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The breaking silence between the plant roots and microorganisms in the rhizosphere

affects plant growth and physiology by impacting biochemical, molecular, nutritional, and

edaphic factors. The components of the root exudates are associated with the microbial

population, notably, plant growth-promoting rhizobacteria (PGPR). The information

accessible to date demonstrates that PGPR is specific to the plant’s roots. However,

inadequate information is accessible for developing bio-inoculation/bio-fertilizers for the

crop in concern, with satisfactory results at the field level. There is a need to explore the

perfect candidate PGPR to meet the need for plant growth and yield. The functions of

PGPR and their chemotaxis mobility toward the plant root are triggered by the cluster of

genes induced by the components of root exudates. Some reports have indicated the

benefit of root exudates in plant growth and productivity, yet a methodical examination

of rhizosecretion and its consequences in phytoremediation have not been made. In

the light of the afore-mentioned facts, in the present review, the mechanistic insight and

recent updates on the specific PGPR recruitment to improve crop production at the field

level are methodically addressed.
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INTRODUCTION

According to the World Health Organization (WHO), the food shortage for sustaining
the human population is on a steep upward trajectory, mainly owing to the quickly
booming human population that is expected to cross the 10 billion mark by 2050 (DESA
UN, 2015). Both WHO and the United Nations have proposed to intensify global food
production by 50% in the near future. The agriculturally important microorganisms
(AIMs) can play a pivotal role in realizing this colossal target considering the fact
that fertile lands are sharply shrinking owing to urbanization and industrialization.
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AIMs not only improve plant growth and yield but provide
sustained protection against a variety of phytopathogens
(Bhattacharyya and Jha, 2012; Glick, 2012; Compant et al.,
2019). The beneficial microbes of the rhizosphere zone
interact positively with mutually guided components of root
exudates, i.e., rhizodeposits (Hassan et al., 2019). During the
rhizodeposition process, the plant roots secrete carbohydrates,
fatty acids, essential amino acids, organic acids, hydrolytic
enzymes, growth-regulating hormones, vitamins, nucleotides,
flavonoids, polyphenols, sterols, and volatile organic compounds
(Hartmann et al., 2009; Hu et al., 2018; Ankati and Podile, 2019).

In the last century, the word “rhizosphere” was introduced as
a microbial hot spot in the area of the rootsystem (Hartmann
et al., 2008). The rhizospheric region, a specific zone around
the root and harbors various kinds of microorganisms, primarily
bacteria, fungi, nematodes, insect larvae, mites, amoebas, and
protozoa (Bonkowski et al., 2009). The bacterial colonies residing
in the rhizospheric zone are called rhizobacteria (Hartmann et al.,
2009). The rhizospheric zone supports the plant root system
(Ahemad and Kibret, 2014) and modulates the physico-chemical
and biological properties of the soil (Ahemad and Kibret, 2014;
Zhalnina et al., 2018).

The rhizosphere zone provides a shelter for the exchange
of biochemical components that establish inter-species
relationships between the roots and microorganisms
(Gupta et al., 2020). Plant roots release various types of
enzymes/compounds in the soil that mediate the interaction
between microorganisms and plants (Ankati and Podile, 2019).
Factors influencing soil microbial population include soil quality,
soil moisture, soil pH, and rhizospheric secretion (Bagyalakshmi
et al., 2012; Upadhyay and Singh, 2015; Hu et al., 2018). There
are various physical and chemical parameters of the rhizospheres
that impact the function of microorganisms, which ultimately
affect several mechanisms, such as the respiratory process, the
secretion of organic acids by the roots, the breakdown of soil
organic matter, nutrient uptake, symbiotic nitrogen fixation, etc.
(Reinhold-Hurek et al., 2015; Mahmud et al., 2021).

The rhizosphere plays an important role in root excretion,
microbial activity, genetic exchange, improving nutrient use
efficiency, and gradient diffusion, which are jointly referred to as
the rhizosphere effect (Badri and Vivanco, 2009; Ladygina and
Hedlund, 2010; Mendes et al., 2013). Rhizobacteria associated
with the plant root are often referred to as plant growth-
promoting rhizobacteria (PGPR). The functions of plant growth-
promoting rhizobacteria, such as direct and indirect mechanism,
metabolism, chemotaxis, secretion, antibiotic production, etc.,
are mediated by its gene cluster that triggers host–PGPR
interactions (Mark et al., 2005;Matilla et al., 2007; Ramachandran
et al., 2011; Zhang et al., 2015; Bashir et al., 2021; South
et al., 2021). Ultrastructure of the root cell wall mediated
PGPR interaction, which was induced by the gene expression
of the plant. Ryu et al. (2003) demonstrated that out of 38
genes, 30 genes of Bacillus subtilis-GB03 were associated with
a change in the Arabidopsis root-ultrastructure and promote
plant growth. Azospirillum irakense vitalized polygalacturonase
gene (PG genes) in the roots of rice plant (Sekar et al.,
2000). Among PG genes, PbrPG6 is responsible for fruit-soothe

(Zhang et al., 2019). The root exudation and root exudates
are relevant for the survivability of plants against various
environmental conditions. The root exudates aid in the selection
of microbial populations around the rhizosphere (Mendes et al.,
2013; Zhang et al., 2015). In the purview to tackle this aspect, the
review discusses the mechanisms of root exudation, the current
updates on the selective plant growth-promoting rhizobacteria
aggregation and their role in plant–microbe interface, and
most importantly, the future developments in plant–PGPR
interactions for sustainable agriculture.

ROOT EXUDATES AND PLANT
GROWTH-PROMOTING RHIZOBACTERIA

Plant root secretes 5–21% of photosynthetic matter such as
carbohydrates, proteins, secondary metabolites, etc., into the
rhizospheric soil environment, generally known as root exudates
(Badri et al., 2013; Figure 1). The coping mechanism of plants
under diverse environmental conditions mainly rests on the
root acquisition of soil resources and their surroundings (Gupta
et al., 2020). In the mid twentieth century, the world population
increased quickly and posed various problems related to food,
fiber, fuel, homeland, etc., which has consequences for hunger,
poverty, water scarcity, and environmental degradation. The
scarcity of food is a burgeoning challenge for humans that has
been classified as goal number two of the Zero Hunger of the
United Nations Sustainable Development Goals 2030.

Recently, the researchers have introduced an eco-friendly
concept based on free-living bacteria called PGPR (plant-
growth promoting rhizobacteria). The plant growth-promoting
rhizobacteria are soil-borne or root-colonizing rhizobacteria
(Upadhyay et al., 2009, 2012a,b; Singh et al., 2017; Numana et al.,
2018; Upadhyay and Chauhan, 2022), which play a functional
role in plant growth through several mechanisms in terrestrial
ecosystems. Plant-growth promoting rhizobacteria significantly
reduce the dependence on chemical fertilizers and pesticides
(Liu et al., 2017). Plant growth-promoting rhizobacteria promote
plant growth through root-hair proliferation, enhancing root
hair branching; increase in seedling emergence; early nodulation;
nodule functioning; enhanced leaf surface area; improvement
in vigor and biomass; increased indigenous plant hormones
levels; and most importantly, by improving nutrient use
efficiency (Vocciante et al., 2022). The plant growth-promoting
rhizobacteria induce the accumulation of carbohydrates in
plants and consequently the yield of various plant species
(Bhattacharyya and Jha, 2012; Table 1). The most dominant
endophytic plant growth-promoting rhizobacteria phyla are
Proteobacteria and Actinobacteria, followed by Bacteroidetes and
Firmicutes (Ray et al., 2017). Endophytic bacteria enter the plant
tissues by the lateral root cracks, wounds, lenticels, germinating
radicles, and other parts of the plant body (Chaturvedi et al.,
2016). Endophytic-rhizospheric bacteria are involved in several
functions such as internal protection of the environment (Santos
et al., 2018), metabolism of carbon compounds, nitrogen
fixation by nitrogenase (Santoyo et al., 2016), and capability for
germination of nodes (Yousaf et al., 2017).
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FIGURE 1 | Schematic representation of the mechanism of root exudates for recruitment of plant growth-promoting rhizobacteria and plant growth-promoting

mechanism (Direct and Indirect). SC, Selected compounds; QS, quorum sensing; NM, Nutrient management; AHL, Acyl Homoserine lactone; AIP, Autoinducing

peptides; AI-2, Autoinducer; PS, Photosynthetic matter.

The PGPR leads to increased soil fertility, plant growth
promotion, and suppression of phytopathogens. These are
involved in different functions of the soil ecosystem, nutrient
availability, bioremediation of toxic heavy metals, degradation of
pesticides, etc. (Chandler et al., 2008; Braud et al., 2009; Rajkumar
et al., 2010; Paul et al., 2020; Bhojiya et al., 2021). The PGPR
induces plant growth under varied environmental conditions,
and the functional roles of bacteria vary with a specific plant
(Table 1). The studies demonstrated that root exudates recruited
microbial species that are more favorable for plant growth and
productivity (Chowdhury et al., 2015; Zhang et al., 2015).

PLANT–MICROBE INTERACTIONS

Several researchers have reported that the population of
microorganisms differs in the soil, for example, 12 × 108

bacteria/g dry soil, 12 × 105 fungi/g dry soil, 5 × 105

algae/g dry soil, and 46 × 106 actinomycetes/g dry soil; the
bacterial population is highest followed by fungi, algae, and
actinomycetes, as a general rule of the thumb (Yadav et al.,
2015). Biotic interactions between the plants and microbes occur
through communication that requires two essential conditions:
one is the production of a specific signal, and another is the
behavioral response generated from the signals (Keller and

Surette, 2006). Plants communicate to rhizobacteria by secreting
specific signaling molecules, viz. lectine enzymes, which are
retraced by the bacterial species (Keller and Surette, 2006).
B. subtilis detects only secondary metabolites as signals and
produces a response against the secondary metabolites (Shank
and Kolter, 2011; Singh et al., 2019). The behavior between
the plants and the PGPR is mediated through root exudates,
quorum sensing, cross-talk, electron-transfer mechanism, etc.
(Tashiro et al., 2013; Singh et al., 2017; Keswani et al., 2020a).
Positive plant–microbe interactions can be observed with PGPR,
nitrogen-fixing bacteria, endo- and ecto-mycorrhizal fungi,
whereas negative plant–microbe interactions are exhibited by
pathogenic microbes (Haldar and Sengupta, 2015; Compant
et al., 2019; Bashir et al., 2021; South et al., 2021). The legume
rhizobia is an example of symbiotic interactions (Cai et al.,
2009); the plant’s secondary metabolite secretes flavonoids that
activate a cascade of transcriptional events andmediates rhizobial
nodulation signals commonly known as Nod-factors or lipo-
chitooligosaccharides (Spaink, 2000). These factors trigger plant
growth, leading to morphological changes in root hairs of
legumes and the development of root nodules, while Nod-
factors play a significant role in symbiotic nitrogen fixation
(D’Haeze et al., 1998). The rhizospheric microbes act as biological
control agents (BCA) that regulate plant pathogens. Thus, BCA
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ultimately increases plant productivity through the production of
antimicrobial secondary metabolites (Weller, 2007; Singh et al.,
2019), production of hydrolytic enzymes (Adesina et al., 2007),
effectors (Rezzonico et al., 2005), and hyperparasitism (Harman
et al., 2004). Plant growth-promoting microorganisms (PGPM)
affect plant growth directly or indirectly through biofertilizers
(Mahmud et al., 2021) and/or phytostimulators (Spaepen et al.,
2007), as well as biocontrol activity (Figure 1).

The functional genes of B. amyloliquefaciens strains
CAUB946, YAUB9601-Y2, and FZB42 are involved in the
synthesis of phytohormones, and other gene clusters are
involved in disease control (Chen et al., 2007; Borriss, 2011;
Blom et al., 2012; Hao et al., 2012). The selection of the
perfect candidate PGPR can be a remarkable development for
biofertilizer technology. Zhang et al. (2015) demonstrated that
B. amyloliquefaciens (SQR9) is an ideal and more efficient PGPR
than other strains of Bacillus strains (Table 2). Thirteen unique
mobile genomic islands (GIs) were observed for the SQR9 strain.
These GIs were found to be involved in the synthesis of many
known and unidentified novel compounds. A recent report
also demonstrated that maize root exudates regulate 98 genes
in SQR9 for carbohydrate and amino acid metabolism. The
set of the genome in SQR9 performed several functions like
extracellular matrix production and regulated gene expression
(Table 2), which revealed a high density (1.8 × 106 CFU g−1

root) of SQR9 in the maize rhizosphere, and triggers plant
growth (Zhang et al., 2015).

MECHANISTIC INSIGHT OF PLANT
GROWTH-PROMOTING RHIZOBACTERIA

Root Exudation
Narasimhan et al. (2003) reported two groups of root-exudates:(i)
low molecular weight (LMW) such as sugars, amino acids,
phenolics, secondarymetabolites, and organic acids (citric, malic,
oxalic, pyruvic, and succinic, etc.), and (ii) high molecular weight
(HMW) that include proteins and complex carbohydrates. The
nature and specificity of root exudates are dependent on the
host species, plant developmental stages, physio-chemical nature
of the soil, and surrounding microbial diversity (Hu et al.,
2018; Singh et al., 2022). The maximum concentration of root
exudates is found at the root tips and the lateral branching of
the roots. Its amount also attenuates with increasing root surface
(Compant et al., 2019), diffusion and degradation through
sorption, deposition, or microbial consumption (Reinhold-
Hurek et al., 2015). The microbial consumption contributes
to the extravagance of root exudates owing to the valuable
source of nutrition and energy for the rhizospheric microbes
(Compant et al., 2019). The difference in the amount and
nature of root exudates determines nutrient mobility, microbial
population, and microbial diversity (Chamam et al., 2013; Bowya
and Balachandar, 2020; Korenblum et al., 2020; Singh et al.,
2022). Plant roots secrete root exudates in the rhizospheric
region through passive (ion channels, vesicular transport, and
diffusion) and active (secretion) mechanisms (Rohrbacher and
St-Arnaud, 2016). LMWcompounds are released through passive

transport while HMW compounds through active transport
mechanisms (Rohrbacher and St-Arnaud, 2016). The root
exudates and solutes from cell membranes develop equilibrium
between exterior and interior molecular transport (Weston
et al., 2012; Cesari et al., 2019). In the passive mechanism,
polar molecules and ions diffuse through the membrane using
channels/permeases through a process called facilitated diffusion.
These channels act as a passage for small ions like Na+, K+,
Cl−, etc., and water, which aid in maintaining intra-cellular pH,
membrane potential, osmotic status, and stabilized volume of the
cell (Lee et al., 2007). The small polar and uncharged molecules
can transport through direct passive diffusion depending on
membrane permeability (Weston et al., 2012; Rohrbacher and St-
Arnaud, 2016). The non-polar molecules pass through without
using channels or transfer proteins (Weston et al., 2012). The
electrochemical gradient arises owing to charged molecules or
ions like amino acids, sugars, carboxylates ions, etc. (Rohrbacher
and St-Arnaud, 2016). Passive transport across the membrane
through channels is driven by an electrochemical gradient
(Rohrbacher and St-Arnaud, 2016). Without any expense of
energy, the movement based on an electrochemical gradient is
called passive transport. The transport that requires energy from
ATP for several ions or molecules against the concentration
gradient or electrochemical gradient is called active transport
(Rohrbacher and St-Arnaud, 2016). Plants have different coping
mechanisms against the environment and secrete a large number
of compounds that may require many transporters (Weston et al.,
2012; Rohrbacher and St-Arnaud, 2016; Korenblum et al., 2020),
and these transporters are capable of root exudation of aggregates
into the rhizo-microbiome.

Weston et al. (2012) reported that the root exudates from root
cells are transported by membrane transport proteins (MTPs).
The ATP-binding cassette transporter helps in the phytochemical
secretion from roots. Besides, Badri et al. (2013) have also
described that out of 129 genes, 25 are significant for root
exudation in Arabidopsis thaliana. A single gene mutation may
influence the interaction among the microbial group of soil
in A. thaliana (Badri et al., 2013). The MTPs include ABC
transporter, multidrug and toxic compound extrusion (MATEs),
major facilitator superfamily (MFS), and aluminum-activated
malate transporter (ALMT). MATE transporter in rice root
promotes exudation of polyphenolic compounds (Baetz and
Martinoia, 2014). Recently, Wanga et al. (2018) reported that the
aluminum exclusion from the root is facilitated by ALMT and
citrate exudation through the MATE citrate transporter.

The Action of Root Exudates
Root exudates can mediate neutral, useful, or harmful
interections between plant microbes and inter-species of
microorganisms (Mendes et al., 2013; Hu et al., 2018). The
secretion of root exudates rests on plant needs, and the rate
of exudation is modified to cope with different biotic and
abiotic stresses (Badri and Vivanco, 2009; Vardharajula et al.,
2011). The root-driven changes in the microbial community
observed by Donn et al. (2015) in the wheat rhizosphere
demonstrated ten times more bacterial abundance than the bulk
soil. Specific microbes like Burkholderiales, Sphingobacterium,
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TABLE 1 | Compounds from plant root exudates recruit perfect plant growth-promoting rhizobacteria (PGPR) improving plant growth performance.

Plant Compounds from root exudates Recruited PGPR Plant growth performance Condition References

Groundnut

(Arachis hypogaea)

Naringenin, oleic, citric, and lactic

acid

Bradyrhizobium-Azospirillum

brasilense

Enhance root exudation and PGPR interaction Water deficit

condition Cesari et al., 2019

Threonine and glycoxylicoxime acid Pseudomonas aeruginosa (RP2) Enhance growth and yields of groundnut field study
Ankati and Podile,

2019

Serine, pentanoic acid,

glycopyranoside, tartaric acid, and

2-pyrrolidinone

Bacillus sonorensis (RS4) and

Pseudomonas aeruginosa (RP2)

Polyphenol oxidase and phenylalanine Pseudomonas aeruginosa (P4) Significantly enhance seed germination,

seedling, and shoot- root length and dry weight

in vitro

Gupta et al., 2020

N-acylhomoserine

lactones (AHLs)

Bradyrhizobia Induces nitrogen fixation and PGPR

colonization

in vitro

Nievas et al., 2012

Wheat (Triticum sp.) 2,4 diacetylphloroglucinol (DAPG) Pseudomanas

(F113) and Azospirillum sp.

Enhances phyto-stimulation effect by

Azospirillum Sp245-Rif (Root-proficient,

spontaneous rifampicin-resistant mutant of

Sp245) gene, and PGPR colonization

in vitro

Combes-Meynet

et al., 2011

2,4-diacetylphloroglucinol (DAPG) Fluorescent Pseudomonas sp Act as a bio-control in vitro

Bonsall et al.,

1997

Organic acids (acetic acid, oxalic

acid, succinic acid, and tartaric acid)

Arthrobacter, Bacillus and Devosia Enhance the Organic compounds

concentration mediates root exudation and

PGPR colonization

field study
Chen et al., 2019

Rice

(Oryza sativa)

Carbohydrates, histidine, proline,

valine, alanine, and glycine

Azospirillum brasilense Rice exudates significantly induce attraction of

the endophytic bacteria Corynebacterium

flovesence and Bacillus pumilus. Bacillus sp.

was less attracted than endophytes while the

Azospirillum brasilense showed higher

chemotactic response

Hydrponic

condition Bacilio-Jimenez

et al., 2003

Salicylic acid (SA) Pseudomonas chlororaphis

(ZSB15-M2)

Increases rhizospheric colonization on foliar

spray of SA or Corynebacterium glutamicum

cell extract (CGCE)

Soil organic carbon, microbial biomass carbon,

soil protein was increased with 21.86, 9.68,

and 11.57%, respectively

Available form of nitrogen, phosphorus,

potassium, and zinc was increase with 21.83,

28.83, 23.95, and 61.94% over the control in

the rhizosphere

field study
Bowya and

Balachandar,

2020

Flavonoids and hydroxycinnamic Azospirillum Enhance metabolites activities and plant growth field study
Chamam et al.,

2013

N-acyl homoserinelactones (AHLs) Azospirillum lipoferum (TVV3) Ability to enhance chemotactic interaction in vitro

Vial et al., 2006

(Continued)
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TABLE 1 | Continued

Plant Compounds from root exudates Recruited PGPR Plant growth performance Condition References

Tomato

(Solanum

lycopersicum)

Organic acids (Citric, succinic, and

malic acids)

Pseudomonas fluorescens (WCS365) Act as bio-control agent and increase the

biomass

In vivo

Kamilova et al.,

2006b

Azelaic acid Bacillus spp. Acts as a bio-control through ISR and enhance

plant growth performance

in vitro

Korenblum et al.,

2020

Maize

(Zea mays)

Humic acid Herbaspirillum seropedicae Enhances the production of border cells

(involve at prime stage of plant soil ecosystem,

including signaling and sense response)

followed by root colonization of nitrogen fixer

Herbaspirillum seropedicae

in vitro

Canellas and

Olivares, 2017

Amino acids, proline, total soluble

sugar, and exopolysaccharides

Bacillus spp. Enhance seedling and plant growth Drought

stress Vardharajula et al.,

2011

Pigeon pea

(Cajanus

cajan)

Tryptophan Rhizobium spp. IAA production that significantly enhance plant

growth

in vitro

Ghosh et al., 2013

Banana

(Musa sp.)

Oxalic, malic, furmaric, and several

organic acids

Bacillus amyloliquefaciens (NJN-6) Chemotactic response by malic acids and

fumaric acids induced 20.7–27.3% biofilm

formation

in vitro

Yuan et al., 2015

Common glasswort

(Salicornia europaea)

N-acylhomoserine lactones (AHLs) Pseudomonas

segetis (P6)

Act as quorum quenching and bio-control

agent. Increases height and weight of tomato

plant

In vivo

Rodriguez et al.,

2020

Alfalfa (Medicago

sativa L.)

Flavonoids Rhizobium melilofi Chemoattractants and nod gene inducers for

the symbiotic Rhizobium

Aeroponic

system Coronado et al.,

1995

7,4- Dihydroxyflavone and Naringeni Acidobacteria Induced colonization of PGPR with addition of

enhancing nod gene expression

in vitro

Szoboszlay et al.,

2016

N-acyl homoserine lactones (AHLs) Sinorhizobium meliloti Induce nitrogen fixation and PGPR colonization in vitro

Marketon et al.,

2002

Soybean

(Glycine max)

Isoflavonoid Rhizobia Helps in plant defense and also facilitate

symbiotic interaction among soybean root and

rhizobial communities

in vitro

White et al., 2017

Cucumber (Cucumis

sativus)

Citric and fumaric acids Bacillus amyloliquefaciens (SQR-9) Induces colonization of Bacillus

amyloliquefaciens SQR-9 and mitigate against

pathogen Fusarium oxysporum

in vitro

Liu et al., 2014

Arabidopsis

(Arabidopsis thaliana)

L-malic acid Bacillus subtilis (FB17) L-malic acid enhance boifilm formation

chemotactically

in vitro

Rudrappa et al.,

2008

Sugar beet (Beta

vulgaris)

2,4-diacetylphloroglucinol (DAPG) Pseudomonas spp. (F113) Acts as a inhibitor of plant pathogens in vitro

Shanahan et al.,

1992
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TABLE 2 | Root exudates of maize plant recruit B. amyloliquefaciens strain. The

whole genome sequence of B. amyloliquefaciens revealed that the group of genes

induced by root exudates and its functional gene triggers rhizoadaptation,

phytostimulation, bioferlilizer, and biocontrol activity.

Gene Functions

fZB42, ysnE, yhcX, and

dhaS

Tryptophane dependent indol-3-acetic acid

(IAA)

alsRSD operon 2, 3-butanediol biosynthesis

phy Phosphate solubilization

gap and fbaB Embden-Meyerhof-Parnas pathway

sucC Tricarboxylic acid cycle

iol cluster Inositol

mtlD Mannitol

hxlA Hexulose

dat, alaT Alanine

gltD, gltA Glutamate

kamA Lysine

dapG Aspartate

pTS Phosphotransferase system or sugar

transporter

citH Citrate transporter

glnQHM, yveA, appC, etc Amino acid/Peptide

yclN, yclO Ferrichrome

sapB Mg2+

pst cluster Phosphate

epsA-O Exopolysaccharides synthesis

tapAsipW-tasA Extracellular protein production

bslA Self-assembling the bacterial hydrophobin that

coats the biofilm

spo0A ∼ p-AbrB/sinl-sinR Regulatory genes

degQ Stimulates phosphotransfer from DegS ∼ P to

DegU; enhanced the biofilm formation and root

colonization of SQR9

bglC, bglS, bglA, licH etc Cellulose degradation

xynA, xynB, xylR and xylAB Xylan transport

bglS and bglA Significantly induced by root

cheA, cheB, cheW, mcpB,

and mcpC

Involve in chemotaxis

fliF-L, flgD, flgG, flhA, flhF Flagella synthesis

(Source:Wang et al., 2009; Zhang et al., 2015; Wanga et al., 2018; Zhalnina et al., 2018).

and Xanthomonadales are dominant in the rhizospheres of
Brachypodium distachyon in comparison to bulk soil (Kawasaki
et al., 2016). Similar observations were recorded by Zhalnina
et al. (2018) while studying the chemistry of root exudates of
Avenabarbata where root-exudates were preferred as substrates
for the specific bacterial community in the rhizospheres. The
beneficial rhizobacterium Pseudomonas putida KT2440 is
chemotactically attracted by 2-4-dihydroxy-7methoxy-1,4-
benzoxazin-3-one from root exudates of Zea mays (Neal et al.,
2012). The root exudate compounds like flavonoids act as
signaling molecules, regulate nod-gene expression, activate
nod-factors (lipochito-oligosaccharide), and trigger nodulation
establishment in legumes (Abdel-Lateif et al., 2012; Figure 2).
The flavonoids are released due to overcoming nitrogen
deficiency in soil (Coronado et al., 1995). The flavonoid 7,4-
dihydroxyflavone, from the root exudates ofMedicago sativa, can

mediate interaction with a diverse range of acid bacteria along
with the induction of the nod-gene in the legumes (Szoboszlay
et al., 2016). Strigolactone stimulates hyphal branching in
mycorrhiza (Akiyama et al., 2005), and malic acid helps in the
recruitment of plant growth-promoting rhizobacteria (Rudrappa
et al., 2008). On the other hand, root-exudates have antimicrobial
secondary metabolites such as benzoxazinoids (BXs), which can
trim actinobacteria, proteobacteria, and pathogenic microbial
populations in the maize rhizosphere (Hu et al., 2018). Root
exudates influence the recruitment and make-up of microbiota
in the plant rhizosphere (Hartmann et al., 2009; Ladyginaand
Hedlund 2010; Reinhold-Hurek et al., 2015; Table 1). The
ability of A. brasilense to modulate the plant root architecture
was reported by Creus et al. (2005). Molina-Favero et al.
(2008) observed that A. brasilense can synthesize nitric oxide
(NO) aerobically, which mediates the IAA signaling pathway,
leading to lateral and adventitious root formation in tomatoes.
In Arabidopsis, under drought stress, root colonization of P.
chlororaphis increases the expression of genes associated with
ROS (reactive oxygen species) defense, auxin, jasmonic acid, and
salicylic acid synthesis (Cho et al., 2013). P. chlororaphis also
decreases the expression of ethylene and abscisic acid genes in
Arabidopsis under drought stress (Cho et al., 2013; Figure 2).
The roots of watermelon secrete more trans-chlorogenic
acid and caffeic acid, followed by trans-cinnamic acid, which
induced resistance against Fusarium oxysporum (Ling et al.,
2013). Cai et al. (2009) reported that leguminous plant roots
secrete canavanine, which recruits beneficial microorganisms.
Canavanine favors the growth of selective rhizobia and also acts
as an antimicrobial for pathogenic bacteria (Cai et al., 2009).
Sugars and strigolactone, viz. 5-dexystrigal, components of
non-legume root exudates mediate symbiotic association with
mycorrhizal fungi (Fang and St Leger, 2010). Nguema-Ona
et al., 2013 observed that AGPs (arabinogalactans protein) of
root exudates also attract plant growth-promoting rhizobacteria
through the chemo-attractant mechanism, and the maximum
amount of AGPs was found at the root tip regions of the plants
(Cannesan et al., 2012). AGPs induce a population of beneficial
microbes in leguminous and non-leguminous plants (Xie et al.,
2012; Vieira et al., 2020). The VOCs, myc-factors, nod-factors,
exopolysaccharides, etc. are signaling components associated
with rhizospheric microbes (Goh et al., 2013). VOCs (acetoin, 2-
3-butanediol) mediate communication between plant microbes,
induce ISR (induced systemic resistance) as bio-protestants (Ryu
et al., 2004), and plant growth promotion. Ankati and Podile
(2019) reported that threonine and glyoxylic oxime acid from
root-exudates of groundnut influenced Pseudomonas aeruginosa
(RP2), while serine, pentanoic acid, glucopyranoside, tartaric
acid, and 2-pyrrolidinone influenced both P. aeruginosa (RP2)
and B. sonorensis (RS4). These findings demonstrated that a
specific component of root-exudates was responsible for selective
PGPR interaction. Thus, the products of root exudates could be
an effective agent for improving crop yield at the field level by
enhancing PGPR colonization.

Quorum sensing (QS) helps in establishing root microbe
assemblage in the rhizosphere. The root exudates mimic
QS signals of bacteria to repress QS-regulated responses of
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FIGURE 2 | Plant growth-promoting mechanism of recruited plant growth-promoting rhizobacteria, (A) Phytostimulation, and (B) Biofertilizer activity [QS, Quorum

sensing; IAA, indole-3-acetic acid; SAM, S-adenosyl methionine; ACC, 1-aminocyclopropane-1-carboxylate; IGE, Induce gene expression; ABA, Abscisic acid; GA1,

GA2, and GA4, (Types of gibberellin); PSB, Phosphate solubilizing bacteria; KSB, Potassium solubilizing bacteria; EPS, exo-polysaccharides; OA, Organic acid; and

IA, Inorganic acid].

associated/adjacent bacteria. The root exudates have primary and
secondary metabolites along with proteins (Korenblum et al.,
2020). Some reports demonstrated that these proteins influenced
the selective recruitment of useful bacteria (De-la-Pena et al.,
2008). The QS compound in the root exudates of groundnut
plants selects microbes and induces their population (Ankati and
Podile, 2019). Bacteria communicate within the system through
a density-dependent mechanism known as QS (Reinhold-Hurek
et al., 2015). The QS regulates the metabolic as well as the
behavioral activities of the bacterial community (Marketon et al.,
2002; Nievas et al., 2012; Liu et al., 2014; Korenblum et al., 2020).
This sort of interaction occurs through a dialect of chemical
signals called autoinducers (AHLs: acyl homoserine lactones),
autoinducing peptides (AIP), and autoinducer-2; furanone (AI-
2), synthesized by bacteria (Figure 1). AHLs mediate signaling in
gram-negative bacteria (Vial et al., 2006). AIP requires specialized
membrane transport protein for signaling in the gram-positive
bacteria, whereas AI-2 is required for both gram-positive and
gram-negative bacteria (Abisado et al., 2018). Bacterial QS
occurs through various complex pathways depending upon
species diversity (Reinhold-Hurek et al., 2015). Therefore,
the cognizance of the QS enables the regulation, thereby
constraining bacterial communication (Figure 1). The inhibition
strategies of QS are jointly called quorum-quenching, through
which bacteria are ineffective in their interplay with each
other. QS-mediates bacterial processes like growth, conjugation,

bioluminescence, biofilm formation, siderophore production,
and swarming (Barriuso et al., 2008). The threshold level of the
initial plant growth-promoting rhizobacteria inoculummediated
by QS molecules strongly induces plant growth performance
(Rodriguez et al., 2020). The plant rhizospheric region has a
higher amount of AHL in comparison to the bulk soil, suggesting
that these trigger bacterial colonization and establish a strong
association between bacteria and plant roots (Vial et al., 2006).

Plant Growth-Promoting Rhizobacteria
Menendez and Garcia-Fraile (2017) classified plant
growth-promoting rhizobacteria into extracellular plant
growth-promoting rhizobacteria (e-PGPR) and intracellular
plant growth-promoting rhizobacteria (i-PGPR). The plant
growth-promoting rhizobacteria stimulate plant growth directly
by the activity of phytostimulation and bio-fertilization, whereas
indirectly through biopesticides or bio-control agents (Dwivedi
and Dwivedi, 2002; Glick et al., 2007; Glick, 2012; Ngoma
et al., 2012). The direct mechanism of plant growth-promoting
rhizobacteria facilitates nutrient uptake or improvement in
nutrient availability by nitrogen fixation (Cheng, 2008; Glick,
2012), solubilization of phosphorus and mineral nutrients,
mineralizing organic compounds (Khan et al., 2010; Sharma
et al., 2013), and phytohormones production including, IAA,
ethylene, cytokinins, and gibberellins (Pliego et al., 2011;
Upadhyay et al., 2016, 2019; South et al., 2021; Figure 2). On
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the basis of PGPR function, siderophore production may be
considered as both a direct and an indirect mechanism (Ahmed
and Holmstrom, 2014). The indirect mechanisms include
antibiotic production (Sindhu et al., 2009), hydrolytic enzyme
production (Dubey et al., 2014), induced systemic resistance
(ISR), and exo-polysaccharides (EPS) production (Upadhyay
et al., 2011; Figure 3).

DIRECT MECHANISMS

IAA Production
IAA (indole-3-acetic acid), a product of the amino acid L-
tryptophan (Yu et al., 2017), acts as a plant growth regulator. The
IAA regulates the plant-growth through several cellular functions
such as cell division, cell elongation and differentiation, increase
in root length and root surface area, and the development of
flowers (Gravel et al., 2007; Santner et al., 2009). About 80%
of rhizobacteria produce auxins of microbial origin but with
analogous functions, such as the auxins of plant origin (Patten
and Glick, 1996; Ahemad and Kibret, 2014; Myresiotis et al.,
2015; Keswani et al., 2020b. The IAA plays a crucial role in the
interaction between plant and rhizobacteria and is synthesized
by the associated plants and many microbes like plant growth-
promoting rhizobacteria (Upadhyay et al., 2009). Several studies
have demonstrated that the IAA production system was present
in many bacterial species such as Agrobacterium tumefaciens,
Alcaligenes faecalis, Agrobacterium tumefaciens (Costacurta and
Vanderleyden, 1995), Pseudomonas syringae (Kosuge and Sanger,
1987), Streptomyces sp., B. subtilis spp. (Swain et al., 2007),
Pseudomonas fluorescens (Oberhansli et al., 1991), and B.
megaterium (Nghia et al., 2017).

Ethylene Production
Ethylene is a unique type of plant hormone secreted by plants and
plant growth-promoting rhizobacteria (Babalola, 2010). Ethylene
regulates plant physiological processes such as seed dormancy,
enhances the formation of an adventitious root, leaf abscission,
senescence of flower and leaf, and fruit ripening (Abeles et al.,
1992). Different environmental conditions like salinity, drought,
low temperature, pathogenic attack, and chemical exposure alter
ethylene production and plant growth (Babalola, 2010). The
optimum concentration of ethylene induces positive growth and
development of plants (Saleem et al., 2007). Ethylene production
directly depends on ACC production (Shaharoona et al., 2006).

Gibberellins and Cytokinin Production
Gibberellin (GA) is a tetracyclic di-terpenoid compound that
acts as a plant hormone and is synthesized by many plant
growth-promoting rhizobacteria. GA regulates many plant
functions, such as fruit ripening, cell division, plant growth,
etc. (Martinez et al., 2016; Plackett and Wilson, 2016). The
endogenous GA concentration is raised by GA-producing plant
growth-promoting rhizobacteria in the rhizospheric zone and
it induces plant growth; for example, Leifsonia soli-SE134 and
Enterococcus faecium-LKE12 in rice plant (Kang et al., 2014;
Lee et al., 2015). Cytokinin is a plant hormone and is also
synthesized by plant growth-promoting rhizobacteria. It is a

member of adenine derivatives of the N-6 substituted group
(Tsukanova et al., 2017), promotes cell cycle of the plant
(Schaller et al., 2014), regulates plant growth and biosynthesis
of chlorophyll (Cortleven and Schmülling, 2015). Plant growth-
promoting rhizobacteria can produce Cytokinin and cause an
increase in plant growth even under stressed conditions (O’Brien
and Benkova, 2013). Tahir et al. (2017) demonstrated that
B. subtilis-SYST2 induces the expression of cytokinin gene
(s1CKX1) in tomato plants (Tahir et al., 2017). The plant growth-
promoting rhizobacteria like Rhizobium sp., Azotobacter sp.,
Pantoea agglomerans, Pseudomonas fluorescens, Rhodospirillum
rubrum, B. subtilis, and Paenibacillus polymyxa secrete cytokinins
and/or gibberellins that promote plant growth (Kang et al., 2010).

Availability of Nutrients
The soil acts as a buzzword source of macro- andmicro-nutrients
for plant growth, while the compatible form of nutrients is
a question of their availability to the plant. Most of the
microorganisms can enhance the availability of nutrients in
their compatible form to the plants (Upadhyay et al., 2019).
Thus, soil fertility is one of the significant factors that governs
diverse mechanisms of microorganisms. Nitrogen occurs in
78% of total atmospheric gases and cannot be utilized by
higher plants directly. The nitrogen is utilized when it becomes
fixed in the form of nitrogenous salt or ammonium ion. In
nature, two kinds of N2 fixation occurs i.e., biological and non-
biological (Raza et al., 2021). The biological nitrogen fixation
(BNF) is carried out with the aid of bacteria, fungi, and algae,
etc., which makes the atmospheric nitrogen available in the
form of nitrogenous salt through the action of several plant
growth-promoting rhizobacteria and blue-green algae (Dwivedi
and Dwivedi, 2004). The BNF is borne out by two kinds
of microbes, e.g., symbiotic and non-symbiotic (Tang et al.,
2020; Raza et al., 2021). Symbiotic-BNF, a mutualistic link
between the microbe and the plant, occurs in leguminous plants
such as pea, chickpea, etc. (Cheng, 2008). In symbiotic-BNF,
microbes enter the root and induce nodule formation (Cheng,
2008; Singh et al., 2022). Free nitrogen peroxide is converted
into ammonia by nitrogen-fixing microorganisms and makes it
available to the host (Ahemad and Kibret, 2014). This process
involves a complex enzyme system known as nitrogenase (Gaby
and Buckley, 2012), and the nif -gene, found in symbiotic
as well as free-living bacterial systems (Reed et al., 2011).
Nitrogen-fixing plant growth-promoting rhizobacteria such as
Azospirillum (Montanez et al., 2009), Klebsiella (Arruda et al.,
2013), Burkholderia (Chelius and Triplett, 2001), Bacillus (Zakry
et al., 2012), and Pseudomonas (Piromyou et al., 2011) can
significantly enhance crop productivity. Bacillus is associated
withN2-fixing bacteria promoting plant growth and enhances the
yield in non-leguminous cereals (Cakmakci et al., 2001; Ramirez
and Mellado, 2005) such as maize (Pal, 1998), sugar beet, and
barley (Sahin et al., 2004).

Mostly, phosphorus exists in the insoluble complex form like
calcium phosphates in saline soil (Goldstein and Krishnaraj,
2007) and iron phosphates and aluminum phosphates in acidic
soil (Mullen, 2005). Phosphorus is commonly present in soil
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FIGURE 3 | Indirect mechanism of plant growth-promoting rhizobacteria (A) recruited PGPR to produce antibiotic (B) siderophore production and plant

growth-promotion, (C) mechanism of induced systematic resistance [ISR, induced systemic resistance; SAR, Systematic acquired resistance; IGE, Induce gene

expression; NPRI, Non-expresser pathogenesis-related gene; SA, salicylic acid; PAL, phenylalanine amonislyase; PO, peroxidase; PPO, polyphenol oxidase; PC,

poly-phenolic compounds; CS, chalcone synthase; PA, phytoalaxine.

in the range of 400–1,200mg kg−1 (Fernández et al., 1988).
Earth rocks are rich sources of phosphorus, in the form of
primary apatites, and other primary minerals that previously
existed in the geological age (Fernández et al., 1988). Indian
soils are commonly deficient in phosphorus (Johri et al., 2003),
and there are about 40 million tons of phosphorus deposits in
India (Roychoudhury andKaushik, 1989). Phosphate solubilizing
bacteria (PSB), actinomycetes, and phosphate solubilizing fungi
(PSF) solubilize the complex form of phosphates in the soil
(Khan et al., 2007). The plant growth-promoting rhizobacteria
induce the availability of phosphorus throughmineralization and
solubilization of the compounds of rock phosphates (organic
and inorganic phosphorus; Nahas, 1996; Hilda and Fraga,
2000; Khiari and Parent, 2005). Bacterial species are superior
phosphorus solubilizers than fungal species (Alam et al., 2002);
PSB involves about 1–50% phosphorus solubilization followed
by PSF, i.e., about 0.1–0.5% (Chen et al., 2006). Pseudomonas,
Bacillus, Rhizobium, and Enterobacter, and fungal genera such
as Penicillium and Aspergillus are the most efficient phosphate
solubilizers (Kucey et al., 1989; Rodriguez and Fragal, 1990).

About 90% of potassium (K) in the soil exists in its
complex form and is not available to the plants (Yadegari
and Mosadeghzad, 2012; Zhang et al., 2013). Therefore, the
solubilization of potassium is essential for K uptake by plants. K
enhances seed germination, plant growth productivity, seedling

vigor, and plantbiomass (Awasthi et al., 2011; Lynn et al., 2013;
Meena et al., 2014; Zhang and Kong, 2014). The plant growth-
promoting rhizobacteria can solubilize potassium rock (e.g.,
biotite, feldspar, illite, muscovite, orthoclase, and mica) into an
available form of potassium for the plant. Potassium solubilizing
plant growth-promoting rhizobacteria releases organic acids
(e.g., oxalic acid, tartaric acids, gluconic acid, 2-ketogluconic acid,
citric acid, malic acid, succinic acid, lactic acid, propionic acid,
glycolic acid, malonic acid, fumaric acid, etc.) and inorganic acids
(Awasthi et al., 2011; Etesami et al., 2017), which play an effective
role in releasing K from K-bearing minerals (Hu et al., 2006; Liu
et al., 2012; Keshavarz et al., 2013; Saiyad et al., 2015).

Different types of organic acids are involved in potassium
solubilization, but the most prominent acids are tartaric acid,
citric acid, succinic acid, α-ketogluconic acid, and oxalic acid
released by KSB (Meena et al., 2014). Both aerobic and
anaerobic plant growth-promoting rhizobacteria act as KSB,
but most frequently aerobic bacteria that act as potassium
solubilizers are Acidothiobacillus ferrooxidans, B. edaphicus, B.
mucilaginosus, Burkholderia, Paenibacillus sp., and Pseudomonas
(Etesami et al., 2017). Saprophytic bacteria, fungal strains, and
actinomycetes also participate in K solubilization in a wide
range (Gundala et al., 2013; Meena et al., 2014; Bakhshandeh
et al., 2017). Thus, KSB–PGPR acts as a biofertilizer that
improves soil fertility and plant growth. KSB is commonly
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found in different soil environments and can be isolated
from rhizospheric and non-rhizospheric soil, including paddy
soil (Bakhshandeh et al., 2017) and saline soil (Bhattacharya
et al., 2016). KSB–PGPR is more effective for potassium
solubilization (4.90mg l−1) at a specific pH range of 6.5–
8.0 (Badr et al., 2006). Similarly, Bacillus sp., Burkholderia
sp., and Pseudomonas sp. can solubilize potassium at different
temperatures and carbon sources from tea (Camellia sinensis;
Bagyalakshmi et al., 2012).

DIRECT/INDIRECT MECHANISM

Siderophore Production
Plant growth-promoting rhizobacteria secrete a low molecular
weight (500–2,000 Da) iron-chelating compound called
siderophore (Ahmed and Holmstrom, 2014). Siderophores are
involved in the transportation and uptake of iron elements in
the plant cells (Singh et al., 2022) and induce plant growth
(Schwyn and Neilands, 1987; Hider and Kong, 2010; Ahmed
and Holmstrom, 2014). Pseudomonas sp., Enterobacter genera,
Bacillus, and Rhodococcus have a special capacity for binding iron
through siderophores or siderochromes (Sah and Singh, 2015).
Those microorganisms which cannot produce siderophores
but use siderophores produced by other microorganisms are
called xenosiderophores (Ahmed and Holmstrom, 2014).
Production of siderophores occurs at specific conditions such
as pH, temperature, and iron-concentration. The bacteria
P.chlororaphis PCL1391 strain of rhizospheric roots of
tomato plants can solubilize iron from the insoluble ferric
oxides at neutral pH (Hernandez et al., 2004; Haas and
Defago, 2005). Similarly, Sinha et al. (2018) reported that
Psychrobacter piscatorii and Enterococcus casseliflavus from the
Kerguelen Islands and B. cereus, Pseudoalteromonas tetraodonis,
Psychrobacter pocilloporae, Pseudomonas weihenstephanensis,
and Micrococcus aloeverae from the Prydz-Bay produced
either hydroxamate-type siderophore or catecholate-type
siderophores at 15–25◦C with pH 8.5. Siderophores are
produced by both aerobic and facultative anaerobic types
of bacteria under the iron stress habitats (Neilands, 1995).
Facultative aerobic bacterium such as Pseudomonas stutzeri
CCUG 36651 produced siderophores under both aerobic and
anaerobic conditions (Essen et al., 2007), Pseudomonas stutzeri
CCUG 36651 produced four types of ferrioxamine siderophores
under aerobic conditions but ferrioxamines siderophores
under anaerobic conditions (Essen et al., 2007). Siderophore
tightly binds with iron (Fe+3), then Fe+3-chelates move inside
the cell through the cell membrane with the help of specific
siderophore receptors (Haas and Defago, 2005). There are
several types of siderophore binding proteins, such as permeases
and ATPases involved in the transport of Fe+3 chelating
compounds in the cell membrane, reported in gram-positive
bacteria (Ahmed and Holmstrom, 2014). Gram-negative bacteria
release many enzymes including periplasmic binding protein,
outer membrane receptors, and cytoplasmic membrane protein,
which help in the transport of iron-chelating compounds
(Ahmed and Holmstrom, 2014).

Indirect Mechanisms of Plant
Growth-Promoting Rhizobacteria
Indirect mechanisms involve antibiotics production, and
hydrogen cyanide (HCN), ISR, and EPS production. The
secretion of lytic enzymes of plant growth-promoting
rhizobacteria induces plant growth (Maksimov et al., 2011;
Upadhyay et al., 2016). The production of antibiotics is one
of the most powerful bio-control tools for plant pathogens.
Antibiotics are heterogeneous, low molecular weight, organic
compounds secreted by microorganisms that help plant growth
and metabolic activities (Duffy, 2003). The first antibiotic used as
bio-control for plants was isolated from the bacterial species of
fluorescent pseudomonads (Weller and Cook, 1983). Based on
the mode of action, there are six classes of antibiotics, namely,
phenazines, phloroglucinols, pyoluteorin, pyrrolnitrin, cyclic
lipopeptides, and hydrogen cyanide (Haas and Defago, 2005). A
large number of bacterial and fungal species secrete various types
of antibiotics which induce plant growth by the suppression
of phytopathogens (Maksimov et al., 2011). Pyrrolnitrin, an
antibiotic isolated from P. fluorescens BL915 strain suppresses
the growth of the fungal pathogen Rhizoctonia solani in cotton
plants (Hill et al., 1994). Bacterial species of Pseudomonas secretes
phenazine antibiotics that suppress various fungal pathogens
including F. oxysporum and Gaeumannomyces graminis (Chin-
A-Woeng et al., 2003). Bacillus sp. produces many types of
antibiotics such as polymyxin, circulin, and colistin that suppress
many plant diseases (Maksimov et al., 2011).

Hydrogen cyanide is a volatile secondary metabolite secreted
by several gram-positive and gram-negative bacteria such as
P.fluorescens, P. aeruginosa, Chromobacteria violaceum, etc.
(Morrison and Askeland, 1983) that act as bio-control agents
against soil-borne phytopathogens (Haas and Defago, 2005).
HCN acts as a powerful inhibitor of various metallic enzymes
including copper-bearing cytochrome C oxidase (Cho et al.,
2013). HCN prevents many plant diseases like root-rot and black-
rot diseases of tomato plants (Voisard et al., 1989) and also has
nematicidal activities (Kang et al., 2010; Anderson and Kim,
2018). It is also very useful in agriculture and forestry due to
the control of subterranean termites, Odontotermes obesus (Devi
et al., 2007).

Induced systemic response (ISR) suppresses the disease of
plants and animals that induces resistance against diseases
(Van Loon et al., 1998). ISR induced by rhizobacteria shows
resistance to several pathogens such as bacteria, fungi, and
viruses (Korenblum et al., 2020). The plant growth-promoting
rhizobacteria strain secretes salicylic acid that produces resistance
to plant diseases, indicating that PGPR induces ISR (Krause et al.,
2003; Idris et al., 2004). The treatment of tobacco plants with
Bacillus rhizobacteria suppressed the impact of TMV (Tobacco
Mosaic Virus) and also enhanced the height, weight, and yield of
tobacco plants (Kloepper et al., 2004; Wang et al., 2009).

Exo-polysaccharides is a very active constituent of soil
organic matter (Gouzou et al., 1993) produced by plant growth-
promoting rhizobacteria under different soil environments like
salinity (Upadhyay et al., 2011; Mohammed, 2018), drought, and
normal conditions (Alami et al., 2000). EPS is the most important

Frontiers in Microbiology | www.frontiersin.org 11 July 2022 | Volume 13 | Article 916488

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Upadhyay et al. Root Exudates: PGPR-Mechanistic Crop Production

component of the extracellular matrix that shows two characters,
slimy EPS and capsular EPS. EPS plays a significant role in
several functions like biofilm formation (Bhaskar and Bhosle,
2005), bacterial cell protection (Mohammed, 2018), pollutants
degradation (Fusconi and Godinho, 2002), plasma substituting
capacity and bioremediation (Mohammed, 2018), maintenance
of primary function of the cell, and antibacterial activity (Alami
et al., 2000; Mohammed, 2018). EPS-producing PGPR influences
root-adhering soils and establishes a balance between plant roots
and microbial populations (Alami et al., 2000; Upadhyay et al.,
2011).

Hydrolytic enzymes (HEs), mainly chitinase, glucanase,
protease, and cellulase can hydrolyze chemical bonds of a
wide variety of polymeric compounds including chitin, proteins,
cellulose, hemicelluloses, and phytopathogenic DNA (Jadhav and
Sayyed, 2016). HEs are capable of controlling phytopathogens
through the hydrolysis of the cell wall, proteins, and DNA of
pathogens. Thus, HEs play a major role in bio-control (Prathap
and Ranjitha, 2015; Jadhav and Sayyed, 2016). The plant growth-
promoting rhizobacteria act as an effective BCA through the lysis
of phytopathogenic DNA (Garbeva et al., 2004). Microbial strains
such as S. marcescens, B. cereus, B. subtilius, and B. thuringiensis
can produceHEs that can control several phytopathogens namely
R. solani, F. oxysporum, S. rolfsii, P. ultimum, etc. through
different mechanisms (Someya et al., 2000).

Selective Recruitment of Plant
Growth-Promoting Rhizobacteria
It is appealing to discuss what triggers the recruitment of
microbiome in the rhizosphere. Microbiome in the rhizosphere
affects plant growth and yield of the crop. There are two
possibilities: (i) plant root creates an environment in the
rhizosphere and attracts the useful microorganism/bacteria in
the rhizosphere, (ii) soil already has a specified microbial
population that allows the growth of selective plants. Here,
we will discuss the first possibility which is more relevant to
the root exudates and relevant to the remit of this review.
Several previous reports demonstrated that the composition
of root exudates varies with plant species, soil type, pH, and
developmental stage (Berg and Smalla, 2009). The specific
components of plant exudates promote the recruitment of
specific microbiome/PGPR (Kamilova et al., 2006a). It is well-
recognized that the microbial community in the rhizosphere is
highly distinguished in different plant species (Edwards et al.,
2015), the reason being the availability of different genotypes of
the host plant. Based on the knowledge till date, the repertoire
of the microbial community (especially the PGPR) around
the plant root can be managed. It has been stated that some
workers induced the recruitment of plant growth-promoting
rhizobacteria by mutating the ABC transporter gene in plants
(Badri et al., 2009). These results suggest the growth of a disease-
resistant plant by influencing the root exudate components for
the recruitment of plant growth-promoting rhizobacteria (Wei
and Jousset, 2017). Natural disease-suppressive soil (term defined
by Baker and Cook, 1974) can be achieved by manipulating the
plant exudate resulting in the recruitment of the required PGPR

(Exposito et al., 2017). Thus, differential components in plant
exudates recruit microbial communities with a certain degree
of specificity.

FUTURE PERSPECTIVES

Many pieces of research demonstrated the diverse compounds
of root exudates and their sensing toward beneficial microbes
studied under confined and controlled laboratory conditions.
Therefore, elucidation of the function of chemotaxis behavior
of microbe-mediated compounds of root exudates is necessary
for future research to make the success story at the field level.
This will provide the structural foundation for a wide range
of PGPR recognition by specific compounds (chemoattractants)
of plant root exudates, respectively, and induce the growth of
sustainable agriculture by chemotaxis to genetically modified
plant growth-promoting rhizobacteria under degraded soil.
Despite little knowledge of chemoattractant compounds of plant’s
root exudates, there are scopes for more researches for getting
diverse advantages of root exudates through the application
of emerging technology. Biotechnology is the utilization of
biological resources for human welfare and industrial use.
Plants have a well-developed system for the secretion of root
exudates. Whether this secretion system can be utilized for
biotechnological application is the central issue. Undoubtedly,
there are several published reports, but the most fitting domains
are (i) rhizosecretion and (ii) phytoremediation. Rhizosecretion
is an alternative platform for manufacturing a large amount
of pure target proteins (Drake et al., 2009). Borisjuk et al.
(1999) demonstrated the production of recombinant proteins in
plant root exudates. For this purpose, a genetically engineered
plant with increased root mass can be used (Gaume et al.,
2003). Rhizosecretion has been utilized for the production
of antibodies. Madeira et al. (2016) have demonstrated that
hyposecretion is an efficient and economical method for
monoclonal antibody production. Catellani et al. (2020) recently
evaluated the production of anti-fungal antibody scFvFc 2G8
using the root hair secretion system in Nicotiana benthamiana
and Solanum lycopersicum. Another example of next-generation
human therapeutic antibody production was demonstrated by
Lonoce et al. (2016). They showed the production of tumor-
targeting human-compatible monoclonalantibody H10 in hairy
root plants (Lonoce et al., 2016).

Environmental pollution is the most devastating condition
in the present ecological perspective. Phytoremediation is the
process of removal of water and soil contaminants, especially
by using the plant root system (Upadhyay and Edrisi, 2021).
The role of root exudate in the removal of soil and water
contaminants has been reported outstandingly (Gleba et al.,
1999; Ma et al., 2016; Chen et al., 2020). Different components
of root exudates play a specific role in the removal of certain
contaminants from the soil and groundwater. Lu et al. (2017)
reported that glucose present in plant exudates can remove the
soil pyrene by promoting soil dehydrogenase activity. Palmitic
acid present in plant exudates of tall fescue showed promising
results in the removal of petroleum contaminants from the soil
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(Liu et al., 2015). Similarly, by manipulating the components
of root exudates, it can be used for the removal of targeted
pollutants from the soil and ground water. There are two
main types of phytoremediation processes exploiting the plant
exudates (i) rhizosphere biodegradation (plant root exudate
recruited microbe mediated degradation of pollutants) and
(ii) phytostabilization (plant exudate components immobilize
the pollutants).

CONCLUDING REMARKS

Since the 1980s, plant growth-promoting rhizobacterial
inoculants have been developed, but few of them revealed
irregular performance at the field level. Although several
researchers have developed the consortia of plant growth-
promoting rhizobacteria, but with more or less similar outcomes
in the farmer’s field, the solution to these problems is somehow
hidden in the root exudates and root microenvironment.
Thus, the present review has concentrated on the remarkable
views for future research to manage the challenges at the
field level with PGPR inoculants. Several components of root
exudates have functional interplay with PGPR either directly or
through their gene expression. The recruitment of plant growth-
promoting rhizobacteria through root exudates can enhance
plant growth-promoting rhizobacteria root colonization,
specifically, and induce close sustainable relationships between

them for a long time. The hypothesis of specific recruitment
would address the key gap for warranting the perfect plant
growth-promoting rhizobacteria candidate and opening a
new horizon of research in biofertilizer technology. It would
be a promising technique for reducing the asymmetrical
performance of plant growth-promoting rhizobacteria in the
farmer’s field.
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