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Abstract
For tropical marine species, hotspots of endemism occur in peripheral areas furthest 
from the center of diversity, but the evolutionary processes that lead to their origin 
remain elusive. We test several hypotheses related to the evolution of peripheral 
endemics by sequencing ultraconserved element (UCE) loci to produce a genome‐
scale phylogeny of 47 butterflyfish species (family Chaetodontidae) that includes all 
shallow water butterflyfish from the coastal waters of the Arabian Peninsula (i.e., Red 
Sea to Arabian Gulf) and their close relatives. Bayesian tree building methods pro-
duced a well‐resolved phylogeny that elucidated the origins of butterflyfishes in this 
hotspots of endemism. We show that UCEs, often used to resolve deep evolutionary 
relationships, represent an important tool to assess the mechanisms underlying re-
cently diverged taxa. Our analyses indicate that unique environmental conditions in 
the coastal waters of the Arabian Peninsula probably contributed to the formation of 
endemic butterflyfishes. Older endemic species are also associated with narrow ver-
sus broad depth ranges, suggesting that adaptation to deeper coral reefs in this 
region occurred only recently (<1.75 Ma). Even though deep reef environments were 
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1  | INTRODUC TION

Explaining the underlying factors responsible for the diversity of 
species accumulated at hotspots of endemism remains a difficult 
problem in the field of biogeography. Recent research has identified 
the importance of peripheral regions from tropical oceans in gener-
ating and exporting biological diversity, thus intermittently seeding 
adjacent seas (Bowen, Rocha, Toonen, & Karl, 2013; DiBattista et 
al., 2013; DiBattista, Wilcox, Craig, Rocha, & Bowen, 2010; Eble et 
al., 2011; Gaither et al., 2011; Gaither, Toonen, Robertson, Planes, & 
Bowen, 2010; Malay & Paulay, 2010; Skillings, Bird, & Toonen, 2010); 
however, direct tests of this assumption are rare. Renewed interest 
in the Red Sea to Arabian Gulf (or Persian Gulf) region provides a 
new opportunity to explore hypotheses associated with how en-
demics are formed in peripheral areas, and its potential contribution 
to the species richness of marine biodiversity hotspots. The Red Sea 
is a semi‐enclosed basin located at the north‐western corner of the 
Indian Ocean and harbors one of the highest levels of endemism for 
marine organisms (12.9% for fishes, 12.6% for polychaetes, 8.1% for 
echinoderms, 16.5% for ascidians, and 5.8% for scleractinian cor-
als; DiBattista, Roberts, et al., 2016). The level of endemism among 
well‐characterized groups in the Red Sea, such as the shore fishes, 
exceeds those of all other peripheral endemic hotspots identified for 
the Indian Ocean (DiBattista, Roberts, et al., 2016). Although many 
of these Red Sea endemics extend their distribution into the adja-
cent Gulf of Aden and Arabian Sea (DiBattista, Choat, et al., 2016; 
DiBattista, Roberts, et al., 2016; Kemp, 1998), it is not clear whether 
they are paleo‐endemics (old lineages restricted due to range con-
traction), neo‐endemics (young lineages at the site of origin), or 
“ecological” endemics (old or young lineages with a restricted range 
due to species ecology; see Cowman, Parravicini, Kulbicki, & Floeter, 
2017) and where, when, and how this diversification occurred.

The Red Sea has a unique geological and paleoclimatic history that 
may have played a role in its high levels of endemism (see DiBattista, 
Choat, et al., 2016 for review). In brief, the Red Sea basin was formed 
by episodes of sea floor spreading 41–34 Ma (Girdler & Styles, 1974), 
followed by intermittent connections to the Mediterranean Sea in 
the north (~14–5 Ma; Hubert‐Ferrari et al., 2003), and a more re-
cent connection to the Gulf of Aden in the south through the Strait 
of Bab al Mandab (~5 Ma to present; Bailey, 2010). The Strait is a 
narrow channel (29 km) with a shallow sill (137 m) that constitutes 
the only connection between the Red Sea and the Indian Ocean 

(Bailey, 2010). Water exchange is regulated by Indian Ocean mon-
soon patterns (Raitsos, Pradhan, Brewin, Stenchikov, & Hoteit, 2013; 
Smeed, 1997) but was historically minimal or absent during reduced 
sea levels caused by glacial periods of the Pleistocene (Rohling et al., 
2009), including the most recent glacial maximum (20–15 ka; Ludt & 
Rocha, 2015; Siddall et al., 2003). Restricted water flow resulted in 
increased salinity within the Red Sea (Biton, Gildor, & Peltier, 2008), 
leading some to suggest that there was complete extirpation of Red 
Sea fauna during these periods (Klausewitz, 1989). The “Pleistocene 
extirpation” hypothesis, wherein all Red Sea fauna were eliminated 
during the last glacial maximum (~18 ka) and subsequently re‐pop-
ulated via more recent colonization events, remains controversial 
and untested with modern comparative approaches (DiBattista, 
Choat, et al., 2016), although similar geological events may have oc-
curred in the Mediterranean Sea (Bianchi et al., 2012). Thus, despite 
some agreement on the broad strokes of its geologic history, little 
consensus has emerged on the processes that shaped the Arabian 
Peninsula’s present day marine biodiversity, their influence on biodi-
versity in adjacent regions, and the role of historical closures of the 
Strait of Bab al Mandab.

Butterflyfishes and bannerfishes, brightly colored reef fishes in 
the family Chaetodontidae, are a potential model system for eluci-
dating the origins, maintenance, and evolutionary history of Red Sea 
endemics and their influence on species richness in adjacent marine 
regions. The family is diverse (17 species in the Red Sea and >130 
species in the greater Indo‐West Pacific; Allen, Steene, & Allen, 
1998) and phylogenetically well resolved compared to other reef fish 
families (Cowman, 2014). A high proportion of the Chaetodontidae 
species found in the coastal waters of the Arabian Peninsula are 
endemic (32%; DiBattista, Roberts, et al., 2016). Although recent 
molecular phylogenies of chaetodontids have helped to clarify many 
aspects of their evolutionary history (Bellwood et al., 2010; Cowman 
& Bellwood, 2011, 2013; Fessler & Westneat, 2007; Hodge, 
Herwerden, & Bellwood, 2014; Hsu, Chen, & Shao, 2007), a lack of 
sampling of Arabian Peninsula species has impeded our understand-
ing of the diversification in this region.

The evolution of endemic species has been linked to ecological 
traits, such as reductions in dispersal ability and changes in body 
size (i.e., the island rule; reviewed by Lomolino, 2005; Whittaker and 
Fernández‐Palacios, 2007). For reef fishes, certain traits associated 
with dispersal ability are linked to geographic range size. For ex-
ample, large, gregarious, and nocturnal species tend to have larger 

drastically reduced during the extreme low sea level stands of glacial ages, shallow 
reefs persisted, and as such there was no evidence supporting mass extirpation of 
fauna in this region.
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range sizes than small, solitary, and strictly diurnal species (Luiz et 
al., 2013, 2012). Moreover, dispersal ability can potentially influence 
clade diversification: to successfully colonize and establish popula-
tions in peripheral areas, tropical fish species must be good dispers-
ers (Hobbs, Jones, Munday, Connolly, & Srinivasan, 2012). Following 
diversification in peripheral areas, newly formed lineages may 
evolve traits less conducive to dispersal, thus becoming endemic to 
the area where it originated, as often occurs in the evolution of insu-
lar terrestrial endemics (Whittaker and Fernández‐Palacios, 2007). 
We therefore predict that butterflyfishes endemic to the Arabian 
Peninsula region will have smaller body sizes, higher sociability, and 
reduced dispersal ability compared to their widespread congeners. 
Broadly speaking, endemic species tend to be ecological special-
ists and thus adapted to the environmental condition in which they 
arose (McKinney, 1997). We therefore additionally predict that 
these endemics will have a higher level of ecological specialization 
than widespread species. For reef fishes, habitat specialization is 
often defined by the depth range where they occur and the number 
of different habitats that they exploit (e.g., coral reefs, rocky reefs, 
seagrass beds, mangroves; Luiz et al., 2012). Dietary specialization 
is often defined by the proportion of different food categories tar-
geted (Pratchett, 2014). We predict that butterflyfishes endemic 
to the Arabian Peninsula region will have higher dietary specializa-
tion and reliance on corals for food given recent origins alongside 
their coral rich habitat (Renema et al. 2016). We choose to focus on 
adult versus larval ecological traits because more information about 
the former is available, and has been shown to correlate with past 
(Ottimofiore et al., 2017) and present (Luiz et al., 2013) geographic 
range size.

The aims of this study are threefold. First, we aim to reconstruct 
the phylogeny and evolutionary timescale for Red Sea to Arabian 
Gulf butterflyfishes in order to test whether these peripheral areas 
intermittently seed the broader Indo‐West Pacific with biodiversity 
(“evolutionary incubator” hypothesis). Outcomes that would allow 
rejection of this hypothesis include a lack of evidence supporting 
Arabian Peninsular endemic fish lineages giving rise to Indo‐West 
Pacific fish lineages as well as restricted ancestral ranges expand-
ing into this broader region. Second, we look to test the extent to 
which butterflyfish maintained a continuous presence in the Red 
Sea during the major environmental fluctuations of the Pleistocene 
(“Pleistocene extirpation” hypothesis). Outcomes that would allow 
rejection of this hypothesis include a lack of evidence supporting 
Arabian Peninsular endemic fish originating after the glacial cycles 
of the Pleistocene, as well as colonization events dated only before 
or after this epoch. Third, we aim to test whether species endemic 
to the coastal waters of the Arabian Peninsula non‐randomly asso-
ciate with particular ecological traits (“ecological trait” hypothesis), 
which may be important in explaining patterns of diversification in 
this region. The expectation here is that endemic fishes are more 
specialized and thus better adapted to local conditions than their 
widespread congeners. Outcomes that would allow rejection of this 
hypothesis include a lack of association between endemism and any 
of the ecological traits considered here.

2  | MATERIAL S AND METHODS

2.1 | Materials

Site location, sampling date, and museum voucher information 
(where available) for each specimen are outlined in Supporting 
Information Table S1. All butterflyfish species included in this study 
and their geographic distribution are listed in Table 1.

As our primary objective is to reconstruct the evolutionary his-
tory of butterflyfishes known to occur in the Red Sea and adjacent 
gulfs or seas, we concentrated our sampling efforts on those spe-
cies and their closest relatives. Although five major Chaetodontidae 
lineages were sampled, Chaetodon Clade CH1 (Chaetodon robus‐
tus and C. hoefleri, restricted to the Atlantic; Cowman & Bellwood, 
2013), and multiple bannerfish genera (Amphichaetodon, Chelmon, 
Chelmonops, Coradion, Hemitaurichthys, and Johnrandallia) without 
species represented in the Red Sea were not sampled in this study. 
Two species of the Prognathodes genus were included to facilitate 
fossil calibration, but were not included in the biogeographic analy-
ses due to their Atlantic distributions (see below).

In total, we sampled 47 chaetodontid species (35% of the entire 
family), which includes all regional endemics and wide‐ranging spe-
cies found in the Arabian Peninsula region save Roa jayakari, a rare 
deepwater species distributed from the Red Sea to coastal India; we 
were unable to secure a tissue sample as part of this study. Eight 
of these species have not previously been sampled in phylogenetic 
studies of the family (Bellwood et al., 2010; Cowman & Bellwood, 
2011; Fessler & Westneat, 2007; Hodge et al., 2014). Tissues were 
preserved in a saturated salt‐DMSO solution or 95% ethanol prior to 
processing. This research was carried out under the general auspices 
of King Abdullah University of Science and Technology’s (KAUST) 
arrangements for marine research with the Saudi Arabian Coast 
Guard and the Presidency of Meteorology and Environment. The 
animal use protocol was approved by KAUST’s Biosafety and Ethics 
Committee (KAUST does not provide specific approval number).

2.2 | Phylogenomics approach

We employ the sequence capture method of ultraconserved ele-
ments (UCEs) to produce millions of reads in parallel from multiple 
butterflyfish specimens collected from the Gulf of Aqaba in the west 
(Red Sea) to the Hawaiian Archipelago in the east (Pacific Ocean, 
PO). UCEs are a class of highly conserved and abundant nuclear 
markers distributed throughout the genomes of most organisms 
(Bejerano, Haussler, & Blanchette, 2004; Siepel et al., 2005; Reneker 
et al., 2012). These markers do not intersect paralogous genes (Derti, 
Roth, Church, & Wu, 2006), do not have retro‐element insertions 
(Simons, Pheasant, Makunin, & Mattick, 2006), have a range of vari-
ant sites (i.e., evolving on different time scales; Faircloth et al., 2012), 
and have been used to reconstruct phylogenies across vertebrates 
(Bejerano et al., 2004; Faircloth et al., 2012; Faircloth, Sorenson, 
Santini, & Alfaro, 2013; McCormack et al., 2013; Smith et al., 2014; 
Sun et al., 2014), including fishes at both shallow (Mcgee et al., 2016) 
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and deep (Alfaro et al., 2018; Faircloth et al., 2013; Harrington et al., 
2016) phylogenetic scales.

2.3 | DNA library preparation and next‐
generation sequencing

DNA was extracted with DNeasy Blood and Tissue kits (Qiagen, 
Valencia, CA), which included an RNAse A treatment step. Each ex-
tracted sample was visualized by gel electrophoresis to assess DNA 
quality. Total DNA from each extracted aliquot was quantified using 
a Qubit dsDNA HS Assay Kit (Invitrogen, Carlsbad, CA), and 1.2 µg 
of DNA per individual sample was fragmented by sonication to 500 
base pairs (bp) using a Covaris S2 sonicator (Covaris Inc, Woburn, 
MA) and used for UCE library preparation. In brief, we end‐repaired, 
adenylated, and ligated fragmented DNA to Illumina TruSeq‐style 
adapters, which included custom sequence tags to barcode each 
individual sample (Faircloth & Glenn, 2012). Following an 18‐cycle 
PCR to amplify indexed libraries for enrichment, we created pools 
by combining 62.5 ng of eight individual libraries. Each pool was con-
centrated to 147 ng/μl using a vacuum centrifuge. We then followed 
an established workflow for target enrichment (Gnirke et al. 2009) 
with modifications specified in Faircloth et al. (2012). Specifically, we 
enriched each pool, targeting UCE loci and their flanking sequence, 
using synthetic RNA capture probes (MyBaits, Mycroarray, Inc., Ann 
Arbor, MI). We combined the enriched, indexed pools at equimo-
lar ratios prior to sequencing. The two final pooled libraries were 
each run paired‐end (150 bp sequencing) on independent lanes of 
an Illumina HiSeq2000 (v3 reagents) at the KAUST Bioscience Core 
Lab. Detailed methods of library enrichment, post‐enrichment PCR, 
and validation using relative qPCR may be found at https://ultracon-
served.org/#protocols.

2.4 | Sequence read quality control, assembly, and 
UCE identification

We removed adapter contamination and low quality bases with il-
lumiprocessor (Faircloth, 2013), a parallel wrapper to Trimmomatic 
(Bolger, Lohse, & Usadel, 2014). To assemble the trimmed dataset, 
we used the PHYLUCE pipeline (version 8ca5884; Faircloth, 2016) 
with the phyluce_assembly_assemblo_trinity.py wrapper script for 
Trinity (version 1.5.0; Grabherr et al., 2011). We matched assembled 
contigs to enriched UCE loci by aligning contigs from each species 
to our UCE probes using the phyluce_assembly_match_contigs_
to_probes.py script with the LASTZ assembler (Harris, 2007). We 
stored these match results into a SQLite relational database after ex-
cluding contigs that matched multiple UCE loci and UCE loci whose 
probes matched multiple contigs.

We used phyluce_align_seqcap.py to align UCE loci with MAFFT 
(Katoh & Standley, 2013; Katoh, Misawa, Kuma, & Miyata, 2002). 
Following alignment, we end‐  and internally‐trimmed alignments 
with GBLOCKS (Castresana, 2000) to improve phylogenetic infer-
ence by removing poorly aligned or highly divergent sites (Talavera 
& Castresana, 2007). We selected loci that were present in at least 

75% of our specimens and concatenated the alignments into a 
PHYLIP‐formatted matrix for phylogenetic analysis. We included 
previously published UCE data for three species in our alignment to 
represent Acanthomorpha outgroup lineages and more accurately 
calibrate the phylogeny (see below).

2.5 | Phylogenetic analysis of concatenated UCE 
data: evaluation of the “evolutionary incubator” and 
“Pleistocene extirpation” hypotheses

We fully partitioned our concatenated alignment by UCE locus and 
performed Bayesian analyses of the dataset with ExaBayes (Aberer, 
Kobert, & Stamatakis, 2014) and two independent runs, sampling 
every 500 generations. We used the autostopping convergence cri-
teria of an average standard deviation of split frequencies of <5% 
and visualized the log‐likelihood of each chain to ensure conver-
gence in Tracer version 1.6 (Rambaut et al., 2014).

We estimated divergence times using MCMCTREE in the PAML 
package on the Bayesian consensus topology. We used the likeli-
hood approximation approach following the two‐step procedure 
described by Dos Reis and Yang (2011) by first estimating a mean 
substitution rate for the entire alignment with BASEML under a strict 
molecular clock and then using this estimate to set the rgene_prior 
in MCMCTREE. We used a single, unpartitioned alignment for com-
putational tractability, with an HKY85 model, five categories for the 
gamma distribution of rate heterogeneity, an rgene_gamma prior for 
the gamma distribution describing gene rate heterogeneity of (2, 
371.0575, 1) and a sigma2_gamma prior of (2, 5, 1). We adopted a 
calibration strategy that builds on Harrington et al. (2016) by includ-
ing more proximal acanthomorph outgroups to Chaetodontidae and 
their immediate relatives. We constrained six nodes on the basis of 
fossil information using hard lower and soft upper bounds outlined in 
Supporting Information Figure S1. We assigned a minimum amount 
of prior weight for ages below the lower bound (1e‐200) and 5% prior 
weight for ages higher than the upper bound. Briefly, we link a series of 
carangimorph, syngnathiform, holocentroid, and lampridiform fossils 
to the sequences of acanthomorph outgroup fossils as per Harrington 
et al. (2016). This resulted in the following outgroup node calibra-
tions: acanthuroids versus all other taxa (lower bound: 54.17 Ma; 
upper bound: 70.84 Ma); acanthurids versus zanclids (lower bound: 
49.0 Ma; upper bound: 62.7 Ma), Naso versus Acanthurus (lower 
bound: 49.0 Ma; upper bound: 57.22 Ma), Chaetodontidae versus 
Pomacanthidae (lower bound: 29.62 Ma; upper bound: 59.26 Ma), 
and the total‐group Chaetodon versus Prognathodes (lower bound: 
7 Ma; upper bound: 47.5 Ma). Further justification for calibrations is 
available as Supporting Information (Appendix S1).

2.6 | Ancestral biogeographic range estimation: 
evaluation of the “evolutionary incubator” and 
“Pleistocene extirpation” hypotheses

We estimated ancestral distribution patterns for chaetodontid lin-
eages using the pruned time‐calibrated phylogeny analyzed with 

https://ultraconserved.org/#protocols
https://ultraconserved.org/#protocols
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the R package BioGeoBEARS (Matzke, 2013), which allows several 
models of biogeographic evolution to be compared via likelihood 
inference, and the ability to incorporate a parameter allowing for 
founder‐event speciation. For these analyses, we coded each taxon 
based on presence/absence in nine discrete geographical areas: Gulf 
of Aqaba, rest of the Red Sea, Djibouti and Gulf of Aden, Socotra, 
South Oman, Arabian Gulf, Gulf of Oman and Pakistan, rest of Indian 
Ocean, and PO. The discrete coding of geographic areas adjacent to 
the Arabian Peninsula enables a fine‐scale investigation of the ances-
tral biogeography of that region for our taxa of interest. Presence/
absence and geographical range data for each taxon were obtained 
from a combination of DiBattista, Roberts, et al. (2016) and FishBase 
(Froese & Pauly, 2011). Prognathodes spp. (a Chaetodontidae genus) 
were not considered in this part of the analysis given that these two 
taxa are restricted to tropical Atlantic waters.

We constrained our biogeographic analyses to prohibit coloniza-
tion events between the Red Sea and Indian/PO regions before 5 Ma 
reflecting the time when a more permanent connection was formed 
via the Strait of Bab al Mandab (Bailey, 2010). Our BioGeoBEARS 
analysis evaluated the DEC, DIVALIKE, and BAYAREALIKE mod-
els with and without the jump (J) parameter (Matzke, 2013). These 
models describe biogeographic scenarios where dispersal, extinc-
tion, cladogenesis, vicariance, and founder events are differentially 
invoked to explain present day distributional patterns. In our case, 
we were interested in whether the range‐restricted endemics from 
the coastal waters of the Arabian Peninsula represent ancient relicts, 
new colonization events, and/or a source of biodiversity (at some 
point in the past) for the broader Indo‐West Pacific.

2.7 | Comparative trait analysis: evaluation of the 
“ecological trait” hypothesis

In order to determine whether particular species‐level traits 
were associated with the evolution of endemism in this subset of 
Chaetodontidae species, we fitted a phylogenetic generalized linear 
model (function “phyloglm” in R package “phylolm” [Ho et al., 2016]) 
that assumed “regional endemism” (i.e., endemic to the coastal wa-
ters of the Arabian Peninsula; DiBattista, Roberts, et al., 2016) as the 
binomial response variable and a suite of ecological traits as the pre-
dictive fixed factors. For model selection, we performed a backward 
stepwise procedure for PGLM’s (function “phylostep” in R package 
“phylolm” [Ho et al., 2016]), which entailed sequential optimization 
by removing non‐influential fixed‐effect terms from the full model 
based on Akaike information criteria (AIC). Full details on the meth-
ods and data sources are provided in Supporting Information Table 
S2. We also explore interactions among the predictive traits using 
a regression tree approach (De’ath and Fabricius, 2000; function 
“rpart” in R package “rpart” [Therneau et al., 2015]).

Among the predictive variables considered were: maximum body 
size (total length = TL; Allen et al., 1998; Kuiter, 2002), depth range 
inhabited (Allen et al., 1998), social structure (three categories or-
dered from low to high sociability: solitary, pair formation, and group 
formation; Allen et al., 1998; Kuiter, 2002; Yabuta and Berumen, 

2013), habitat breadth (estimated as the sum value of all habitat 
types inhabited: C = coral, R = rocky, D = deep reef, S = sediment, 
R = rubble, CO = coastal, CA = algal beds; Allen et al., 1998; Kuiter, 
2002), and dietary reliance on coral reefs (four categories ordered 
from low to high reliance: planktivore, benthic invertivore, faculta-
tive corallivore, and obligate corallivore; Cole and Pratchett, 2014). 
We also included the phylogenetic age of species (Myr) as an addi-
tional fixed factor to test whether species traits are influenced by 
time of divergence from sister taxa. For phylogenetic age, we eval-
uate for each species (regional endemic and widespread) whether 
we sampled its closest sister species by comparing our phylogeny 
with those published previously (Cowman & Bellwood, 2011) and 
other published accounts (Kuiter, 2002). The ecological traits were 
selected because they are associated with specialization, fitness, 
and range expansion in butterflyfishes, and thus may help to explain 
patterns of evolution in fish endemic to the coral reefs of the Arabian 
Peninsula. We do note this may be an oversimplification given that 
our categories are coarse and biased toward adult versus larval traits, 
which are themselves data deficient. Previous work, however, has 
demonstrated that traits associated with the successful recruitment 
of reef fish are more important than traits associated with dispersal 
in determining differentiation between habitats (Gaither et al., 2015; 
Keith, Woolsey, Madin, Byrne, & Baird, 2015).

3  | RESULTS

3.1 | UCE sequences

Reads, contigs, and UCE loci per individual are outlined in Supporting 
Information Table S3. In summary, we sequenced a total of 153.31 
million reads, with a mean of 1.55 million reads per sample from 47 
focal taxa (excluding outgroups; also see Table 1). Overall, we assem-
bled a mean of 12,969 contigs (95 CI, min = 10,593, max = 15,345) 
and 901 UCE loci per sample (95 CI, min = 871, max = 932).

3.2 | Phylogenetic reconstruction and 
timing of divergence: evaluation of the “evolutionary 
incubator” and “Pleistocene extirpation” hypotheses

Following assembly, alignment, trimming, and filtering out loci that 
were present in fewer than 75 specimens (for a 75% complete data-
set), we retained 971 alignments with a mean length of 515.6 bp. 
The concatenated supermatrix contained 500,642 bp with 52,680 
informative sites and was 83.3% complete based on the proportion 
of non‐gap sequences. The following samples were excluded from 
further analysis due to the low number of loci recovered: Chaetodon_
interruptus1a, Chaetodon_lineolatus1a, Chaetodon_lunula1a, and 
Chaetodon ulietensis1a (for full details see Supporting Information 
Table S1); however, tissue replicates were retained for two of the 
four species listed here (Chaetodon lineolatus and Chaetodon lunula).

Our Bayesian and maximum likelihood analyses produced a 
fully resolved topology that shared key points of congruence with 
prior multi‐locus studies of butterflyfishes (Bellwood et al., 2010; 
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Cowman & Bellwood, 2011; Fessler & Westneat, 2007; Hodge et 
al., 2014 ; Hsu et al., 2007; see Supporting Information Figure S2). 
Although direct comparisons to previous phylogenies are difficult 
because these are missing many of the regional endemics (e.g., 
Chaetodon dialeucos, C. gardineri, C. leucopleura, C. nigropunctatus, 
C. pictus, C. triangulum, Heniochus intermedius), and contain less se-
quence data and data overlap (e.g., six loci and 73% complete matrix; 
Hodge et al., 2014), where there was overlap in the data sets the 
tips of the tree displayed similar topologies (Supporting Information 

Figure S3). In our case, however, almost every node in the tree was 
strongly supported (posterior probabilities of 1.0; Figures 1 and 2).

By only considering a single representative sample per species 
on our chronogram (Figure 2), we found that the majority of Red 
Sea to Arabian Gulf butterflyfish diverged from their closest rela-
tives in the last five million years (4.17–1.16 Ma), with an average 
lineage age of 2.39 Ma. In comparison to previous fossil calibrated 
studies of Chaetodontidae (Cowman & Bellwood, 2011; Hodge et 
al., 2014), the mean ages and 95% highest posterior density (HPD) 

F I G U R E  1   Inferred phylogeny of Red Sea to Arabian Gulf butterflyfish species, including some of closest their congeners, based on 
ExaBayes analysis of ultraconserved element data. Yellow dots on node labels indicate a posterior probability of 1, whereas gray dots 
indicate a posterior probability of <1 but >0.6. Clades based on Bellwood et al. (2010) and Cowman and Bellwood (2011) are indicated. 
Records for each species are mapped onto the topology as follows: red = Red Sea to Arabian Gulf, green = rest of Indian Ocean, and 
blue = Pacific Ocean
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estimates are more restricted, but for the most part overlap with 
previous estimates (Supporting Information Figure S3). In terms of 
the topology, although our phylogenetic sampling is restricted, it 
still captures crown nodes and age estimates of major chaetodontid 
lineages (with the exception of the bannerfish lineage), as well as 
subclades containing Red Sea to Arabian Gulf species and their most 

recent common ancestors (Supporting Information Figure S2). Most 
of the clades included species pairs diverging with non‐overlapping 
distributions dating back 2–1 Ma. This divergence does not appear 
to coincide with the timing of the emergence of apparent geographic 
(and geological) barriers such as the Strait of Bab al Mandab (Figures 
2 and 3). Regional endemics appear to have diverged earliest from 

F I G U R E  2  A fossil calibrated chronogram for select Chaetodontidae species based on analysis of ultraconserved element data. The time 
scale is calibrated in millions of years before present. Node ages are presented as median node heights with 95% highest posterior density 
intervals represented by bars. Significant geological events in the coastal waters of the Arabian Peninsula are temporally indicated by red 
dashed lines
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F I G U R E  3  Distributions, range overlap, and ages of divergence in eight clades of butterflyfish from the Chaetodon genus that contain 
species inhabiting the Red Sea to Arabian Gulf region. Clade structure and node ages (median node heights with 95% highest posterior 
density intervals represented by bars) were extracted from Figure 2
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ancestors that gave rise to the clades including Chaetodon larvatus 
and Chaetodon semilarvatus. At least one entire subclade of CH4 was 
comprised of regional endemics (C. dialeucos, C. nigropunctatus, and 

C. mesoleucos). The split between the butterflyfishes (Chaetodon, 
Prognathodes) and bannerfishes (Heniochus, Forcipiger) was much 
older, with a mean of 28.7 Ma (95% HPD: 40.0–18.26; Figure 2 and 
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Supporting Information Figure S1), indicating an ancient split be-
tween these highly divergent body forms.

3.3 | Ancestral range reconstruction: 
evaluation of the “evolutionary incubator” and 
“Pleistocene extirpation” hypotheses

Model comparison revealed the DEC+J model as the most likely 
(LnL = −250.79, AIC weight = 0.76) and the DIVALIKE+J model as the 
second most likely (LnL = −252.76, AIC weight = 0.11; Table 2 and 
Figure 4). The importance of the J parameter, which models long‐
distance or “jump” dispersal, is that ancestral ranges often comprise 
one area rather than several areas. The addition of the J parameter 
resulted in a significantly better model fit for DEC models when 
compared via a likelihood ratio test (LRT: D = 8.67, p = 0.0032).

Under the DEC+J model, Chaetodontidae had their crown ori-
gins in the Indo‐West Pacific, with subsequent dispersal to include 
the Arabian Peninsula and lineages leading to the base of Chaetodon 
and the bannerfish clade (Forcipiger/Heniochus; Figure 4). Within the 
CH2 clade, diversification was restricted to the PO with subsequent 
dispersal to the Indian Ocean (Chaetodon madagaskariensis, C. punc‐
tatofasciaticus, and C. unimaculatus), and three of the species have 
dispersed as far as Socotra (Chaetodon guttatissimus, C. kleinii, and 
C. trifasciatus). Only one species within CH2 diverged in the Gulf of 
Aden and subsequently colonized the Red Sea (Chaetodon paucifas‐
ciatus). The age of C. paucifasciatus is relatively young (1.5 Ma, HPD: 
0.8–2.3 Ma), suggesting a similar timeline for its occupation of the 
Red Sea from the Gulf of Aden.

In the CH3 clade, three species were present in the Red Sea that 
were also restricted to the Arabian Peninsula (Chaetodon austriacus, 
C. melapterus, and C. larvatus). In the case of sister pair C. austriacus 
and C. melapterus, the reconstruction suggests that speciation oc-
curred by vicariance within the Red Sea. Although posterior prob-
abilities make the details of this split equivocal, the most likely 
scenario is a split between the Gulf of Aqaba and the Red Sea, 
where C. austriacus subsequently recolonized the entire Red Sea but 
C. melapterus expanded out to the Gulf of Aden, Arabian Sea, and 

Arabian Gulf, but no further. The extended history of the clade, al-
though not completely sampled (see Supporting Information Figure 
S2), suggests that a widespread ancestor expanded into the Red 
Sea with subsequent vicariance between the PO, Indian Ocean, and 
Arabian Peninsula sites. Indeed, C. larvatus appears to originate in 
Djibouti and the Gulf of Aden followed by dispersal into the Red 
Sea and South Oman. Chaetodon trifascialis, on the other hand, main-
tained connections across the Indo‐West Pacific with subsequent 
range expansion into the Red Sea.

The CH4 clade has been the most successful in terms of butter-
flyfish colonizing the Red Sea. Eight extant species from CH4 are 
distributed in at least some parts of the Red Sea (Chaetodon auriga, 
C. fasciatus, C. leucopleura, C. lineolatus, C. melannotus, C. mesoleu‐
cos, C. pictus, and C. semilarvatus), four of which are restricted to the 
Arabian Peninsula (C. fasciatus, C. mesoleucos, C. pictus, and C. semi‐
larvatus). Moreover, the reconstruction identified a mix of origin 
states for CH4 species found in the Red Sea. Both C. fasciatus and 
C. leucopleura have their origins within the Red Sea, whereas C. lin‐
eolatus and C. mesoleucos have their origins at Socotra. The origins 
of C. semilarvatus are placed in South Oman, whereas the origins of 
C. pictus are placed in the Gulf of Oman. With the exception of C. lin‐
eolatus, a widespread Indo‐West Pacific species, all CH4 lineages 
have origins in the Arabian Peninsula region and Indian Ocean, and 
subsequent dispersal was limited from these sites. Chaetodon lin‐
eolatus appears to be the only species in CH4 to originate in the 
Arabian Peninsula and then disperse across the broader Indo‐West 
Pacific. However, unsampled taxa from this clade are more widely 
distributed across the Indian and POs (Supporting Information 
Figure S2).

Three taxa of the bannerfish clade are also present in the Red 
Sea (Heniochus diphreutes, H. intermedius, Forcipiger flavissimus), 
with H. intermedius considered a Red Sea to Gulf of Aden endemic. 
Despite these taxa only being representative of a small proportion 
of the entire bannerfish clade, the reconstruction suggests a wide-
spread ancestor that diverged in the Arabian Peninsula region (H. in‐
termedius) with subsequent (successful) colonization of the broader 
Indo‐West Pacific (H. diphreutes and F. flavissimus).

TA B L E  2  Akaike information criterion (AIC) model testing based on distribution patterns for butterflyfish lineages using the time‐
calibrated phylogeny analyzed with the R module BioGeoBEARS, where d represents the dispersal parameter, e represents the extinction 
parameter, and j represents founder‐event speciation

Ln likelihood
Number of 
parameters d e j AIC AIC weight

DEC −255.13 2 0.06 0 0 514.25 0.03

DEC+J −250.79 3 0.05 0 0.04 507.58 0.76

DIVALIKE −253.88 2 0.07 0.04 0 511.76 0.09

DIVALIKE+J −252.76 3 0.06 0.02 0.03 511.52 0.11

BAYAREALIKE −259.86 2 0.05 0.18 0 523.71 0

BAYAREALIKE+J −255.48 3 0.04 0.08 0.06 516.96 0.01

For these models, we coded each taxon based on presence/absence in nine discrete geographical areas: (A) Gulf of Aqaba, (B) rest of Red Sea, (C) 
Djibouti and Gulf of Aden, (D) Socotra, (E) South Oman, (F) Arabian Gulf, (G) Gulf of Oman and Pakistan, (H) rest of Indian Ocean, and (I) Pacific Ocean. 
Bold indicates the favored model based on AIC scores.
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3.4 | Correlational trait analysis: evaluation of the 
“ecological trait” hypothesis

Based on the best‐fit PGLM, depth range and phylogenetic age 
were negatively correlated with endemism, with depth range being 
a stronger predictor than phylogenetic age (Table 3, Figures 5 and 
6). Exploring these relationships using a regression tree approach 
reveals that the effect of phylogenetic age is dependent on depth 
range. Endemic species from the Arabian Peninsula region are there-
fore more likely to be younger than widespread ones, but only for 
those species with depth ranges extending to mesophotic reefs 

(depth range >27 m; Figures 5 and 6). Endemism was not correlated 
with any of the other factors in the analysis for the butterflyfishes 
considered here (Supporting Information Tables S2 and S4).

4  | DISCUSSION

This study used 901 loci to successfully generate a genome‐scale 
phylogeny of bannerfishes and butterflyfishes endemic to the 
coastal reefs of the Arabian Peninsula. This is the first time this 
genomic method has been applied to species‐level phylogenetic 

F I G U R E  4  Ancestral range estimations inferred using the DEC+J model based on a time‐calibrated Bayesian phylogeny of 
Chaetodontidae species. States at branch tips indicate the current geographical distributions of taxa, whereas states at nodes indicate the 
inferred ancestral distributions before speciation (middle) and after (corner). The regions considered in this analysis include the following: 
Gulf of Aqaba, rest of Red Sea, Djibouti and Gulf of Aden, Socotra, South Oman, Arabian Gulf, Gulf of Oman and Pakistan, rest of Indian 
Ocean, and Pacific Ocean. Abbreviations: Plio. = Pliocene; Ple. = Pleistocene. Significant vicariance in the Red Sea to Arabian Gulf region is 
indicated by red dashed lines
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analyses of a reef fish group. Our phylogeny, which includes all shal-
low water chaetodontid species found in the Red Sea to Arabian 
Gulf and their close relatives distributed throughout the Indo‐
West Pacific, provides divergence times with narrow confidence 
intervals and biogeographic insight into this endemism hotspot. 

Reconstructing the evolutionary history of these fishes with their 
widespread relatives does not appear to support the evolution-
ary incubator hypothesis. That is, despite generating significant 
biodiversity in the form of endemic species, these peripheral areas 
of the Arabian Peninsula do not appear to have exported signifi-
cant biodiversity to the central Indo‐West Pacific. In fact, poten-
tially only three species with reconstructed origins in the Arabian 
Peninsula (C. lineolatus, H. diphreutes, and F. flavissimus) appear to 
subsequently disperse to the Indo‐West Pacific. Our phylogenetic 
analyses also revealed that most endemic species originated prior 
to and persisted through the major environmental fluctuations of 
the Pleistocene, which does not support the Pleistocene extirpa-
tion hypothesis. The ecological trait‐based analyses revealed that 
the evolution of Red Sea to Arabian Gulf endemic butterflyfishes 
was associated with specialization to shallow reef habitat and, to a 
lesser extent, species’ phylogenetic age.

4.1 | Evaluation of the “evolutionary 
incubator” hypothesis

The Red Sea, Gulf of Aden, Arabian Sea, and Arabian Gulf are all pe-
ripheral to the broader Indo‐West Pacific biogeographic region and 
potentially produce/contribute new reef fish species to the center 
(see Bowen et al., 2013; Hodge et al., 2014). Temporally, the Red 
Sea to Arabian Gulf butterflyfish assemblage (17 species in total) 
is made up of recently diverged lineages, with ages ranging from 
4.17 Ma (F. flavissimus) to 1.16 Ma (C. austriacus/C. melapterus split). 
In a few cases, the Red Sea to Gulf of Aden endemics appear to have 
diverged as the earliest lineage of that clade (e.g., C. larvatus and 
C. semilarvatus; Figures 2 and 3). Indeed, the “oldest” endemic but-
terflyfish lineage in our study, C. larvatus (2.86 Ma, 4.3–1.6 Ma 95% 
HPD), appeared in the late Pliocene, and diverged from an Indo‐West 
Pacific lineage that later gave rise to species allopatric between the 
two ocean basins (C. triangulum in the Indian Ocean and C. baron‐
essa in the PO). The ancestral range reconstruction of these Arabian 
Peninsula endemics demonstrates consistent colonization routes to 
the Red Sea and Arabian Sea via the Indian Ocean from the east 
(Figure 4), but with few examples of reciprocal expansion from the 

F I G U R E  6  The classification of 
species‐level traits associated with 
endemism among the Red Sea to Arabian 
Gulf butterflyfishes (a). Data on the 
leaves (represented by squares) provide 
the probability of endemism (top) and 
the percentage of all observations in the 
node (bottom). The right panel shows the 
prediction surface (b)
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TA B L E  3  Summary of the final (best) phylogenetic, linear 
multi‐regression model, based on estimated probability of 
endemism as a response variable, selected after the backward 
stepwise phylostep procedure

Estimate SE z value p value

(Intercept) 6.170 2.506 2.461 0.013

Depth range −1.423 0.543 −2.620 0.008

Phylogenetic age −1.209 0.694 −1.742 0.061

Coefficients in bold indicate significance (p < 0.05).

F I G U R E  5  Estimated probability of endemism among Red 
Sea to Arabian Gulf butterflyfish species, including some of their 
closest congeners, as a function of depth range. Different line 
types represent variability in estimated species phylogenetic age 
extracted from Figure 2 (see legend)
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Arabian Peninsula back to the Indian Ocean and PO. For example, 
both C. larvatus and C. semilarvatus appear to have historically di-
verged in Djibouti/Gulf of Aden and South Oman, respectively, suc-
cessfully colonized the Red Sea, but not established further south 
and east based on present day distributions. Similar reconstruction 
results were obtained for the regional endemic C. pictus (Red Sea to 
Gulf of Oman), which showed apparent historical divergence in the 
Gulf of Oman and only recent colonization of the southern limits of 
the Red Sea.

Other endemics appear to have historically diverged within the 
Red Sea (C. fasciatus) or adjacent Djibouti and Gulf of Aden (C. pauci‐
fasciatus) but not colonized any further to the southeast. Although 
equivocal based on the probabilistic uncertainty of nodes in the an-
cestral range reconstruction of the most likely model (DEC+J), there 
are a number of competing explanations for how C. austriacus and 
C. melapterus diverged from each other within the coastal waters 
of the Arabian Peninsula (also see Waldrop et al. 2016), particularly 
since C. melapterus is the only species in this complex present in 
the Arabian Gulf. The most likely explanation is based on present 
day distributions (Figure 3c): C. austriacus is largely restricted to 
the northern and central Red Sea (with rare records in the southern 
Red Sea and outside of the Red Sea), whereas C. melapterus is most 
abundant within or adjacent to the Arabian Gulf (with rare records 
in the southern Red Sea)—these bodies of water show opposite 
trends in terms of productivity, sea surface temperature, and tem-
poral patterns of environmental variation (Pous, Lazure, & Carton, 
2015; Raitsos et al., 2013). These environmental conditions are ad-
ditionally significantly different from the rest of the Indian Ocean, 
and thus, the unique conditions in the Red Sea and Arabian Gulf may 
help explain how endemics evolved, or at least, concentrated and 
persisted in these peripheral locations.

Despite a lack of supporting evidence for the evolutionary 
incubator hypothesis, a clear pattern emerges that the unique 
environmental conditions in these peripheral seas may have con-
tributed to the formation of endemic species as outlined above. 
For example, some butterflyfish subclades are comprised en-
tirely of regional endemics (e.g., C. dialeucos, C. mesoleucos, and 
C. nigropunctatus), which provides further evidence that coral 
reef habitat surrounding the Arabian Peninsula may have gen-
erated a number of new taxa. Moreover, C. dialeucos, an Omani 
species, shows geographical divergence with the remaining taxa 
in its group (Figure 3), which all went on to colonize the Red Sea 
and the Arabian Gulf and must have therefore encountered con-
trasting environments at the western and eastern margins of 
their range. The shallow Arabian Gulf started to fill with seawa-
ter approximately 14,000 years ago after being dry prior to that 
during the last glacial maximum (Lambeck, 1996), suggesting that 
it was seeded by successive waves of colonization from coastal 
Oman. The same process would have been ongoing at the west-
ern margin of the C. dialeucos range, except that the conditions 
encountered in the Red Sea would have contrasted to those in the 
Arabian Gulf (DiBattista, Choat, et al., 2016). So, while there is 
some evidence to suggest vicariance at the scale of the Arabian 

Peninsula (i.e., diversification of most taxa occurred in the Plio‐
Pleistocene), a stronger scenario is that natural selection driven by 
the major differences in environment and habitat within the area 
probably played an important role in the formation of endemic 
species assemblages (e.g., Gaither et al., 2015). Thus, even though 
the distribution of some of the butterflyfishes considered in the 
present study does stop abruptly at the entrance of the Strait of 
Hormuz (Chaetodon collare, C. pictus, and C. gardneri), it does not 
support the argument for geographically driven allopatry. Indeed, 
all of these species have a different distributional response near 
the other end of their distribution at the Strait of Bab al Mandab, 
which includes stopping before the Straits or extending through 
the Straits into the southern Red Sea (Figure 3). The alternative is 
that the incumbent widespread butterflyfish may have restricted 
the Red Sea to Arabian Gulf endemics from expanding further via 
competitive exclusion.

The current environment of the Red Sea is spatially structured with 
major contrasts in the cool oligotrophic waters of the northern region 
compared to the much higher temperatures and productivity of the 
southern region (i.e., Farasan Islands in Saudi Arabia to the east and 
Dhalak Archipelago in Eritrea to the west) (Racault et al., 2015; Raitsos 
et al., 2013). This shift in environmental conditions is most clearly 
demonstrated in the differences in life history traits associated with 
reef fish species that occur in both areas, but is also seen in abundance 
estimates across these gradients (DiBattista, Roberts, et al., 2016; 
Roberts et al., 2016). Such putative selection gradients are most evi-
dent in corals, which show signatures of local adaptation to divergent 
environmental conditions (D’Angelo et al., 2015).

4.2 | Evaluation of the “Pleistocene 
extirpation” hypothesis

The second hypothesis that we tested in this study was the Pleistocene 
extirpation hypothesis, which predicts that all Red Sea fauna were 
eliminated during the last glacial maxima (~18 ka) and were only 
re‐populated via recent colonization events (see Biton et al., 2008). 
The number of species diverging at early stages in the Pleistocene 
disputes the argument that Red Sea fauna did not survive complete 
closure or restriction of water flow at the Strait of Bab al Mandab 
(Figure 2). Although it clearly does not coincide with a single vicari-
ance event given the variability in the splitting dates between closely 
related species (Figure 3; see Michonneau, 2015 for invertebrate 
examples) and ancestral range reconstruction favoring +J parameter 
models (i.e., founder events between non‐adjacent ocean regions; see 
Table 2), glaciations likely played a role in their separation. Moreover, 
even though almost all sister species have small areas of overlap at 
their range edge, which is usually associated with allopatric specia-
tion, in our case these do not coincide with geographical boundaries 
(i.e., vicariant chokepoints) such as the Strait of Bab al Mandab (see 
Figure 3; Lambeck, 1996; DiBattista, Choat, et al., 2016). In fact, the 
non‐congruent age and distribution of the endemic species indicate a 
series of variable events, which may reflect localized patterns of habi-
tat and environmental change as outlined in the previous Discussion 
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section. The best example is the relatively young clade of Arabian 
Peninsula endemics: C. dialeucos, C. nigropunctatus, and C. mesoleucos 
(crown node age 2.0 Ma; 2.9–1.2 Ma 95% HPD). This group appears 
to have been influenced by boundaries presented by the Omani coast-
line across areas where there are known changes in the upwelling 
regime (McIlwain, Claereboudt, Al‐Oufi, Zaki, & Goddard, 2005; Shi, 
Morrison, Bohm, & Manghnani, 2000). This is in sharp contrast to the 
Indo‐West Pacific parrotfishes, where present day species bounda-
ries support the notion of allopatric divergence (Choat, Klanten, 
Herwerden, Robertson, & Clements, 2012), and endemics appear to 
have diverged into one or more subsequent endemics (i.e., second-
ary endemism; Rotondo, Springer, Scott, & Schlanger, 1981) based on 
sympatrically distributed sister‐species pairs (highlighted in Choat et 
al., 2012). Moreover, Red Sea endemics from most other families of 
reef fish appear to have equal proportions of allopatrically and sympa-
trically distributed sister species (Hodge et al., 2014), which is not the 
case for the butterflyfishes.

The diversification of these butterflyfishes occurred at a time 
when the coral assemblages of the world’s reefs underwent a 
major change in coral composition and growth forms. The global 
proportion of staghorn coral occurrences in coral assemblages 
persisted throughout most of the Cenozoic but increased substan-
tially during the Pliocene and especially the Quaternary (Renema 
et al. 2016). Indeed, the rapidly growing branching acroporid cor-
als offered different structural components in terms of shelter and 
feeding/foraging modes when compared to massive corals such as 
poritids that dominated Miocene reefs more than 5 Ma. Thus, the 
chaetodontids of the Arabian Peninsula (particularly the corallivo-
rous species) were exposed to a much more dynamic environment 
than the widespread Indo‐West Pacific species (Coles, 2003) be-
cause of their close association with sensitive coral genera that 
proliferated in the region.

4.3 | Evaluation of the “ecological trait” hypothesis

The third hypothesis that we test here is whether ecological traits 
are linked to the evolution of endemism among butterflyfishes in 
the Red Sea to Arabian Gulf. We found a negative, significant re-
lationship between endemism and depth range and, to a lesser ex-
tent, phylogenetic age for these butterflyfishes (Figures 5 and 6). 
The relationship between a narrow versus broad depth range and 
endemism supports the view that endemic species tend to be more 
specialized to local resources than widespread species (Hawkins, 
Roberts, & Clark, 2000). The majority of regional endemics in this 
study had depth ranges that did not extend deeper than 25 m 
(Figure 6), despite the availability of light dependent coral habitat 
extending beyond that (Kahng et al., 2010). The broad range of ages 
represented by these shallow water specialists suggests that adap-
tation to shallow reefs occurred multiple times across a relatively 
wide time frame (i.e., 1.3–3.3 Myr). On the other hand, speciation 
of endemics with a preference for deep reefs seems to be a recent 
phenomenon, as deeper depth ranges were strongly associated with 
young age (<1.75 Myr; Figure 6).

4.4 | Comments on incomplete sampling and 
biogeographic biases

The goal of this study was to reconstruct the evolutionary history 
of Red Sea to Arabian Gulf butterflyfishes. As is the case with all 
phylogenetic and biogeographic reconstructions, our results have 
to be interpreted in light of the taxa that are not sampled, both 
extant and extinct. Indeed, the inclusion of missing taxa has the 
potential to alter lineage relationships and their age estimates, 
whereas their geographic distribution may alter the most likely 
biogeographic scenarios reconstructed across the tree (see discus-
sion in Cowman & Bellwood, 2013). Here, we were able to sam-
ple all Red Sea to Arabian Gulf butterflyfishes (save one species, 
R. jayakari), and their close relatives from the Indian Ocean and PO, 
across four major chaetodontid lineages (Supporting Information 
Figure S2). From a temporal perspective, the topology and ages 
estimated for the genomic scale UCE data overlap with previous 
studies (Supporting Information Figures S2 and S3). Moreover, our 
sampling of eight species that have not previously been included 
in phylogenetic studies of the Chaetodontidae family means that 
for 13 out of the 17 Arabian Peninsular species, we are confi-
dent that we have sampled their direct sister lineage. Two of the 
outstanding three species (C. melannotus, C. trifascialis) are wide‐
ranging Indo‐West Pacific taxa that are reconstructed to have dis-
persed to the Arabian Peninsula (Figure 4). The most likely sister 
species of C. melannotus is C. ocellicaudus (Kuiter, 2002; also see 
Supporting Information Figure S2), a west Pacific species not sam-
pled in our dataset. In the case of C. trifascialis, it is placed as the 
sister lineage for a subclade of CH3 containing 10 species distrib-
uted across the Indian Ocean and PO, of which we sampled four 
species (Supporting Information Figure S2; Cowman & Bellwood, 
2011). The final outstanding species, C. leucopleura, is placed as a 
sister species to C. gardineri. Both species have not previously been 
sampled in phylogenetic studies, but are recognized to be closely 
related to a third species, Chaetodon selene (widespread in the west 
Pacific, Kuiter, 2002), which was not sampled in our UCE dataset. 
In each of these three cases, and more broadly across the family, 
the inclusion of unsampled species would increase the influence 
of the Indian Ocean and PO in the ancestral estimation of biogeo-
graphic ranges. As such, it would act to strengthen our conclusion 
that even though the Red Sea and adjacent gulfs and seas have 
been important for the generation of endemic species, they have 
had little contribution to the wider Indo‐West Pacific diversity of 
butterflyfishes.

5  | CONCLUSION

It appears that the unique environmental conditions in the coastal 
waters of the Arabian Peninsula may have contributed to the forma-
tion of endemic butterflyfishes; however, there is a lack of evidence 
for endemics contributing significant species richness to adjacent 
seas (i.e., evolutionary incubator hypothesis). Moreover, even with 
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catastrophic environmental instability experienced by the Red Sea 
and coastal environments of the Arabian Peninsula due to sea level 
changes associated with glacial cycles (Ludt & Rocha, 2015), there is 
no evidence for a massive extirpation of butterflyfish fauna in the 
region (i.e., Pleistocene extirpation hypothesis; also see DiBattista, 
Choat, et al., 2016). The broad range of phylogenetic ages among en-
demic, shallow water butterflyfishes supports the view that species 
may have survived in isolated refugia within the Red Sea (DiBattista, 
Choat, et al., 2016). None of the dispersal‐related traits were as-
sociated with endemism, suggesting that factors other than those 
related to species intrinsic dispersal potential may be limiting disper-
sal into the greater Indian Ocean (e.g., coastline geography, oceano-
graphic barriers).
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