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Abstract
Synapse formation analyses can be performed by imaging and quantifying fluorescent signals of synaptic
markers. Traditionally, these analyses are done using simple or multiple thresholding and segmentation ap-
proaches or by labor-intensive manual analysis by a human observer. Here, we describe Intellicount, a high-
throughput, fully-automated synapse quantification program which applies a novel machine learning (ML)-based
image processing algorithm to systematically improve region of interest (ROI) identification over simple thresh-
olding techniques. Through processing large datasets from both human and mouse neurons, we demonstrate that
this approach allows image processing to proceed independently of carefully set thresholds, thus reducing the
need for human intervention. As a result, this method can efficiently and accurately process large image datasets
with minimal interaction by the experimenter, making it less prone to bias and less liable to human error.
Furthermore, Intellicount is integrated into an intuitive graphical user interface (GUI) that provides a set of valuable
features, including automated and multifunctional figure generation, routine statistical analyses, and the ability to
run full datasets through nested folders, greatly expediting the data analysis process.
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Significance Statement

Synapses are functional information processing and computational units in the brain, and disordered
synapse formation is associated with the pathophysiology of neurodevelopmental and neuropsychiatric
disorders. Therefore, accurate measurement of the numbers and qualitative characteristics of synapses is
widely employed in neuroscience and of great importance. Existing approaches commonly use immuno-
cytochemistry for synaptic protein markers. Image analysis and quantification are often time consuming,
requiring substantial user interaction with semiautomated image processing programs, which are prone to
unintended user biases and processing errors. Here, we provide a novel machine learning (ML)-based
image processing paradigm and software program that is fully automated and capable of high-throughput
analysis for quantifying synapse numbers under varied culture types and conditions.
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Introduction
The mammalian brain is composed of billions of neu-

rons connected to each other by trillions of synapses,
which govern information flow in the brain and thus con-
trol cognition and brain-related behaviors. Aberrant syn-
apse formation has been implicated in a wide range of
neurodevelopmental and neuropsychiatric disorders, in-
cluding autism spectrum disorders, schizophrenia, and
many others (Sekar et al., 2016; Südhof, 2008; Tsai et al.,
2012). Morphologically, the synaptic connections com-
posed of both presynaptic and postsynaptic components
under light microscopy appear as puncta-like structures.
Considerable effort has been invested in developing tech-
niques and platforms to accurately identify and quantify
synapse numbers and other characteristics of synaptic
proteins to unravel the molecular mechanisms by which
synapses form and function under normal and abnormal
conditions. Although some of these techniques can be
very specialized, analysis of synaptic puncta by imaging
of synaptic proteins by immunofluorescent (IF) labeling is
among the most established and commonly used tech-
nique because it is informative, and relatively easy to
perform. This type of analysis offers insight into the num-
ber, distribution within subcellular compartments (pre- or
postsynaptic, dendritic spines, shafts, and somatic), and
other characteristics of synaptic protein complexes. The
synapse density (number of synapses per unit length or
area of dendrite), intensities of the synaptic protein IF
signals, and the sizes of synaptic puncta often correlate
with functional synaptic parameters as measured by elec-
trophysiology (Ko et al., 2009; Lee et al., 2013; Zhang
et al., 2015; Chen et al., 2017). Indeed, the size and
intensity of the excitatory postsynaptic density protein 95
(PSD-95) puncta tend to correlate with measures of syn-
aptic strength (El-Husseini et al., 2000). A handful of
useful tools have been developed to facilitate image-
based analysis of protein puncta associated with neural

structures (Schätzle et al., 2012; Danielson and Lee,
2014).

However, several major limitations of existing tools avail-
able for analyzing synaptic protein puncta include the accu-
racy and reliability as well as the ease of use for performing
such analyses, particularly when large datasets are involved.
Commonly used methodologies often involve manual or
semiautomated object tracing and region of interest (ROI)
measurements to identify relative differences between ex-
perimental conditions. Experimenter-assisted manual quan-
tification methods (Ippolito and Eroglu, 2010) are often
cumbersome and require tedious repeated work. While this
approach can be accurate, it can be subject to human error
and bias and depends on the skill of the experimenters.
Therefore, several commercial (e.g., MetaMorph, Molecular
Devices) and open-source semiautomated software pro-
grams (e.g., ImageJ, with different customized modules)
have been developed. These platforms generally employ
thresholding and segmentation paradigms to identify puncta
and neural processes (Schätzle et al., 2012). Recent work
has extended semiautomated processing techniques to in-
clude multiple thresholds (Danielson and Lee, 2014), which
significantly improves separation of adjacent IF puncta clus-
ters. However, for puncta whose full area is occupied by a
broad grayscale range, simple thresholding may alter the
size, shape and intensity because the thresholds required to
separate adjacent puncta can eliminate the low-intensity
pixels, which may actually demarcate the true synapse
boundary. Specifically, use of higher thresholds, if left non-
optimized by the user, can artificially underestimate puncta
size since the threshold required to separate closely adja-
cent puncta tend only to capture the highest intensity pixels
of an ROI and vice versa. Additionally, most existing plat-
forms are considered semiautomated, because they require
interaction by a user with the program at multiple processing
and preprocessing steps (often with each image) and do not
allow automated batch processing of multiple nested folders
(i.e., folders organized by condition within a single directory)
or directories with images collected from different condi-
tions. Moreover, most programs are normally not integrated
with statistical capabilities. Therefore, analysis of synaptic
protein puncta is often tedious and prone to experimenter
bias.

To address these limitations, we developed a novel
machine learning (ML)-based image processing paradigm
and software program, Intellicount, which dramatically
reduces the time required for analysis, improves process-
ing artifacts generated by simple image thresholding, and
allows image processing to proceed without the need for
carefully set thresholds. We have applied this in different
experimental conditions. Additionally, Intellicount is pack-
aged into an intuitive graphical user interface (GUI) that is
equipped with commonly used statistical analysis and
graphical figure representation, further increasing the ef-
ficiency by which quantitative analyses can be performed
and data can be represented. As such, we provide the
research community with an open-source, easy-to-use
tool for quantification of fluorescent synaptic protein
puncta. This open-source platform aims to improve the
reproducibility and reliability in performing such analyses.
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Materials and Methods
IF sample preparation and image collection

Both mouse and human induced neurons (iNs) at dif-
ferent culture densities were used in this study. Specifi-
cally, low/medium density human iN cultures (�100,000
neuronal cells/78.5 mm2) were prepared from male H1
embryonic stem cells (NIH registry WA01) as described
previously for excitatory iNs (Zhang et al., 2013). Inhibitory
iN subtypes were derived from C12-induced pluripotent
stem cell (iPSC) lines as described previously (Yang et al.,
2017). C12 is an iPSC line originally created from a male
subject from the COGEND collection (Saccone et al.,
2007; Bierut et al., 2008) of nicotine abuse as described
previously (Oni et al., 2016). It carries a minor allele variant
in the OPRM1 gene (N40D), unrelated to the current study.

Coverslips were fixed at 6 weeks in vitro for IF experi-
ments. Work with human embryonic stem cells was ap-
proved by the Rutgers Embryonic Stem Cell Research
Oversight (ESCRO) committee. Mouse hippocampal
neurons at relatively high density (�200,000 neurons/
78.5 mm2) were isolated from postnatal day 0 –1 C57/
BL/6 background male newborn pups as described
previously (Maximov et al., 2007; Chanda et al., 2017)
and fixed at the different time points after culturing (4,
6, 8, 10, 12, and 16 d in vitro, DIV). Fixation was
performed with 4% paraformaldehyde diluted in PBS
for 10 min at room temperature, washed well in PBS,
blocked, and permeabilized for 30 min in PBS contain-
ing 4% bovine serum albumin, 1% normal goat serum,
and 0.2% Triton X-100. Coverslips were then incubated
with rabbit anti-synapsin (1:3000, E028, a gift from the
Südhof lab), rabbit anti-vesicular GABA transporter
(vGAT; 1:500, Millipore Ab5062P, RRID:AB_2301998),
and mouse anti-microtubule-associated protein 2
(MAP2; 1:500, Sigma M1406, RRID: AB_477171 and
1:1000 Millipore AB5543, RRID: AB_571049) primary
antibodies for 1 h, washed well, and incubated in ap-
propriate secondary antibodies (1:500, Alexa Fluor 546-
conjugated anti-rabbit and 488-conjugated anti-mouse,
Invitrogen). All steps were conducted at room temper-
ature. Coverslips were then mounted onto slides using
Fluoroshield media containing DAPI (Sigma). Approxi-
mately 101.6 � 101.6 �m2 Z-stack images (1024 �
1024 pixel resolution, 8-bit grayscale depth for human
and mouse cultures) were acquired at 1� digital zoom
using a 63� water immersion objective by laser-
scanning confocal microscopy (Zeiss LSM-700, Carl
Zeiss). Mouse culture images for synaptogenesis time
course were taken with 16-bit grayscale depth. All im-
ages were acquired using identical laser intensity, dig-
ital gain, and offset background within each dataset.
Maximum intensity projection images were then constructed
and images were exported in TIFF format for analysis in
Intellicount or Fiji, which is a distinct package of ImageJ
(Schindelin et al., 2012). Subfields (�20 � 20 �m2) were
cropped from iN images using Fiji for analysis by manual
tracing to identify puncta ROIs. Fiji-fixed thresholding was
performed using threshold settings 55 for lower threshold
and 255 for upper threshold. For both manual and fixed

thresholding methods within Fiji, ROI properties were ana-
lyzed using Analyze Particles.

Full, uncropped images from mouse cultures were used
for analysis of synaptogenesis time course. For synapto-
genesis time course, a total of 29–33 images were ob-
tained from randomly sampled fields distributed evenly
over two coverslips each obtained from two independent
cultures. For high density versus low neuronal density
comparisons, images were taken from the same batches
of hippocampal cultures at DIV 8. Fields with high cell
density (more than five cell bodies) were selected for high
density, and fields with low cell density (one to two cell
bodies) for low density images. For the calmodulin (CaM)
knock-down experiment, images were obtained from
Pang et al. (2010), which were acquired at dimensions of
71.3 � 71.3 �m2 taken at 652 � 652 pixel resolution.

Image processing
Intellicount was developed using MATLAB 64-bit

R2017a. The ML process uses a looped algorithm that
optimizes traces against gradient images. Segmentation
is performed in most cases on a filtered image (unless the
user opts to forego the filter due to high background).
Images are converted to a format with a normalized in-
tensity range from 0 to 1 for all processing. Puncta IF
intensities are rescaled to a 0–255 (8-bit images) range for
display. Three thresholds (analogous to 8-bit grayscale
values of 30, 70, and 220) are then applied to the filtered
image to generate three binary images. Next, the two
upper threshold binary images are dilated according to
the ML-defined dilation size. Following dilation, a “back-
ground removal factor” is applied to reduce the capture of
background signals from any threshold level. This serves
to remove ROIs that do not have a significantly high
gradient level. We hypothesized that true signals would
have a gradient value greater than the average back-
ground signal. Therefore, any ROI that did not have an
average gradient intensity higher than the background
removal factor (on a 0.0–1.0 intensity scale), was removed
from the binary image. Increasing this factor creates a
stricter environment for puncta identification, and is rec-
ommended for high background images.

After dilation, the binary images are processed through
a watershed transform to separate closely located
puncta. Next, if selected, the MAP2 signal segmentation
and correlation is performed. MAP2 segmentation is
guided by Otsu’s method (Otsu, 1979), which determines
optimal threshold values based on histogram variance of
grayscale pixel intensities. An additional dilation of 1.5 �m
(or other distance specified by user) is added to the width
of segmented dendrites to capture puncta located near
dendrites. Somata are also segmented from the MAP2
signal and either included or excluded from the correlation
(as specified by the user). Remaining puncta undergo size
discrimination.

While synaptic structures range in size from �200 nm
to 500 nm (Ribrault et al., 2011) as identified by electron
microscopy (Siksou et al., 2007), protein puncta visualized
by confocal microscopy generally range from 0.4–4 �m in
diameter, based in part on the diffraction limit of light and
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inability to optically resolve closely adjacent terminals or
spines. We established area cutoffs of 0.16 and 6.25 �m2

consistent with ranges used in a previous protocol (Mitch-
ell et al., 2012). This upper size limit can be altered within
the GUI.

Since high intensity, nonoptimized thresholds tend to
capture only the brightest pixels of an ROI (Fig. 1A,B), we
applied our ML algorithm to improve ROI traces by com-
paring the overlap of all puncta traces of the image with
the gradient images. Gradient images reflect the magni-
tude of the gradient of the original image using the imgra-
dient command with the Sobel operator, which is a
convolution mask applied to the image as described else-
where (Sobel, 1990). Two gradient images are obtained:
the first gradient which results in a single circular peak for
each puncta (Fig. 1C, green pixels), and the second gra-
dient which results in two circular traces (Fig. 1C, purple
pixels). In the first round of ML, each successive ML loop
alters the dilation size until there is maximum overlap
between the ROI trace and the first gradient. The mean
intensity value of the overlap with the first gradient is
called the mean intensity gradient (MIG):

MIG �
1
n

1
m �

i�1

n

�
j�1

m

��Ii,j�·SIE,i,j

where Ii,j is a single pixel from the original grayscale image
of the puncta channel and SIE,I,j is a pixel from the edge-
image of the segmented puncta (i.e., the puncta trace).
The mean is determined using the mean of overlap for all
pixels. Similarly, the second derivative (MIGG) is

MIGG �
1
n

1
m �

i�1

n

�
j�1

m

�2�Ii,j�·SIE,i,j

Once the highest MIG value is found, the algorithm now
increases the dilation size until the mean of the puncta
trace multiplied by the outermost second gradient is max-
imized (Fig. 1D). The trace that produces this maximized
MIGG is used for all subsequent analysis, and the pro-
gram considers the traces now optimized (Fig. 1E). This
process begins with threshold 2 and is repeated for
threshold 3.

To ensure puncta identified by multiple thresholds are
not duplicated in the final analysis, all multi-labeled ele-
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Figure 1. ML facilitates high-throughput image puncta analysis. A, Example synaptic puncta (synapsin in red) juxtaposed to a dendrite
(MAP2 in green) and B, a trace provided by thresholding. C, First and second gradient (green and purple, respectively) provide a
template. D, Trace boundary is improved by structure-guided ML (an optimized trace in green) overlaid on the second gradient
(purple). E, The improved puncta trace as a result of ML. F, Nested folder input for image pre-processing sorted by data round (i.e.,
condition). G, Structure-guided ML algorithm runs multiple dilation iterations to optimize traces (green and pink loops indicate
processing against the first and second gradients, respectively). H, Puncta properties are extracted and stored in matrix form, allowing
flexible post-processing representation and analysis by the user (refer to Fig. 6 for statistical output and data display). Note, this
overall paradigm allows user to interact with the program at fixed beginning and end steps (highlighted in green shaded boxes).
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ments produced from the multiple thresholds (puncta
labeled by more than one threshold) are then removed by
identifying objects underneath the highest threshold that
identified the object. The results are then flattened into
one binary image. From here, the MATLAB command
regionprops was used to find properties of all identified
puncta. The entire process is performed automatically,
allowing the user to upload image folders into the pro-
gram, and after selecting the “start” button, performing
plotting and statistical analyses (Fig. 1F–H). The user may
upload a single folder of images, or a folder containing
subfolders of images, which we refer to as “nested fold-
ers.” This expedites the analysis process by reducing user
time uploading new batches of images for processing.

Computational run time analysis
This analysis was conducted on 10 cropped images. To

collect run times for Intellicount, MATLAB functions tic
and toc where used. For Fiji-fixed threshold, a macro
within Fiji was recorded and run over the 10 images. The
getTime command was used to capture the start and end
times. The Fiji-manual approach was conducted using a
manual step to optimize threshold selection. The thresh-
old selection was timed separately outside of the macro
for each of the 10 images. The identified thresholds were
then added to the macro code, and the macro was run.
The computational time and the threshold selection time
were summed to capture total time for the Fiji-manual
approach.

Statistical analysis
Data are presented as mean � SEM and statistical anal-

yses were performed using one-way ANOVA with Tukey-
Kramer’s post hoc testing. Student’s t tests in Figure 4 were
performed in Excel using two-tailed equal variance. vGAT
parameters expressed in text as mean � SEM.

Code accessibility
The code/software described in this paper is freely avail-

able online at http://license.rutgers.edu/technologies/2018-
013_intellicount. The code is available as Extended Data 1.

Results
Intellicount was primarily designed to allow IF image

processing for quantification of synaptic puncta to pro-
ceed without the need for an experimenter to carefully set
thresholds of IF signals and preselect image subfields for
analysis. Building off a previous approach using multiple
thresholds (Danielson and Lee, 2014), Intellicount uses a
combination of multiple thresholding and puncta trace
optimization aided by structure-guided ML. Multiple
thresholds facilitate the separation of closely-located IF
puncta and the inclusion of a greater range of intensities
over variable background levels. Higher thresholds tend
to capture the brightest regions (usually the center) of an
IF punctum, leaving the less intense areas unaccounted
for (Fig. 1B). Using the gradients as a structure guide (Fig.
1C), we optimized puncta traces against the gradient (Fig.
1D) to improve ROI identification (Fig. 1E). Furthermore,
Intellicount allows users to import full image fields ar-
ranged in folders according to experimental condition or

different timings (Fig. 1F). It then performs image pre-
processing to correlate to neural structures (dendrites)
before ML (Fig. 1G) and subsequently quantitatively ana-
lyzes the data and extracts the data for further statistical
analyses with built-in statistics (Fig. 1H). This highly-
efficient approach greatly reduces the number of human
interactions and thus lesser (or no) human bias and errors
would be introduced by a user (Fig. 1F, H, user interaction
points shown as green shaded boxes).

Intellicount improves ROI tracing and quickly
quantifies puncta number and properties

To test the accuracy of the synaptic structure identifi-
cations (tracing of the puncta) based on IF signals of
defined synaptic proteins, we compared the synaptic IF
puncta properties (synapsin and MAP2 IF images pro-
vided by Intellicount against manual, human traces, and
single thresholding methods in Fiji). Synapsin is a well-
defined presynaptic marker and was used to quantify
synaptic numbers in many recent publications (Pak et al.,
2015; Patzke et al., 2016; Yi et al., 2016). Manual tracing for
ROI identification was performed using ImageJ and Fiji
(Schindelin et al., 2012). First, we blindly identified all dis-
cernable IF puncta under high magnification, which enabled
us to trace the ROI with accuracy down to the single-pixel
level. Intellicount was then run under three different condi-
tions: no ML, i.e., simple thresholding using its default three
thresholds; watershed only, which applies a watershed al-
gorithm to thresholded images; and the Intellicount default
(ML condition), which applies structure-guided ML with a
watershed algorithm to the thresholded images. We also
compared traces obtained using two different Fiji approach-
es: manually-selected thresholds for individual fields and a
single, manually-fixed threshold (55 lower, 255 upper),
with the Analyze Particles tool within Fiji. We compared
four parameters: number, area, and IF intensity, as well as
average analysis time per image, over all six tracing ap-
proaches (Fig. 2A). Data were expressed as ratios com-
pared to the manual trace. As expected, the ML version of
Intellicount outperforms non-ML and watershed versions
of the program on three parameters for IF puncta (Fig. 2B).
As compared to Fiji ROI segmentation, Intellicount per-
forms comparably. Our program, however, largely circum-
vents common problems with single thresholds even
when thresholds are carefully selected, namely, inclusion
of background pixels and merging of closely located
puncta (Fig. 2A, second row, white arrows). Multiple
thresholds with watershed improved the separation of
closely located synaptic puncta, while single thresholds
can merge puncta together, which are then evaluated as
a single, large ROI. Intellicount improves on this, but does
not fully separate all puncta as compared to manual
tracing. While the areas quantified by Fiji and Intellicount
were different from the manual trace, they were not sig-
nificantly different from each other, although Intellicount
may offer slight improvement over Fiji approaches.

In addition to defining the accuracy of Intellicount, we also
compared computational processing time per image be-
tween methods performed in Fiji and Intellicount with the
same set of 10 IF images. To evaluate one currently available
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method (single threshold segmentation using Fiji) against
Intellicount, we used a macro within Fiji to quantify the
computational run time. While runs of Intellicount with ML
take slightly longer compared to runs without ML and to the
Fiji macro, the timescale is within the same range of the
other approaches, and provides the user with a greater
amount of information in the process, such as data graphs
(Fig. 2C). To show the impact of manual operations on run
time, we also added a thresholding selection step to the Fiji
macro run time. The addition of this manual step, while only
on scale of 10–20 s (hatched bar), significantly lengthens the
time for processing images. This demonstrates that user
interaction can slow data analysis time and that fully auto-
mated methods for large datasets are preferable. Further-
more, when considering full image analysis with MAP2
correlation, the differences between automated and manual

approaches will likely be further extended, since automated
approaches, and specifically Intellicount, have been de-
signed specifically for this type of analysis and performs it
automatically without optimizing thresholding other image
channels or the need to crop subfields from full images.
Therefore, Intellicount performs puncta IF analysis automat-
ically while offering both accuracy and efficiency, with im-
mediate data readout.

Intellicount identifies puncta over a wide range
densities and intrinsic characteristics

To demonstrate the utility of the program to handle large
datasets and its ability to discern puncta covering a wide
range of sizes, intensities and densities, we performed a
time course analysis of synaptogenesis and synaptic matu-
ration using primary mouse hippocampal neurons. The total
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by a human observer, three processing conditions of Intellicount, and user adjusted variable- or fixed-threshold analysis in Fiji.
Representative low (image 7) and high (image 4) puncta density fields are shown. White arrows indicate background included as ROI
(top row) and merged puncta (bottom row). Note, “no machine learning” and “watershed only” provide traces obtained in Intellicount
using default thresholds (without and with selection of a watershed algorithm, respectively) and without application of the ML. B,
Comparison of these processing techniques normalized to values obtained by manual tracing. Results are displayed as mean � SEM
from analysis of 10 random fields; �p � 0.05, ���p � 0.001 using ANOVA with post hoc Tukey-Kramer, as compared to manual trace.
C, Total analysis time per cropped image performed on 10 fields. Computational analysis time is shown in solid bars and was recorded
either from MATLAB (for No Machine Learning, Watershed Only, and Intellicount) or Fiji macro. Diagonally-lined section of bar in
Fiji-manual condition highlights the fraction of analysis time used for manual threshold selection.
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dataset consists of 189 images generated from two different
batches of cultures collected after increasing time spent in
culture (4, 6, 8, 10, 12, and 14 DIV) with IF for synapsin
(presynaptic marker) and MAP2 (dendritic marker), orga-
nized into six nested folders (each containing 29–33 im-
ages). Note that the number of the images in each nested
folder can be increased dramatically as long as images
could be acquired with the same parameters and format.
The program ran these images with a MAP2 � Soma cor-
relation, which includes puncta located within a defined
distance from the MAP2 IF signal-positive dendrite, as well
as the segmented soma. The processing was completed in
�2.5 h using an iMac with a 2.5-GHz processor. The back-
ground removal factor was increased from the default 0.175
to 0.25 accommodate higher backgrounds found in later
time points due to higher signal intensity. For output image
traces, Intellicount displays the puncta channel in grayscale
and the MAP2 channel at 50% brightness in grayscale
(which can be toggled off; Fig. 3), with the trace color match-
ing the original color of the puncta channel. MAP2 traces are

also shown in their original channel color, however the soma
sizes are shown using a third unused channel color. Here,
synapsin IF signal was shown in red (with red program
traces in lower panel), and MAP2 IF signal in green (with
green program traces in lower panel; Fig. 3A). Somata,
which do not have a distinct channel, were traced in the
unused RGB color, blue. An increase in synaptic density
(number of puncta per unit MAP2 area; Fig. 3B), as well as
increases in synapse area (Fig. 3C) and synapsin fluores-
cence intensity as a function of time spent in culture were
observed (Fig. 3D). These results are consistent with previ-
ously published data on synapse maturation in a neuronal
culturing system (Mozhayeva et al., 2002; Chanda et al.,
2017).

Intellicount can be used under varied culture
conditions and antibodies

To further demonstrate the robustness and reliability of
the program to quantify synapses in images from different
treatment conditions, we tested the program over three
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Figure 3. Intellicount recapitulates analysis of synaptogenesis over time in cultured hippocampal neurons. A, Upper panels:
representative images taken at increasing numbers of days in culture. Lower panels, corresponding traces provided by Intellicount
(red, correlated puncta synapsin traces; green, segmented dendrite traces in MAP2 channel; blue, trace of soma segmented from
MAP2 channel). Display of the MAP2 channel was deselected in the lower panels facilitate visualization of puncta. A total of 29–33
images were obtained from randomly sampled fields distributed evenly over two coverslips each obtained from two independent
cultures. B–D, Quantification and graphical representation of (B) synapse number, (C) mean fluorescence intensity, and (D) area
provided by Intellicount with minor adjustments in Adobe Illustrator (renaming of “rounds” to appropriate conditions and thickening
of stroke width for representation of graph and bar lines). Colors displayed are default in the program. Data are displayed as mean � SEM.
Numbers within bars indicate the number of images processed from that time point.
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alternative conditions: (1) high versus low neuronal den-
sities, (2) IF imaging data collected by another research
group with a defined molecular manipulation, and (3) im-
ages obtained using a different primary antibody, anti-
vGAT with an alternative anti-MAP2 antibody. Fields with
high and low neuronal densities were imaged from the
same coverslip derived from mouse hippocampal cultures
at DIV 8 of our synaptogenesis time course. High cell
density images were considered dense if there were more
than five cell bodies and MAP2-positive structures in the
images. Low density images were considered low if there
were only one or two cell bodies present and limited MAP2-
positive area. Intellicount was able to detect puncta in both
images (Fig. 4A,B), showing comparable puncta area (Fig.
4C). The program did, however, detect a slight difference
in intensities between the groups. Interestingly, while the
program did detect the increase in MAP2-positive area
with the high-density images, the synapse density was
inversely correlated with MAP2-positive area (Fig. 4C),
which is consistent with a previous report (Cullen et al.,
2010).

To further validate the program, we obtained IF images
from a previous report (Pang et al., 2010) to be processed
in Intellicount. The original report demonstrated that there
was no significant impact on synaptic properties after Cal-
modulin (CaM) knock-down compared with control. To val-
idate the program against this finding, we obtained �50
images from both conditions, which had been stained for
MAP2 and synapsin (Fig. 4D). Intellicount was able to accu-
rately identify synaptic puncta within these images as well as
MAP2 correlations (Fig. 4E). The program did not detect
any significant changes between all three synaptic param-
eters, as well as MAP2 area between control and CaM
knock-down conditions (Fig. 4F), consistent with the find-
ing this report. The reproduction of this data serves as
further validation for Intellicount and demonstrates its
ability to reliably identify synaptic structures under differ-
ent experimental conditions and culture types.

Lastly, we sought to demonstrate that alternative anti-
bodies against synaptic proteins other than synapsin that
could be used for tracing of synaptic puncta using Intel-
licount. We immunostained inhibitory human iNs for vGAT
and MAP2 (Fig. 4G,H). Sixty images were obtained from
three different culture samples. Similar to synapsin quan-
tification, vGAT IF puncta could be identified with appar-
ent accuracy, quantified, and normalized to MAP2 signal
(Fig. 4G,H). The average area over the 60 images was
0.57 � 0.11 �m2, and the intensity was 72.7 � 13.2 a.u.

Taken together, these data demonstrate the robustness
of Intellicount to handle different sets of images collected,
and that Intellicount can be used for a reliable quantifica-
tion from different culture types and experimental condi-
tions.

Intellicount automates post-processing analysis and
data representation

To facilitate quantitative analysis of large datasets such
as those demonstrated, we designed Intellicount to fea-
ture a user-friendly GUI, with automated figure generation
and statistical output (Fig. 5). Raw data can be exported

directly to Microsoft Excel, which includes folder name,
file name, and all averaged properties for each image,
including MAP2 and soma characteristics. The “save”
button additionally allows the user to collect all raw data in
a single, four-dimensional matrix retaining raw data of
individual puncta associated with each image. Traces of
images can be collected and exported using the “collect
images” function, for display (Fig. 3A, bottom row).

We designed Intellicount to provide a single user-
friendly platform for immediate statistical analysis and
graphical representation. Our program provides to the
user three options for plotting data for each parameter
measured (intensity, area, and number). The parameter
and the output mode can be selected in the GUI before
plotting. It can also display data as a bar graph, dot plot,
or box plot, as well as depict the mean and 95% confi-
dence intervals of individual rounds for visual analysis of
potential group differences (Fig. 6). To highlight these
plotting features, we used the area data obtained from the
synaptogenesis time course in cultured mouse hippocam-
pal neurons. The dot plot displays all individual results,
showing the overall trend toward a corresponding in-
crease in area over time (Fig. 6A). Data round, which
refers to the order of nested folders, is the default x-axis
label. In this case, round 1 is DIV 4, round 2 is DIV 6, etc.
Additionally, the data can be plotted as a cumulative
fraction curve (Fig. 6B) or as a box plot (Fig. 6C). Boxplots
are generated using MATLAB’s boxplot command, where
the red line indicates the median, the box edges are first
and third quartiles. The dashed line edges, “whiskers,”
show the range of nonoutliers. Outliers are plotted as
single points in red. For individual images, a histogram of
puncta area is automatically generated during analysis.
Overlaying histograms for a single image from rounds 2,
4, and 6, shows again the trend toward a greater number
and proportion of larger puncta (Fig. 6D). Taken together,
these features allow users to visually compare how
puncta are distributed between rounds and within images.
Additionally, when ANOVA is selected as the statistical
test, the ANOVA table will display in the GUI. Intellicount
also automatically runs the multcompare command,
which performs a post hoc Tukey-Kramer test for multiple
comparisons between individual groups. This command
generates a new window with a plot that allows the user to
select individual groups (Fig. 6E, blue line), displaying
which groups have significant differences (Fig. 6E, red
lines). Lastly, it will provide a table displaying the 95%
confidence interval of the mean differences between
groups and associated p values between groups (Fig. 6F),
enabling the user to evaluate the level of statistical signif-
icance for all possible pairwise comparisons.

Discussion
Validated, high-throughput techniques allow research-

ers to generate, test, and evaluate hypotheses more rap-
idly and thus greatly advance scientific discovery. They
also provide an unbiased, standardized platform for ana-
lyzing datasets and hence facilitate scientific rigor and
data reproducibility. User-friendly bioimaging processing
software tailored for specific platforms is in great need
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Figure 4. Validation of Intellicount under different culture and staining conditions. A, Representative input images of high (left panel)
and low (right panel) neuronal densities. B, Corresponding traces provided by Intellicount demonstrating differences in segmented
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(Carpenter et al., 2012) and quantification of synaptic
protein puncta visualized by IF (or a fluorescent tag) re-
mains a widely used technique in neuroscience that is
often cumbersome and prone to bias and human error.
Semiautomated methods speed up this process, al-
though there can sometimes be a trade-off between
accuracy in tracing signals and processing speed. Im-
portantly, thresholding methods may artificially reduce
puncta size, capture background signal as ROIs, or
miss low-intensity puncta containing pixels beneath the
threshold. To address these drawbacks, we developed
Intellicount as an analysis paradigm and software pro-
gram, which performs synaptic protein analysis of IF
puncta via ML on a series of images of any size, providing
data on the puncta number, mean area and fluorescence
intensity. As we demonstrate, this platform provides an
efficient and largely unbiased analysis of synaptic IF
puncta that can be used for analyzing synapse formation
across a wide range of puncta densities and properties
under different experimental conditions.

ML for improved puncta identification
We developed Intellicount to employ an unsupervised

structure-guided algorithm (i.e., guided by mathematical
optimization equations rather than an empirical teaching
approach), which corrects traces based on IF image gra-
dients (Fig. 1). Gradient magnitudes, which Intellicount
uses as a structural template, are generated through ap-
plication of a Sobel gradient operator. This approach
focuses the puncta trace toward the periphery of the
structure, immediately before an upward slope in signal
occurs. Puncta size cutoffs and MAP2 correlation are
applied before ML optimization, so that only the puncta of
interest undergo ML optimization. By conjoining puncta
identification with the MAP2 correlation, puncta over a
wide range of IF intensities can be traced within a short
distance of dendrites or neuronal somata.

Also demonstrated, Intellicount provides a rapid, multi-
threshold analysis which is at least comparable to thresh-
olding approaches in Fiji, however, providing improvements
on puncta segmentation and background pixel inclusion

continued
MAP2-positive areas. C, Quantification of puncta number and properties (red graphs) provided by Intellicount under high and low
neuronal densities. Total segmented MAP2-positive area shown in blue graph; n � 20. D, Representative fields for lentiviral-infected
CaM knock-down (CaM KD) and control (empty viral vector) expressing hippocampal neurons and (E) traces provided by Intellicount.
Here, MAP2 “show correlation” is selected, which highlights MAP2 signal at 50% intensity level. F, Quantification as in C displaying
no differences in synapse formation as described previously (Pang et al., 2010); n � 52 and 51 for CaM KD and control, respectively.
G, vGAT staining (red) and MAP2 staining (green) in inhibitory human iNs. H, Intellicount’s trace of vGAT puncta and MAP2. A total
of 60 images were analyzed. White boxes show cropped areas for visualization. Numbers in bars indicate the number of images
processed from that condition. Data are displayed as mean � SEM. Statistical tests were performed using two-tailed Student’s t test,
where �p � 0.05 and ���p � 0.001.

Figure 5. Intellicount’s GUI. Screenshot of the Intellicount analysis platform displaying results for synapse size from the synapse
formation time course (data panel, upper left panels) depicted as dot and cumulative plots and an example analyzed field (figure panel,
upper middle pane). For details on operation, please refer to the user guide accompanying the software.
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(Fig. 2). When compared to a manual trace, Intellicount was
not able to recapture the full area. While manual traces
capture all (even very low-intensity) pixels in the ROI tracing,
Intellicount optimizes the trace according to the outermost
second gradient, which may not include those very low-
intensity pixels. Furthermore, since the mean overlap be-
tween the trace of a puncta and the gradient is used to
determine optimization, traces are most optimized for the
average-shaped puncta in the image. Therefore, oddly
shaped puncta, which can be traced with precision manu-
ally, may not be precisely traced using this approach. Nev-
ertheless, the overall benefit of the ML and image
segmentation paradigm is evident by its ability to discrimi-
nate differences between experimental conditions efficiently
and reliably without image cropping or carefully set thresh-
olds.

Intellicount performs a robust analysis of different
datasets

We also demonstrated that Intellicount is capable of
handling a large dataset of different experimental condi-
tions (time points, molecular manipulations, culture den-
sities and antibodies). Using synaptogenesis time course
experiments (Fig. 3) in cultured hippocampal neurons, we

demonstrate that Intellicount can recapitulate relative dif-
ferences between time points as shown in previous re-
ports using other image-processing methods (Mozhayeva
et al., 2002; Chanda et al., 2017). Here, increases in both
fluorescence intensity and puncta area are consistent with
increases in synaptic maturation over time as can be
observed by electron microscopy as increases in the
length of synaptic contact zones and number of vesicles
per synapses (Ichikawa et al., 1993). Intellicount’s ability
to detect this increase demonstrates its utility for quanti-
fying relative differences between conditions over a range
of puncta densities and intrinsic puncta characteristics.
The program captures low-intensity puncta from earlier
time points as well as high intensity puncta of later time
points, which is likely due to the use of multiple thresh-
olds. Furthermore, Intellicount is able to recover most of
the lost area through its ML optimization, which would
likely be lost simply through default threshold-based seg-
mentation alone (Figs. 1, 2). However, our program
reaches a limit in its ability to segment puncta when the
signal becomes saturated, a limitation of any imaging
software that bases its processing on signal intensities. If
closely located puncta have saturated pixels with little
intensity distinction between them, Intellicount will prob-
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Figure 6. Intellicount provides a multifunctional analysis platform with commonly used graphical data representation and statistical
methods. A-C, In addition to bar graphs, data distribution can be directly visualized and exported as (A) dot, (B) cumulative fraction
(for puncta area and intensity), or (C) box-and-whisker plots. Note, rounds here are reported according to folder nesting order and
correspond to increasing time points in the synapse formation analysis presented in bar graph form previously (Fig. 3). D, Histograms
for areas of identified puncta are collected for each image for three increasing time points. Here, one image taken from three different
rounds are overlaid to demonstrate the shift toward larger puncta during maturation. E, Statistical comparisons can be directly
performed in Intellicount’s analysis platform allowing visualization of significantly different groups. Rounds highlighted in red are
significantly different from the round selected by the user in blue. F, Computation of statistical test data including p values for one-way
ANOVA and post hoc analysis (Tukey-Kramer). Note, box notches (C) and line lengths (E) define the boundary of 95% confidence
intervals for the data and the mean for each round, respectively. Thus, in E, rounds colored with red (rounds 1–3) are statistically
different (at p � 0.05) from the round selected in blue (round 6), while rounds colored in black (rounds 4–5) are not.
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ably see these puncta as one. This is likely a caveat of any
automated synaptic analysis program, and can be im-
proved or eliminated through careful imaging technique
and acquisition methods that do not result in significant
signal saturation.

We further validated the program under different exper-
imental conditions and reagents (Fig. 4). Intellicount is
able to comparably identify puncta from images contain-
ing regions of high and low neuronal densities derived
from the same specimen (Fig. 4), suggesting it is not
substantially impacted or biased by cell density in ROI
identification. In this analysis, we did observe a significant
increase in the number of MAP2-correlated puncta in the
low density condition, consistent with a previous report
suggesting an inverse relationship between synapse den-
sity and neuronal number (Cullen et al., 2010). Further-
more, this experiment demonstrates that Intellicount’s
MAP2 segmentation function is capable of reporting dif-
ferences in neuronal densities which can be a useful
additional comparator for analyses (Fig. 4C, lower right
graph). To demonstrate that Intellicount can reproduce
existing datasets and detect nondifferences between
conditions, as well as handle data obtained by other
methods, we processed images from Pang et al. (2010) in
an automated format. Importantly, Intellicount was able to
reproduce these data demonstrating that CaM knock-
down does not significantly alter synapse formation in
hippocampal neurons cultured at similar cell densities
(Fig. 4D-F). Finally, to test the validity of Intellicount in
tracing IF puncta visualized by a different antibody against
a different synaptic protein, we performed vGAT staining
on inhibitory induced neuronal cultures (Yang et al., 2017)
and observed punctate signals correlated to neuronal
structures.

Collectively, these analyses demonstrate that the pro-
gram is capable of running a variety of image sets ob-
tained with varied neuronal densities, image acquisition
methods, and primary antibodies for puncta analysis, with
little adjustment in processing settings. Importantly, these
results, just as those obtained from our synaptogenesis
time course experiment, were obtained from full images
without cropping images to capture specific locations or
subfields and thus removing potential biases from the
analysis.

GUI aids usability for data analysis and presentation
IF staining for synaptic markers often includes some

diffuse signal in the cell nucleus or proximal neuronal
processes, which can cause aberrant ROI identification.
Therefore, we have also included a background removal
factor, which discriminates ROIs using a gradient intensity
image. True puncta signals should have a significant rise
over background and a quick decay, which produces a
high gradient intensity, which can be used to filter non-
specific ROIs. Application of this background removal
factor is most important when considering more saturated
images and analyses where the somata are included. If it
is set too low, it may include smaller background ROIs in
the analysis, reducing the average puncta size. If set too
high, the program will remove true puncta from the anal-

ysis. We therefore recommend that all users optimize this
parameter before running datasets.

The “plot all” option allows the user to visualize the data
of the experiment in three ways for three puncta measure-
ments (intensity, area, and number). These figures can be
exported and saved as a variety of image types to assist
in figure preparation. For data export, we have built in a
button (“export data”) which allows the user to capture
data from all rounds and images. The data are compiled
into a Microsoft Excel sheet, which is saved with a time
stamp into the original directory, where the .m-file
(MATLAB file) is located. This enables the user to cap-
ture data from a run for additional/alternative statistical
analyses or other analysis outside of the GUI. Graphs
produced in the GUI can also be exported. Overall, the
GUI is designed to be as inclusive as possible, allowing
a user to upload a full dataset of either 8- or 16-bit RGB
images and conduct a statistical analysis on that data-
set, all within a short time period.

We sought to provide the user with an easy-to-use
interface (Fig. 5) featuring common graphing options to
compare groups, as well as built-in statistics for testing
differences. Significantly, running individual images or in-
dividual folders adds time to processing a series of im-
ages, even in semiautomated programs. To maximize the
efficiency of data processing, we implemented a nested
folder input paradigm, which allows the user to upload a
folder containing grouped subfolders of all images to be
analyzed. Intellicount can be used for most common im-
age formats (e.g., TIFF, JPEG). Resolution and image size
(x and y dimensions in micrometers) must be set directly
in the GUI before running the program. Importantly, there
are no restrictions on field size or shape, which allows
precropped images (from the same original dimensions
and resolution) to be run together simultaneously, even if
the cropped dimensions differ between images. For dis-
play of these cropped images in the GUI, Intellicount
zero-pads the smaller images until they reach the largest
column and row sizes of any given image. Therefore, a
user can prepare a dataset where each folder contains a
different condition for analysis, and upload the entire
experiment into the GUI at once, rather than sets of
images individually. After the run is completed, the user
can investigate individual images from each round in the
GUI or export them by organized round into folders to
evaluate the accuracy of traces of the identified puncta
and MAP2.

Intellicount offers three statistical tests: Student’s t test,
ANOVA, and the Kolmogorov-Smirnov (K-S) test for nor-
mality. Selecting ANOVA will also provide the user with
automatic post hoc comparison between groups using
the Tukey-Kramer’s post hoc test (Fig. 6E). The K-S test
can currently only be applied to single image area data.
This option offers the opportunity to see whether the
identified areas provide a sample of puncta from a normal
distribution, as required for t tests or ANOVA analyses.

Based on the design strategy, Intellicount has some
limitations. While ML greatly improves identification of
most IF puncta, not every punctum may be perfectly
traced. The optimization is focused around the average-
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sized, rounded puncta and functions best on the brightest
puncta where gradients are clearly defined. Secondly,
since Intellicount utilizes thresholding as its primary
means of segmentation, bright IF signals with low back-
ground are recommended for optimal processing, as is
likely true for any IF image analysis program. Also, while
the background removal factor can drastically improve
high-background image results, there may be a trade-off
between puncta captured at the low-intensity end if the
background correction is set too high, and capturing
some background pixels as ROIs if set too low. The user
must determine how strict to set this cutoff for ROI iden-
tification, and some optimization may be required before
running an image set. Also, we demonstrated that Intelli-
count is also able to segment dendrites and somata for
correlation with identified synaptic puncta. Segmentation
of dendrites and soma are performed based on the cor-
relation channel staining. While Intellicount often success-
fully identifies somata in low density cultures, it may not
as accurately segment them from high-density cultures
(Fig. 4A,B), since closely-located dendrites may appear to
the program as a distinct cell body. Inaccurate segmen-
tation of somata may also occur when a MAP2 stain is
used, as the intensity is often lower in the cell body than
the dendrites. Thus, soma segmentation may not be op-
timal under all conditions (for example high-density cul-
tures; Fig. 4B) and can be toggled on or off according to
user preference. It is also important to note that the
reported value for soma area is only the largest soma
segmented from the image (see additional comments in
the user guide; Extended Data 1). This is to reduce the
impact of smaller, nonspecific objects biasing the soma
area results, which can be erroneously segmented from
the MAP2 channel. Lastly, because the ML algorithm uses
a built-in watershed segmentation, it can be subject to the
plateau problem (Nikodem, 2009), resulting in the possi-
ble inflation of puncta number. If puncta tracing and
number appear artificially inflated, this can be improved
by toggling the “watershed” option off, but at the risk of
not achieving full separation between closely-located
puncta.

Intellicount was designed to be a user-friendly, fully-
automated program to perform synapse quantification
and analysis. Built-in graphical and statistics features
based off the MATLAB Image Processing and Statistics
toolboxes offer a range of features for the user to auto-
mate data analysis without transferring raw data to a
separate program. The nested folder option also greatly
improves processing of large amounts of data. All these
options taken together provide a robust program for high-
throughput quantification of synaptic puncta.

Future directions
While Intellicount is already fully-automated in its current

capabilities with different imaging formats and conditions,
we plan to expand its function to include colocalization and
high-content imaging analyses. Furthermore, since Intelli-
count is primarily designed for quantification of puncta, only
puncta number, area, and intensity can be displayed and
analyzed in the user interface. We plan to improve soma

segmentation and incorporate analysis within the GUI.
Moreover, Intellicount features limited but commonly used
statistical and graphical functions which can likely be ex-
tended in future versions. Finally, while Intellicount is opti-
mized for identifying synaptic protein puncta in neurons
imaged by laser scanning confocal microscopy, we would
like to extend its versatility to be scalable to other imaging
modalities (e.g., super-resolution microscopy) and applica-
tions such as cell counts and sub-cellular organelles, which
will likely require further refinements in the ML design. More-
over, since we provide the research community Intellicount
in an open source format, it can be used as a foundation for
further improvement by the community.

Conclusions
We have developed and tested a novel program, Intel-

licount, which automates synaptic puncta analysis. ML,
which is built into the program, improves puncta tracing
and minimizes operator error or bias. Furthermore, a
nested folder analysis option and built-in statistics and
graphical representation provide the user with a robust
experimental analysis of puncta properties. All these fea-
tures are contained within a single open-source GUI
found online at http://license.rutgers.edu/technologies/
2018-013_intellicount along with a simple user guide and
thus offer a powerful platform for analysis of synaptic
properties which will hopefully aid in the dissection of
synapse formation under normal and disordered condi-
tions.
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