUTOIMMUNITY AND
GUILLAIN-BARRÉ SYNDROME

A recent systematic review and meta-analysis characterized
ZIKV-associated GBS as a broad sensory demyelinating illness
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with frequent facial paralysis and a severe disease course (71). A
study found that ZIKV patients with GBS had significantly
higher levels of anti-ganglioside autoantibodies compared to
Zika patients without GBS (72). As anti-gangliosides have been
implicated in the pathogenesis of GBS (73), these autoantibodies
could be a factor in ZIKV-linked GBS. In several ZIKV-infected
patients with GBS, mononuclear lymphocytic infiltration and
demyelination associated with inflammation have been
observed (74).
ROLE OF THE IMMUNE RESPONSE IN
SEXUAL TRANSMISSION OF ZIKV

Zika virus (ZIKV) is transmitted to humans primarily by Aedes
mosquitoes. However, several evidence supports that ZIKV can
be transmitted sexually (75, 76). There is no evidence of sexual
transmissibility in any other flaviviruses. Sexual transmission
poses a serious threat to humans who are outside of the ZIKV
epidemic-prone locations. Several studies found high titers of
ZIKV RNA in human seminal fluid for months after clearance of
viremia (77, 78). In addition, the presence of ZIKV in seminal
fluid is more robust than in vaginal fluids (79). In males,
the immunological responses facilitate the persistent infection
of the MRT, while in females, a robust immune response controls
the virus infection (80, 81). In line with this, male-to-female
transmission is more common than female-to-male transmission
(82, 83)

ZIKV has shown strong tropism for the male reproductive tract
MRT. In animal models, ZIKV-infected Sertoli cells,
spermatogonia, primary spermatocytes, Leydig cells, peritubular
myoid cells, and epithelial cells of the lumen (84, 85). While in the
Frontiers in Immunology | www.frontiersin.org 6
human testis ex vivomodel, ZIKV was found to infect somatic and
germ cells, including Sertoli cells, testicular macrophages, Leydig
cells and peritubular cells (86). The inflammatory response that
occurs following ZIKV infection mediate the recruitment of innate
cells (myeloid DCs, non-classic monocytes, and NK cells) as early
targets of the virus and subsequently, the virus travel in these cells
to the testis. To reach the testis, it is likely that ZIKV manipulates
the antiviral mechanism to disrupt the blood testicular barrier
(BTB) junctions, or the virus uses its proteins to destroy the
junctions to cross the barrier (80, 87, 88).

The Sertoli cells, which consist of the blood-testis barrier
(BTB) have shown to be highly susceptible to ZIKV infection.
ZIKV has been shown to effectively infect Sertoli cells for the
long-term without causing cell death (86, 89, 90). Infection of
Sertoli cells induces pro-inflammatory mediators and genes
linked to multiple innate immune response pathways. Among
these, the IFN signaling was most significantly modulated.
Down-regulation of adherent junction genes were also
observed (90). These findings suggest that ZIKV can induce a
strong antiviral response in Sertoli cells, which can alter the
permeability of BTB.

Another study demonstrated that ZIKV infection of Sertoli
cells induced cell adhesion molecules (VCAM-1 and ICAM-1),
which mediate the adhesion of naive immune cells to Sertoli cells
and increase BTB permeability. In addition, ZIKV infection in
macrophages results in the production of inflammatory
cytokines and chemokines that can degrade the tight junction
protein ZO-1 and directly affect the integrity of the BTB (87).
Proteomic analyses of ZIKV-infected human Sertoli cells
revealed dysregulation of different proteins and cellular
signaling pathways involved in the maintenance of Sertoli cells
tight junction permeability and BTB, spermatogenesis as well as
FIGURE 2 | Zika virus (ZIKV) infection induces T cell immunity. ZIKV infection leads to the production of Th 1 CD4 T cell and effector CD8 T cell responses. CD8 T
cells lead to ZIKV neuropathology, while CD4 T cells play a regulatory role through reduction of immunopathology caused by CD8 T cells.
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testicular development. Mitogen-activated protein kinase
(MAPK)/extracellular signal-regulated kinase (ERK),
Metalloproteinase inhibitor 1 (TIMP1), IL-6, Stanniocalcin-1
(STC1), nuclear factor-kB (NF-kB), insulin-like growth factor
1 (IGF1) and fibroblast growth factor (FGF) were among
them (91)

ZIKV infection elicited virus-specific IgG in the lumen of the
vagina and recruited virus-specific T cells (CD4+ and CD8+ T
cells) to the female reproductive tract (FRT). Transfer of virus-
specific IgG and circulating memory T cells reduced viral
replication, with the humoral response providing greater
protection compared to cellular response. These findings
suggest that the humoral and cellular responses confer
protection against intravaginal ZIKV infection (81). Overall,
these findings support the dual role of the immune response in
the pathogenesis of ZIKV sexual transmission: a promoter of
viral dissemination in males and as a protective factor in females.
RELATIONSHIP BETWEEN
IMMUNOLOGICAL RESPONSE DURING
PREGNANCY AND ZIKV INFECTION

It is generally known that the immune system changes during
pregnancy, whereby it must be finely balanced to avoid fetal and
placental rejection and protect the fetus from infections. During
pregnancy, hormones play a critical role in modulating the
immune response by lowering the antigen-presenting potential
of dendritic cells (DCs), reducing the number of monocytes and
macrophages, as well as blocking natural killer cells, T and B cells
(92). Evidence supports the production of both pro-
inflammatory and anti-inflammatory factors at different stages
of pregnancy (93). ZIKV can cross the placental barrier and has
been shown to cause damage in the decidua and chorionic villi of
the placenta. The virus has been shown to infect the placental
cells such as cytotrophoblast (CTB), endothelial cells (En),
syncytiotrophoblast (STB), mesenchymal cells (MS), fibroblasts
(Fi), Hofbauer (Hf), macrophages and decidual cells (94–96).
ZIKV can persist in the placenta for a long time after the onset of
maternal symptoms and may serve as a latent viral source of fetal
infection (94, 95, 97).

In a mouse model, infection with ZIKV at a gestational age
(similar to the mid and late first trimester in humans) showed
that type I IFN led to detrimental effects in pregnancy. IFNAR
signaling in the conceptus reduced ZIKV replication in the
placenta. However, IFNAR signaling mediated apoptosis of
fetal endothelial cells and trophoblasts, suppressed the
development of the placental labyrinth, disrupted the
maternal-fetal blood barrier, fetal hypoxia and subsequently
contributing to severe intrauterine growth restriction and fetal
demise (98). Activation of type I IFN induced by ZIKV infection
leads to significant neuroinflammation and tissue injury.

ZIKV infection during pregnancy has been shown to induce
production of pro-inflammatory cytokines (IFN-g, IFN-a, IL-6
and IL-17A) and chemokines (CXCL10, CCL2, CXCL9, and
CXCL8). Expression of cytokines such as TNF-a and IFN-g were
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observed in placental tissues (96). Increased levels of CXCL10,
IL-22, MCP-1, and TNF-a were seen in pregnant women
carrying babies with brain anomalies (99). Oher than that,
higher levels of CCL2, CXCL10, IL-6, IL-8 and VEGF in
amniotic fluid of ZIKV-infected pregnant women who gave
birth to microcephaly babies (100). The increase in CCL2,
CCL3, CCL4, CXCL9, and CXCL8 has been linked to
neurological damage and fetal abnormalities (100, 101). The
elevated level of CCL2 and its inverse correlation with the levels
of CD163, TNFRSF1A, and CCL22 were linked to ZIKV-induced
abnormal birth. In addition, distinct subsets of cytokines were
detected at different trimesters. Notably, most of these cytokines
are involved in the infiltration of leukocytes, in particular NK
cells and monocytes, which are associated with pregnancy
outcomes (101).

ZIKV-infected pregnant mice displayed increased levels of
DCs associated with immunotolerance, reduced levels of cells
expressing pro-inflammatory IL-12 and lower levels of Ag-
experienced CD8+ T cells. These findings suggest that the
immunotolerance during pregnancy may hinder efficient
activation of the antiviral T cell response (102). In another
study, ZIKV-infected pregnant mice caused a significant
reduction of proliferating CD4+ and CD8+ T cells compared
to ZIKV-infected non-pregnant mice. Furthermore, ZIKV-
infected pregnant mice had considerably less granzyme B
positive CD8+ T cells, indicating a loss in cytolytic effector
activity (61). Hence, it is evident that pregnancy alters of the
innate and adaptive immune responses to ZIKV infection.
However, no significant differences were observed in the level
of neutralizing antibodies between pregnant and non-pregnant
mice, suggesting that pregnancy may not significantly alter the
humoral immune response to ZIKV (61).
CROSS-REACTIVE IMMUNITY
BETWEEN ZIKV AND OTHER
FLAVIVIRUSES

The structure of ZIKV E protein, which contains EDI, EDII, and
EDIII, is similar to the E protein of other flaviviruses, including
DENV, WNV and YFV. The amino acid sequence E proteins of
ZIKV and DENV type 2 share an antigenic similarity of 53.9%
(103). The high sequence similarity in the E protein between
ZIKV and other flaviviruses, particularly DENV, raises a major
concern of cross-reactivity as well as antibody-dependent
enhancement (ADE). Various studies have demonstrated that
monoclonal antibodies (mAb) against DENV and sera from
DENV patients can both enhance and neutralize ZIKV
infection in vitro and in vivo (104–107).

ZIKV infection in individuals previously exposed to DENV
induced a rapid and strong plasmablast response, mostly
originating from the memory B cell compartment. The acute B
cell response to ZIKV exhibited preferential binding and
neutralization of DENV, providing evidence of original
antigenic sin (OAS). Although most of the antibodies were
broadly cross-reactive, they were poorly neutralizing against
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ZIKV and enhanced its infection, supporting that pre-existing
immunity to DENV may have a deleterious impact on early
protective B cell responses to ZIKV (69). In pregnant mice, pre-
existing DENV antibodies increased vertical transmission,
enhanced ZIKV replication in placenta and resulted in adverse
outcomes. The enhancement effect observed in these pregnant
mice was dependent on Fc receptors (108, 109). In contrast,
ZIKV infection of nonhuman primates immunized with DENV
or YFV did not cause an increase in ZIKV titer or adverse clinical
outcomes despite modulation of the immune response (110). A
cohort of individuals from Salvador (epicenter of ZIKV epidemic
in Brazil) showed that pre-existing antibodies against DENV
contributed to decreased risk of ZIKV infection and symptoms
(111). In another cohort study involving pregnant women
infected with ZIKV, previous DENV infection did not cause
disease severity and abnormal birth outcomes (112).

In a mouse model, administration of low concentrations of
DENV-immune plasma, displayed enhancement of ZIKV
infection and resulted in a higher mortality rate. However, at
higher concentrations, mice displayed milder symptoms and
100% survival after ZIKV infection (70). Therefore, the cross-
reactivity or cross-protection against ZIKV is likely dependent
on the concentrations of the anti-DENV antibodies. Another
important factor determining the antibodies’ protective effects on
DENV is the time interval between ZIKV infection and previous
dengue fever incidence. A study found that the protective effect
could last up to 6 years (113). A study proposed that the cross-
protection against congenital Zika syndrome (CZS) conferred by
DENV neutralizing antibodies was not dependent on the
antibody titer but likely mediated by the immune response
(114). As observed in humans, DENV antibodies have been
shown to increase CD4+ and CD8+ T-cell responses during
ZIKV infections (115, 116). Also, in pregnant mice, DENV cross-
reactive CD8+ T cells have been demonstrated to protect the
fetus during ZIKV infection (117, 118).

The cross-reactivity effects induced by pre-existing antibodies
against other flaviviruses, may represent a challenge for the
development of vaccine for ZIKV. Pre-existing antibodies may
produce a strong immune response against the ZIKV vaccine
through cross-reactive T cells, thus enhancing the vaccine
efficacy (65). However, vaccination against ZIKV could also
lead to ADE of DENV infection and vice versa, enhancing
virus entry and potentially resulting in severe disease.
Increasing evidence suggests that previous ZIKV immunity
leads to increased DENV infection and risk for severe dengue
(119, 120). Hence, designing an ideal vaccine for ZIKV requires
careful consideration of potential ADE.
ZIKA VIRUS VACCINE DEVELOPMENT

Nearly half of the world’s population lives in regions at risk of
Zika transmission, and the possibility of future Zika epidemics
remains high (121). A mathematical model based in Nicaragua
has predicted a possible ZIKV outbreak in 2047, affecting mainly
the women of reproductive age. However, if protective immunity
Frontiers in Immunology | www.frontiersin.org 8
wanes, ZIKV recurrence may happen sooner (122). With the
association between ZIKV and adverse pregnancy outcomes,
congenital diseases, and severe developmental problems, the
search for an effective vaccine has become even more urgent.

The WHO has proposed two strategies for ZIKV vaccine
development roadmap: emergency outbreak response and
endemic use. The emergency outbreak response entails mass
vaccination of pregnant women and women of child-bearing age
to prevent ZIKV-related adverse pregnancy outcomes and
neurological complications. On the other hand, endemic use
involves a broad vaccination of the general population and
routine immunization to establish population immunity and
prevent ZIKV transmission (123). Several ZIKV vaccine
candidates under various platforms have been developed over
the past 5 years. These include inactivated, live attenuated, viral-
vectored, subunit, nucleic acid and messenger RNA (mRNA)
vaccines. Some of these vaccines have demonstrated promising
results in preclinical studies and have advanced into clinical
trials. In animal models, a number of vaccine candidates were
found to reduce ZIKV RNA levels in maternal, placental, testis
and fetal tissues, and subsequently prevent their damage (124–
126). Another study demonstrated the ability of live-attenuated
ZIKV vaccine candidates to prevent viral transmission during
pregnancy and protect against testis infection and injury in mice
(125). As of September 2021, 12 ZIKV vaccine candidates are in
clinical evaluation (Table 1) (ClinicalTrials.gov).

NHPs with immune responses primed by infection with an
African ZIKV strain were protected when re-challenged with an
Asian ZIKV strain (132). Hence, a ZIKV vaccine based on a
single strain could be adequate and protect against other strains.
Since ZIKV causes severe birth outcomes and congenital
malformations, the ability of the vaccines to adequately protect
pregnant women, women of reproductive age and children need
to be determined. To protect the fetus from ZIKV infection,
protective immunity needs to be achieved during the first
trimester or early second trimester. Importantly, the safety of
the vaccines during pregnancy is required to be critically
accessed. Another hurdle is the potential impact of the pre-
existing flavivirus antibodies in people who have been previously
infected or vaccinated against other flaviviruses. In light of this, a
study conducted by Larocca et al. demonstrated that pre-existing
DENV immunity did not reduce the immunogenicity or
protective immunity of ZIKV candidate vaccines in animal
models (rhesus macaques and mice) (133). However, the
designing and administration of ZIKV vaccines require
extreme caution, and their safety and immunogenicity need to
be evaluated both in flavivirus-exposed and naïve populations.
CONCLUSION

Zika virus (ZIKV) has been shown to modulate both the innate
and adaptive immune system of the host defence mechanism to
buy time to effectively induce infection and cause
neuropathogenesis. Identification and understanding of the
role of effector molecules in antiviral response and signal
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transduction pathways are crucial to decipher the host-ZIKV
interactions. ZIKV uses multiple mechanisms to evade the host
immune response. The majority of these mechanisms are triggered
by the non-structural proteins. It modulates the innate immune
response primarily by inhibiting the expression of type I IFNs and
ISGs. Suppression of type I IFN increases dependency on adaptive
immune response in circumventing infection.

Importantly, the ZIKV-induced host immune response is
dependent on several factors: gender, pregnancy and pre-
existing immunity against other flaviviruses. In males, the
immune response facilitates ZIKV persistence through
inflammatory factors and alteration of BTB permeability.
Frontiers in Immunology | www.frontiersin.org 9
While in females, the immune response seems to control ZIKV
virus infection. However, the ZIKV cellular targets in the
reproductive organs and the underlying mechanisms need to
be further investigated. Alterations of the innate and adaptive
immune responses during pregnancy have demonstrated to have
significant effects on ZIKV infection and pathogenesis.
Activation of type I IFN along with the expression of
proinflammatory cytokines and impaired T cell response in
ZIKV-infected pregnant women could be the major factors
contributing to adverse fetal and birth outcomes. Given the
important effects of pregnancy-induced immune modulation
on ZIKV infection and the possible adverse outcomes, this area
TABLE 1 | Zika vaccine candidates in clinical trials.

Vaccine
name

Immunogen Sponsor name Clinical trial (Status) Clinical trial results Ref.

DNA vaccines
GLS-5700 prM/E GeneOne Life

Science, Inc.
Phase 1 NCT02809443
(Completed)

No serious adverse events in healthy adults; all participants developed
ZIKV-specific binding antibodies after third dose; cellular responses
peaked at week 36 during follow-up

(127)

VRC5283 prM/E NIAID Phase 2 NCT03110770
(Completed)

Not reported

prM/E NIAD Phase 1 NCT02996461
(Completed)

Safe and well tolerated in healthy adults; produced detectable cellular
responses and neutralising antibody responses against ZIKV proteins

(128)

VRC 5288 prM/E NIAID Phase I/Ib NCT02840487
(Completed)

mRNA vaccines
mRNA-1325 prM/E ModernaTX, Inc. Phase 1 NCT03014089

(Completed)
Not reported

mRNA-1893 prM/E ModernaTX, Inc. Phase 2 NCT04917861
(Recruiting)

Not reported

ModernaTX, Inc. Phase 1 NCT04064905
(Completed)

Not reported

Live attenuated vaccines
rZIKV/D4D30-
713

prM/E NIAID Phase 1 NCT03611946
(Recruiting)

Not reported

MV-ZIKA prM/E Themis Bioscience
GmbH

Phase 1 NCT02996890
(Completed)

Not reported

MV-ZIKA-
RSP

prM/E Themis Bioscience
GmbH

Phase 1 NCT04033068
(Completed)

Not reported

ChAdOx1 prM-E University of Oxford Phase 1 NCT04015648
(Recruiting)

Not reported

University of Oxford Phase 1 NCT04440774
(Recruiting)

Not reported

Purified Inactivated vaccines
ZPIV Whole Virus Kathryn Stephenson Phase 1 NCT02937233

(Completed)
Safe and well tolerated in healthy adults through 52 weeks; no serious
or serious adverse event grade 3 related adverse events; vaccine
immunogenicity required two doses

(129)

NIAID Phase 1 NCT02963909
(Completed)

Well tolerated and elicited robust neutralizing antibody titers in healthy
adults

(129,
130)

NIAID Phase 1 NCT02952833
(Completed)

NIAID Phase 1 NCT03008122
(Completed)

Not reported

VLA1601 Whole Virus Valneva Austria
GmbH

Phase 1 NCT03425149
(Completed)

Not reported

(TAK-426)/
PIZV

Whole Virus Takeda Phase 1 NCT03343626
(Completed)

Well tolerated in adults with or without serological evidence of previous
exposure to flaviviruses; no deaths, no vaccine related serious adverse
event; mild to moderate adverse events reported; immunogenic in both
flavivirus-naive and flavivirus-primed participants; seroconversion rates,
PRNT responses were higher in flavivirus-naive than flavivirus-primed
participants after both vaccinations.

(131)
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of research requires thorough understanding. This is also critical
for successful vaccine development and administration in
women of reproductive age and pregnant women. In addition,
follow-ups of children born with in utero ZIKV exposure may aid
in assessing the effects caused by the immune response and
providing support for early intervention to improve the
neurodevelopment of the children.

The effects of pre-existing flavivirus antibodies on ZIKV
immunopathogenesis and their potential impact on Zika
vaccine development have been a major concern. Various
studies have demonstrated that pre-existing flavivirus
immunity, particularly against DENV can both enhance and
neutralize ZIKV infection in vitro and in vivo. The detrimental
or protective effects of the pre-existing immunity is likely
determined by the concentration of antibodies, time interval
between exposure with different flaviviruses, and immune
response. The majority of the studies conducted in vitro and
in mice showed enhanced ZIKV replication and disease severity
due to pre-existing flavivirus immunity. However, most of the
investigations in nonhuman primates and humans showed the
opposite and suggest that high rates of immunity may present a
barrier to future ZIKV outbreaks. Other factors such as the
ZIKV strains, the type of animal models used, and Fc receptors
may also contribute to the effects of pre-exiting flavivirus
antibodies. Future studies in nonhuman primates and
humans are necessary to fully understand the effects of pre-
Frontiers in Immunology | www.frontiersin.org 10
existing antibodies on ZIKV infection, particularly in the
placenta and also their impact on Zika vaccines. Studies also
need to address the effects of Zika vaccines on DENV infection
and potential ADE. Dissecting the dynamics of pre-existing
flavivirus immunity will aid in understanding flavivirus
pathogenesis and vaccine development.
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