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,is study focuses on the utilization of multispectral satellite images for remote water-quality evaluation of inland water body in
Jordan. ,e geophysical parameters based on water’s optical properties, due to the presence of optically active constituents, are
used to determine contaminant level in water. It has a great potential to be employed for continuous and cost-effective water-
quality monitoring and leads to a reliable regularly updated tool for better water sector management. ,ree sets of water samples
were collected from three different dams in Jordan. Chl-a concentration of the water samples was measured and used with
corresponding Sentinel 2 surface reflectance (SR) data to develop a predictive model. Chl-a concentrations and corresponding SR
data were used to calibrate and validate different models. ,e predictive capability of each of the investigated models was
determined in terms of determination coefficient (R2) and lowest root mean square error (RMSE) values. For the investigated sites,
the B3/B2 (green/blue bands) model and the Ln (B3/B2) model showed the best overall predictive capability of all models with the
highest R2 and the lowest RMSE values of (0.859, 0.824) and (30.756mg/m3, 29.787mg/m3), respectively. ,e outcome of this
study on selected sites can be expanded for future work to cover more sites in the future and ultimately cover all sites in Jordan.

1. Introduction

Inland waters including mainly lakes, rivers, dams, and
reservoirs represent extremely valued environmental
components (VECs) especially in Jordan. ,ey play an
important role in providing an appropriate habitat for
species. In addition, they are considered as an essential
component in hydrological, nutrient, carbon cycle, and
climate regulation. ,ey are a major source of water for
drinking and irrigation purposes. ,ey are also used in
hydroenergy production and transportation and for
aesthetic uses. In Jordan, a country that is facing chronic
and serious challenges in securing reliable water sources
for its dramatically growing population, mainly due to
intense regional conflicts, particularly crisis in Syria,
resulted in about 50% increase in water use for domestic
purposes during the period of 2008–2017 [1]. When
considering the gross domestic product (GDP) as a

representation for countries’ wealth and a factor for
comparison, the kingdom occupies the second place in
water scarcity in the Middle East after Yemen and the
third in the global scale with Maldives as the most water-
poor country in the world [2]. ,e water per capita is less
than one-tenth the international water poverty line of
1,000 cubic meters annually. As a result of this tremen-
dous pressure on water sector in Jordan, the kingdom has
made significant efforts to integrate treated wastewater
into water budget. A large portion of the country’s inland
water bodies is mixed with treated wastewater, leaving the
number of country’s wastewater treatment plants to be 33
as of 2017. Effluents from many treatment plants are
discharged to dams and released later to irrigate major
parts of the Jordan Valley. Inland water resources (in-
cluding treated wastewater) provided about 41% (27%
surface water and 14% treated waste water) of the 1045
MCM that represents Jordan’s water needs in 2017 [1].
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Climate change is expected to add extra pressure to
Jordan’s water sector. Climate change impacts that Jordan
has experienced in recent years include precipitation

decrease, temperature increase, change in precipitation
patterns where rainfall season tends to be shorter with late
start, base flow decrease in surface water systems, and water-
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Figure 1: Jordan’s map with selected dams’ locations.
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quality deterioration [3]. Projected temperature increase will
lead to increase in the high evaporation rate in the water
surface.

,ese vulnerable water bodies are exposed to different
sources of pollution. Consequently, intensive water-quality
monitoring of inland water bodies and water storage fa-
cilities that provides reliable regularly updated water-quality
information for a better water sector management becomes a
very important obligation the country has to meet effec-
tively. It becomes even more important due to the current
water situation in Jordan and the different uses of stored
surface water that covers a wide range of sectors including,
but not limited to, domestic, irrigation, and industrial ap-
plications. On the other hand, the high cost associated with
traditional monitoring program creates a need for an ef-
fective and cost-efficient technique.

Inland water shows high sensitivity and ability to reflect
environmental changes such as climate change, land cover,
and land use [4]. Continuous monitoring of such changes
and patterns effectively and efficiently is of extreme im-
portance [5–9]. ,erefore, the utilization of satellite remote
sensing techniques, defined as a technique that estimates
geophysical parameters from the electromagnetic energy
reflected or emitted from the earth [10], based on water’s
optical properties, due to the presence of optically active

constituents, has a great potential to be employed for water-
quality monitoring, especially for the case of Jordan with
such a high degree of vulnerability of its water bodies.

Water remote sensing is based on the observation of the
water colour from a distance, without taking water samples.
It relates water colour quantitatively to the presence of
certain constituents that interacts with solar radiation and
change the energy spectrum of reflected radiation from
water bodies. ,ese constituents are referred to as optical
water-quality parameters (WQP). ,ree different ap-
proaches can be used in remote sensing measurements to
estimate water constituents’ concentrations [11]. ,ese
approaches are the empirical method based on statistical
analysis of the relation between measured spectral values
and measured water parameters and the semiempirical
method where the spectral features of the measured water
parameters are integrated with the statistical analysis as
described previously. ,e third type is the analytical method
where the inherent optical properties (such as absorption
coefficient, scattering coefficient, and volume scattering
function) and apparent optical properties (such as irradiance
reflectance and diffuse attenuation coefficient for down-
welling irradiance) are used to model the relationships
between the water-quality parameter (WQP), underwater
light field, and the remotely sensed radiance.

9
8

7

6
5
4
32

1

19

18

17
1615

1413
12

11
10

King Talal Dam

35.8 35.81 35.82 35.83 35.84

32.18

32.19

32.21

35.81 35.82 35.83 35.8435.8

1 2 kilometers0 0.5

32.18

32.19

32.21
15/7/2019

Water sample location

N

S

W E

Figure 2: Sampling points distribution of King Talal Dam.
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Remote sensing techniques have been widely used to
measure the qualitative parameters of water bodies. Gho-
lizadeh et al. listed eleven water-quality parameters (WQP)
that can be measured by remote sensing techniques [12].
,ese parameters are chlorophyll-a (chl-a), coloured dis-
solved organic matters (CDOM), Secchi disk depth (SDD),
turbidity, total suspended sediments (TSS), water temper-
ature (WT), total phosphorus (TP), sea surface salinity (SSS),
dissolved oxygen (DO), biochemical oxygen demand
(BOD), and chemical oxygen demand (COD).

In spite of its enormous possibilities, the development of
water remote sensing techniques began in the early 1970s.
,e early attempts of employing this technique focused on
spectral and thermal measurements of reflected energy from
water surfaces. Empirical relationships were developed be-
tween the spectral properties and the water-quality pa-
rameters of the water body [13]. Pionke and Blanchard and
Ritchie et al. investigated the relationship of reflected solar
radiation and the concentration of sediment in the surface
water of reservoirs and developed an empirical approach to
determine suspended sediments using this technique
[14, 15]. Dekkers et al. used airborne remote sensing for

three shallow lakes with varied trophic level [16]. Wynne
et al. assessed trends in lake ice breakup by monitoring ice
phenology as a climate indicator where satellite-derived
breakup dates were compared with available ground data
[17]. Latifovic and Pouliot presented a new technique for
extracting lake ice phenology events of 36 lakes from his-
torical long-term satellite records acquired by the series of
advanced sensors [8].

Jeffreis et al. and Gholizadeh et al. provided a com-
prehensive review on remote monitoring techniques and
applications for lakes and rivers [12, 18]. Few efforts were
taken in Jordan in the area of remote sensing. Recently,
Avisse et al. proposed an approach that uses Landsat imagery
and digital elevation models (DEMs) to obtain data on
Yarmouk basin storage quantity variations in an unreach-
able border area between Jordan and Syria where ground
monitoring is blocked by the Syrian civil war. ,eir data
were validated against available in situ measurements in
neighbouring Jordanian reservoirs [7]. Al-Bakri et al. pre-
sented a case from Jordan where geospatial techniques were
utilized for irrigation water auditing, and their work was
limited to assessing records of groundwater abstraction in
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Figure 3: Sampling points distribution of Mujib Dam.
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relation to irrigated areas and estimated crop water con-
sumption in three water basins such as Yarmouk, Amman-
Zarqa, and Azraq. Mapping of irrigated areas and crop water
requirements was carried out using remote sensing data of
Landsat 8 and daily weather records [19].

,is study aims at evaluating the utilization of the
emerging multispectral imaging techniques in monitoring
chlorophyll-a (Chl-a) concentrations in highly sensitive and
vulnerable water bodies. Chlorophyll is an optically active
material present in plants and algae and special types of
photosynthesis-capable bacteria (usually referred to as
cyanobacteria), and it links nutrients’ concentration and
algal production and is considered a good indicator of
waterbody’s trophic state. To identify and classify the trophic
state of aquatic environmental, trophic state index (TSI) has
been created. It uses Chl-a as an equation parameter [20–22].
Moreover, Chl-a is considered a significant indicator of the
ecological health and water quality of rivers, lakes, and
reservoirs and plays a vital role in urban environmental
management [23]. Chlorophyll absorbs most of violet-blue
and orange-red wavelengths, reflects green, and decreases
short wavelengths’ response (particularly blue band wave-
lengths) [12]. Many researchers focused on developing

correlations to estimate Chl-a concentration in water bodies
with the help of remote sensing techniques, and a good
number of studies were listed and reviewed by Gholizadeh
and his coworkers [12]. Several researchers have used
Sentinel 2 images to develop predictive models for chlo-
rophyll-a [24–28].

Although the current study will start with selected sites,
it will provide a solid basis for future work to cover more
sites in the future and ultimately cover all sites in Jordan.,e
study will ultimately lead to the development of a mathe-
matical model capable of predicting Chl-a concentration
without the need of in situ measurement and enable remote
monitoring of Chl-a concentrations of distributed water
bodies across the country. Multispectral satellite images
provided by international sources such as US Geological
Survey (USGS) and European Space Agency will be used in
this study.,e outcome of this study will provide a powerful
tool to water sector officials. ,ey can use it to efficiently
manage this sector with a good advantage in terms of time,
effort, and cost-effectiveness by providing spatial and
temporal evaluation of inlands water quality for a large
geographic area compared to classical water-quality testing
using direct measurement.
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Figure 4: Sampling points distribution of Wadi Al-Arab Dam.
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Table 1: Chl-a concentration and corresponding sampling points’ coordinates of samples collected from KTD.

Visit date: 15/7/2019
Dam name: King Talal

Site Latitude Longitude Chl-a (ppb)
1 32.191214 35.802659 113.78
2 32.19017 35.802359 114.53
3 32.190125 35.80503 120.58
4 32.188527 35.80488 116.61
5 32.186657 35.804386 103.31
6 32.185104 35.803796 81.23
7 32.182171 35.804032 85.55
8 32.180246 35.805792 78.05
9 32.179102 35.80724 76.11
10 32.186675 35.809343 53.95
11 32.187883 35.811499 77.92
12 32.190443 35.810448 90.77
13 32.192213 35.817026 104.29
14 32.192267 35.820534 104.19
15 32.19115 35.824075 92.51
16 32.191776 35.829 153.86
17 32.190541 35.831865 147.65
18 32.19446 35.839118 155.95

Table 2: Chl-a concentration and corresponding sampling points’ coordinates of samples collected from Mujib Dam.

Visit date: 30/6/2019
Dam name: Mujib

Site Latitude Longitude Chl-a (ppb)
1 31.443241 35.816654 3.7
2 31.444401 35.820263 2.8
3 31.443779 35.823117 1.7
4 31.44355 35.826175 1.4
5 31.441765 35.829147 3
6 31.442268 35.830789 2.8
7 31.441938 35.82345 2.5
8 31.441087 35.821969 2.9
9 31.439934 35.818858 2.1
10 31.438103 35.819867 2.34
11 31.437737 35.820693 2.42
12 31.436877 35.821938 2.59
13 31.435321 35.823697 2.42
14 31.433362 35.824716 2.9
15 31.427677 35.824555 2.55
16 31.425169 35.82463 2.38
17 31.422999 35.827012 2.1
18 31.441271 35.835853 2.4
19 31.442076 35.818773 3.7
20 31.439705 35.818194 2.2

Table 3: Chl-a concentration and corresponding sampling points’ coordinates of samples collected from Wadi Al-Arab Dam.

Visit date: 25/6/2019
Dam name: Wadi Al-Arab

Site Latitude Longitude Chl-a (ppb)
1 32.617107 35.636684 28.32
2 32.616618 35.633839 50.71
3 32.618131 35.634364 24.13
4 32.619388 35.63522 23.46
5 32.618911 35.636822 26.26
6 32.619248 35.6383 31.32
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Table 3: Continued.

Visit date: 25/6/2019
Dam name: Wadi Al-Arab

Site Latitude Longitude Chl-a (ppb)
7 32.618596 35.639972 36.43
8 32.619783 35.640994 39.76
9 32.620295 35.6429 36.14
10 32.621028 35.645 34.15
11 32.621993 35.648343 32.71
12 32.621272 35.648495 31.12
13 32.620707 35.646919 29.34
14 32.619935 35.646227 31.22
15 32.61963 35.644977 33.24
16 32.619212 35.642995 35.58
17 32.617827 35.641528 40.41
18 32.617977 35.639169 39.4
19 32.617667 35.636925 30.3
20 32.618134 35.635241 27
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2. Methodology

2.1. StudyArea. ,ree dams were selected for investigation in
this study: King Talal Dam (KTD), 35 km north of capital city
Amman, Wadi Al-Arab Dam (WAD), 81 km north of
Amman, and Mujib Dam (MD), 50 km south of Amman.
Figure 1 shows the map of Jordan with capital city, Amman,
and selected dams’ locations.,ese dams were selected due to
their importance to Jordan and their geographic distribution
over the country and variation of water sources feeding them
that ranges from rainfall to treated wastewater, which result in
a variation in water quality in terms of Chl-a levels.

2.2.Water Sampling. Water samples were collected from the
three dams, a total of 58 samples, from areas distributed
through the dams’ bodies. 18, 20, and 20 samples were
collected from KTD, MD, and WAD, respectively. ,e
samples were collected about 20 cm below the water surface.
Dark bottles were used to store collected water samples,
which were transferred for analysis in a dark icebox to the

water laboratory at University of Petra, Amman, Jordan.
Figures 2–4 show sampling points’ distribution of the three
selected dams.

2.3. Sample Analysis. Collected samples were analysed for
Chl-a concentration. Chlorophyll-a was tested using the
EPA method number 445.0 standard methods, a common
procedure followed for determination of low-level chloro-
phyll-a fluorescence detection of water and wastewater.
Water samples were filtered at low vacuum using Whatman
GF/F glass fiber filters upon arrival to the lab. Extraction of
chlorophyll-a was performed using 90% acetone. A Turner
Trilogy Laboratory fluorometer was used for the estimation
of chlorophyll-a concentration in collected water samples.
More details about the procedure followed can be found on
the EPA method 445.0 technical document.

2.4. Algorithms for Chl-a Estimation. ,e principles of
optical water properties responding to existing Chl-a in
water were used to develop remote sensing algorithms for
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estimating Chl-a concentration in water. ,e presence of
Chl-a in water increases water absorption at the blue
region (443 nm) and the near-red region (675 nm) [29].
,e band ratio models show the ability to reduce the effect
of irradiance and atmospheric and adjacent land surfaces
on water reflectance. ,erefore, it is more preferred to
estimate Chl-a over numerous band-reflectance ratio al-
gorithms [30]. ,e two commonly-used bands ratio index
models are two-band ratio algorithms and three-band
ratio algorithms. For the two-band ratios, the widely used
band indexes are blue (440–510 nm) to green
(550–555 nm) [31, 32], near-infrared (NIR) (685–710 nm)
to red (670–675 nm) [33, 34], and green (550–555 nm) to
red (670–675 nm) [35, 36]. ,ree-band ratio algorithms
used one red reflectance (near-670 nm) and two reflec-
tances in the NIR region (one between 705 and 720 and
another between 740 and 750 nm) [37]. In this work,
Sentinel 2 bands have been adopted to the two-band ratio
algorithms and three-band ratio algorithms. Sentinel 2 has
two bands within the blue region, one band within the
green and the red region, and five bands within NIR
regions, as illustrated in section four.

3. Results

,e measured values of Chl-a concentration of samples
collected from the three selected locations along with
sampling points’ coordinates are listed in Tables 1–3.
Figures 5–7 show concentration distribution of Chl-a
through the selected dams’ bodies.

4. Result Analysis and Discussion

4.1. Sentinel 2 Image Processing. Sentinel 2 satellite imageries
were selected to evaluate their suitability for investigating
water quality in inland water. Sentinel 2 images were ob-
tained from the European Space Agency through Coper-
nicus Open Access Hub (https://scihub.copernicus.eu).
,ree images of level-1C (L1C) MSI data were used in this
study. Table 4 summarizes Sentinel 2 images used for al-
gorithm development.

,e L1C data are obtained as digital numbers that
represent top-of-atmosphere (TOA) reflectance with 10, 20,
and 60m bands resolution (Table 5).,e images’ bands were
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resampled to 20m resolution using Sentinel Application
Platform (SNAP) version 6.0.

Since TOA reflectance is significantly affected by at-
mospheric conditions that may lead to a considerable un-
certainty in the satellite data, an atmospheric correction
protocol is necessary for an accurate estimation of the
surface reflectance (SR) of a ground target. Atmospheric and
topographic correction (ATCOR) is the most common
physical methods to convert the top-of-atmosphere (TOA)
to remote sensing reflectance (Rrs) [38]. PCI Geomatica
(2017) (ATCOR based) software was used to perform at-
mospheric correction to eliminate terrain and atmospheric
effects.

4.2. Algorithm Development. In this study, georeferenced
Chl-a concentration from the three dams (King Talal
Dam, Mujib Dam, and Wadi Al-Arab Dam) and corre-
sponding Sentinel 2 satellite pixels were used to develop a
Chl-a predictive model. In total, 58 water samples were
collected and considered for investigation. ,e collected

data were divided into two sets. the first set contains 39
points and was used for calibration. ,e second set
contains 19 points and was used for validation. ,e Chl-a
algorithms found in the literature adopted to Sentinel 2
spectral band configuration use ratios and combinations
of two bands.

Figures 8–10 present the performance of different al-
gorithms that correlate band widths combinations with Chl-
a measured concentration. Model calibration results using 2-
band models showed a very strong relationship with Chl-a
than using an exponential function. ,e best-fitted models
showed the highest R2 of 0.907.

4.3. Algorithm Validation. ,e second set of data (19
samples) was used to test the predictive capabilities of the
calibrated models above. ,e performance of the three
selected models was evaluated based on determination
coefficient (R2), root mean square error (RMSE), mean
absolute error (MAE), and bias values. Table 6 sum-
marizes the predictive performance of different
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Figure 8: Regression between the Sentinel 2 band index and measured Chl-a, using the B2/B3 model.

Table 5: Sentinel 2 spectral bands, spatial resolution, band range, and central wavelength at reference radiance used in this study.

Band (spatial resolution) Band range (nm) Central wavelength (nm)
Band 1 coastal/aerosol (60m) 421–457 443
Band 2 blue (10m) 439–535 490
Band 3 green (10m) 537–582 560
Band 4 red (10m) 646–685 665
Band 5 VRE (20m) 694–714 705
Band 6 VRE (20m) 731–749 740
Band 7 VRE (20m) 768–796 783
Band 8 NIR (10m) 767–908 842
Band 8a NIR (20m) 858–881 865
Band 9 WV (60m) 931–958 945
Band 10 cirrus (60m) 1338–1414 1375
Band 11 SWIR (20m) 1539–1681 1610
Band 12 SWIR (20m) 2072–2312 2190

Table 4: Sentinel 2 images used for algorithm development.

Location Identifier Acquisition date Cloud cover
KTD S2B_MSIL1C_20190715T081609_N0208_R121_T36SYA_20190715T120216 2019-07-15 1.4111
Mujib S2A_MSIL1C_20190630T081611_N0207_R121_T36RYV_20190630T102130 2019-06-30 1.3674
Wadi Al-Arab S2B_MSIL1C_20190625T081609_N0207_R121_T36SYB_20190625T120443 2019-06-25 0.0018
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exponential functions applied to the blue band and green
band. Figures 11–13 show a comparison between pre-
dicted and measured Chl-a using the calibrated models
above.

Two-band models showed significantly better Chl-a
predictive capabilities than exponential function. ,e
B3/B2 model successfully predicted Chl-a concentra-
tions with the highest R2 value and a lowest root mean
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Figure 11: Regression between predicted and measured Chl-a using the B2/B3 model.

Table 6: Validation results of Sentinel 2 Chl-a models.

Index Equation R2 RMSE MAE Bias
B2/B3 y� 0.0001e14.46x 0.776 34.668 18.684 −7.561
B3/B2 y� 2E+ 06e−9.313x 0.859 30.756 18.554 −14.399
ln(B2/B3) y� 179.73e11.707x 0.824 29.787 17.338 −9.0158
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Figure 10: Regression between the Sentinel 2 band index and measured Chl-a, using the Ln(B2/B3) model.

y = 2E + 06e–9.313x

R2 = 0.887

0
20
40
60
80

100
120
140
160
180

C
hl

-a
 m

ea
su

re
d 

(m
g/

m
3 )

1.1 1.2 1.3 1.4 1.5 1.61
(B3/B2)

Figure 9: Regression between the Sentinel 2 band index and measured Chl-a, using the B3/B2 model.
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square error (RMSE), respectively (R2 � 0.859,
RMSE � 30.756 mg/m3).

5. Conclusions

,is study assessed the applicability and accuracy of utilizing
Sentinel 2 images to evaluate and monitor Chl-a concen-
tration in inland water bodies. Chl-a concentration of a total
of 58 samples was measured. Samples were collected from
three different dams in Jordan, which have different water-
quality properties and large variation in Chl-a level. Chl-a
concentration ranged between 1.4 and 3.7mg/m3, 23.4 and
50.7mg/m3, and 53.9 and 155.9mg/m3 for Mujib Dam,
Wadi Al-Arab Dam, and KTD Dam, respectively. ,e
empirical model approach was applied to create a Chl-a
predictive model by testing and examining several bands-
based algorithms. About two-thirds of the samples were used
to develop a predictive model. ,e developed model was
used to predict Chl-a concentration of the remaining 19
sampling points from surface reflectance (SR) data. ,e
measured Chl-a concentrations of the validation set were
compared to the corresponding predicted values obtained
from developed models. ,e predictive capability of each of
the investigated models was determined in terms of deter-
mination coefficient (R2) and lowest root mean square error
(RMSE) values.

Several two-band ratios algorithms and a three-band
ratios algorithm were tested. For the investigated sites, the
linear and natural logarithm of the blue-to-green ratio
model (B3/B2 model and Ln(B3/B2) model) showed the best

overall predictive capability of all models with the highest R2

and lowest RMSE values of (0.859, 0.823) and (30.756mg/
m3, 29.787mg/m3), respectively. ,e analysis of results
obtained in this study demonstrated that Sentinel 2 images
can adequately be used to monitor Chl-a levels over a wide
range and to assess water quality for inland water bodies.
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